Data Sheet

FUNCTIONAL BLOCKS

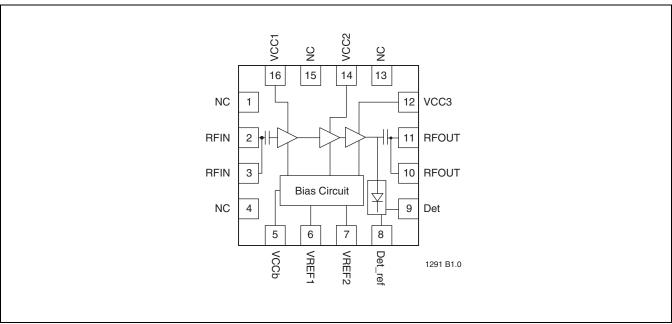


FIGURE 1: Functional Block Diagram6

PIN ASSIGNMENTS

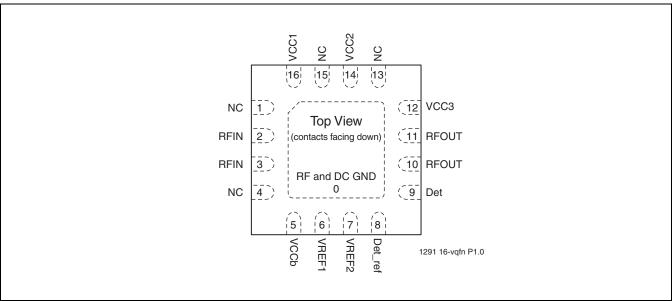


FIGURE 2: Pin Assignments for 16-contact VQFN

PIN DESCRIPTIONS

TABLE 1: Pin Description

Symbol	Pin No.	Pin Name	Type ¹	Function
GND	0	Ground		The center pad should be connected to RF ground with several low inductance, low resistance vias.
NC	1	No Connection		Unconnected pins.
RFIN	2		ı	RF input, DC decoupled
RFIN	3		I	RF input, DC decoupled
NC	4	No Connection		Unconnected pins.
VCCb	5	Power Supply	PWR	Supply voltage for bias circuit
VREF1	6		PWR	1st and 2nd stage idle current control
VREF2	7		PWR	3rd stage idle current control
Det_ref	8		0	On-chip power detector reference
Det	9		0	On-chip power detector
RFOUT	10		0	RF output
RFOUT	11		0	RF output
VCC3	12	Power Supply	PWR	Power supply, 3rd stage
NC	13	No Connection		Unconnected pins.
VCC2	14	Power Supply	PWR	Power supply, 2nd stage
NC	15	No Connection		Unconnected pins.
VCC1	16	Power Supply	PWR	Power supply, 1st stage

1. I=Input, O=Output

T1.0 1291

Data Sheet

ELECTRICAL SPECIFICATIONS

The AC and DC specifications for the power amplifier interface signals. Refer to Table 2 for the DC voltage and current specifications. Refer to Figures 3 through 10 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Input power to pins 2 and 3 (P _{IN})	+5 dBm
Average output power (P _{OUT}) ¹	+28 dBm
Supply Voltage at pins 5, 12, 14, 16 (V _{CC})	0.3V to +4.6V
Reference voltage to pins 6 (V _{REF1}) and pin 7 (V _{REF2})	0.3V to +3.6V
DC supply current (I _{CC})	500 mA
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40°C to +120°C
Maximum Junction Temperature (T _J)	+150°C
Surface Mount Solder Reflow Temperature	260°C for 10 seconds

^{1.} Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommended. Exceeding the maximum rating of average output power could cause permanent damage to the device.

Operating Range

Range	Ambient Temp	V _{CC}
Industrial	-40°C to +85°C	3.3V

TABLE 2: DC Electrical Characteristics at 25°C

Symbol	Parameter	Min.	Тур	Max.	Unit
V _{CC}	Supply Voltage at pins 5, 12, 14, 16	3.0	3.3	4.2	V
I _{CC}	Supply Current				
	for 802.11g, 24 dBm		300		mA
	for 802.11b, 25 dBm		350		mA
I _{CQ}	Idle current for 802.11g to meet EVM<4% @ 23dBm		80		mA
I _{OFF}	Shut down current		1		μΑ
V _{REG1}	Reference Voltage for 1st and 2nd Stage, with 270Ω resistor	2.85	2.90	2.95	V
V _{REG2}	Reference Voltage for 3rd Stage, with 100Ω resistor	2.85	2.90	2.95	V

T2.1 1291

Data Sheet

TABLE 3: AC Electrical Characteristics for Configuration at 25°C

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range in 802.11b/g applications (see Figure 11)	2400		2485	MHz
P _{OUT}	Output power				
	@ PIN = -10 dBm 11b signals		23		dBm
	@ PIN = -10 dBm 11g signals		23		dBm
G	Small signal gain	31	32		dB
G _{VAR1}	Gain variation over each band (2400-2485 MHz)			±0.5	dB
G _{VAR2}	Gain ripple over channel (Gain variation over 20 MHz)		0.2		dB
ACPR	Meet 11b spectrum mask	24	25		dBm
	Meet 11g OFDM 54 MBPS spectrum mask	24	25		dBm
Added EVM	@ 23 dBm output with 11g OFDM 54 MBPS signal		3.5		%
2f, 3f, 4f, 5f	Harmonics at 22 dBm, without trapping capacitors			-40	dBc

T3.2 1291

TYPICAL PERFORMANCE CHARACTERISTICS

Test Conditions: $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$ Unless otherwise specified.

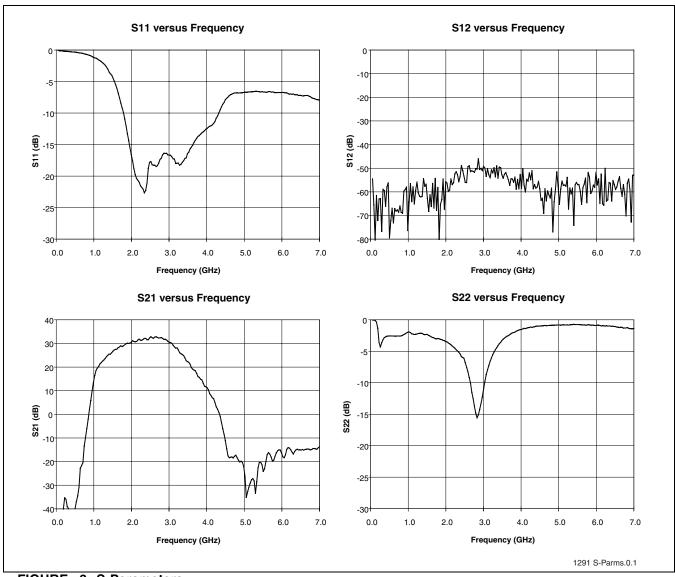


FIGURE 3: S-Parameters

TYPICAL PERFORMANCE CHARACTERISTICS Test Conditions: $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$, 54 Mbps 802.11g OFDM Signal

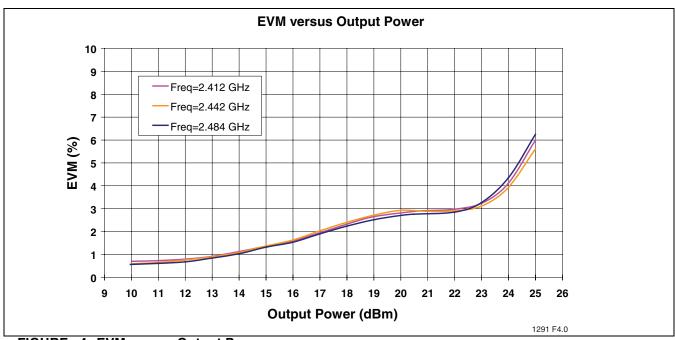


FIGURE 4: EVM versus Output Power

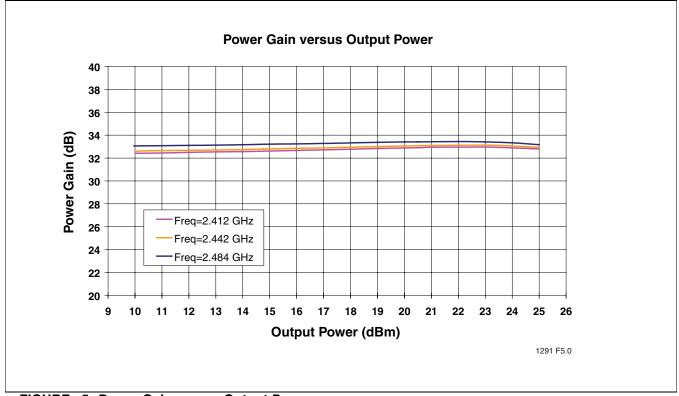


FIGURE 5: Power Gain versus Output Power

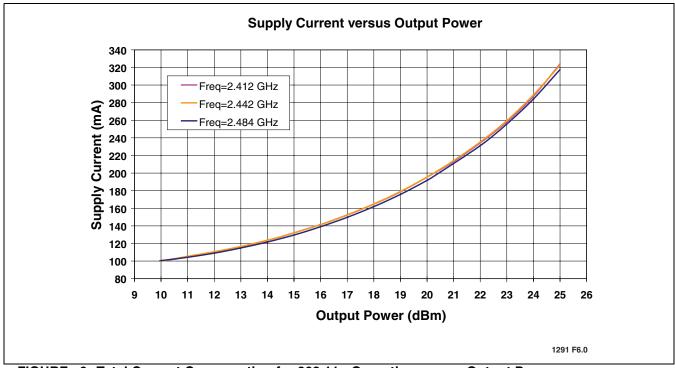


FIGURE 6: Total Current Consumption for 802.11g Operation versus Output Power

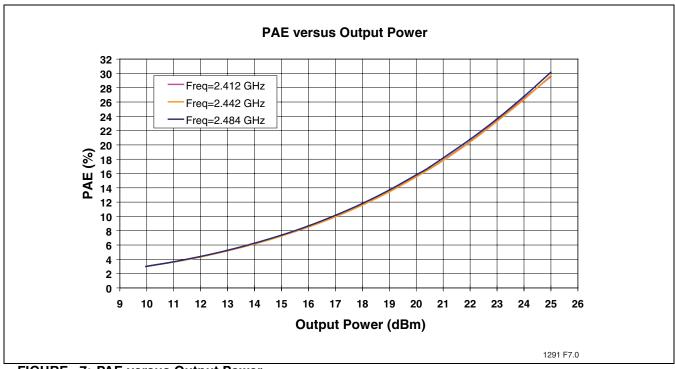


FIGURE 7: PAE versus Output Power

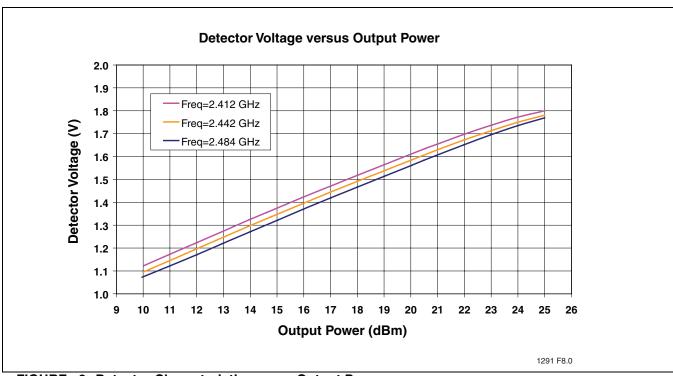


FIGURE 8: Detector Characteristic versus Output Power

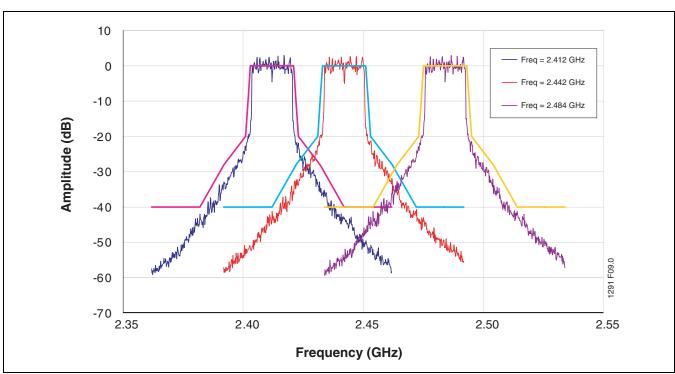


FIGURE 9: 802.11g Spectrum Mask at 24 dBm, Total current 300 mA

TYPICAL PERFORMANCE CHARACTERISTICS Test Conditions: $V_{CC} = 3.3V$, $T_A=25^{\circ}C$, 1 Mbps 802.11b CCK signal

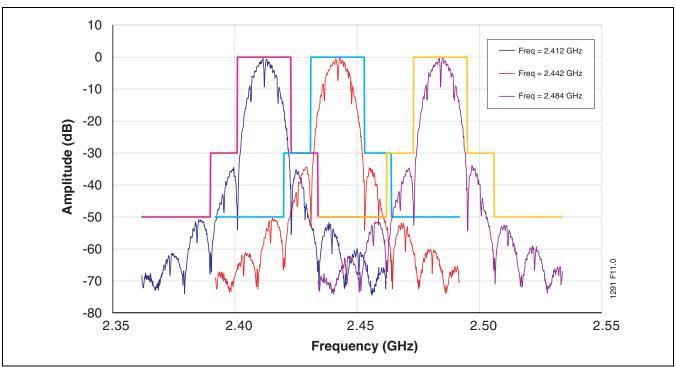


FIGURE 10: 802.11b Spectrum Mask at 25 dBm, Total current 350 mA

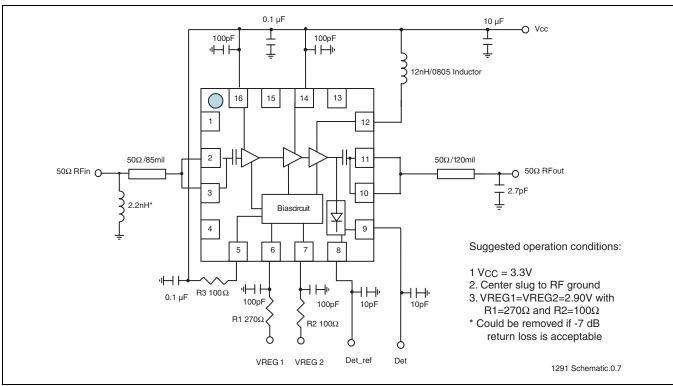
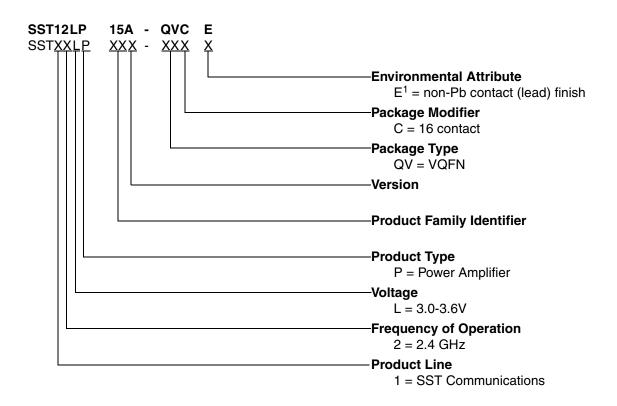



FIGURE 11: Typical Schematic for High-Power, High-Efficiency 802.11b/g Applications

PRODUCT ORDERING INFORMATION

Environmental suffix "E" denotes non-Pb solder.
 SST non-Pb solder devices are "RoHS Compliant".

Valid combinations for SST12LP15A

SST12LP15A-QVCE

SST12LP15A Evaluation Kits

SST12LP15A-QVCE-K

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Data Sheet

PACKAGING DIAGRAMS

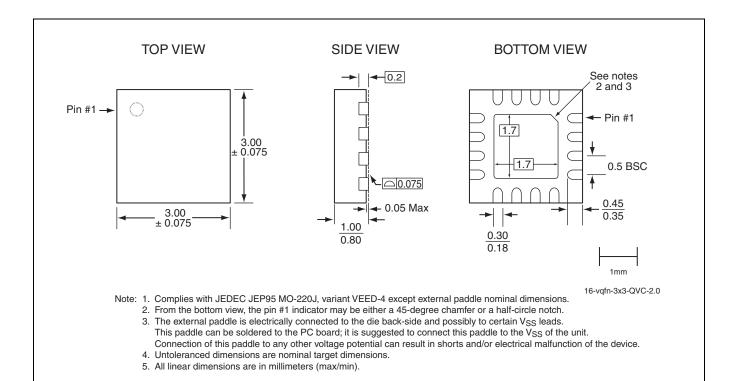


FIGURE 12: 16-contact Very-thin Quad Flat No-lead (VQFN)
SST Package Code: QVC

TABLE 4: Revision History

Revision		Description	Date
00	•	Initial release of data sheet	Mar 2005
01	•	Updated values for gain and efficiency on page 1	Mar 2006
	•	Updated values for VREG1 and VREG2 in Table 2 on page 4	
	•	Removed stability parameter from Table 3 on page 5	
	•	Updated the typical application schematic on page 10	
	•	Updated QVC package drawing.	
	•	Updated "Absolute Maximum Stress Ratings" on page 4	
02	•	Added information for 2.3-2.4 and 2.5-2.6 applications	Jul 2006
	•	Removed leaded part numbers	
03	•	Updated "Features:" and "Product Description" on page 1	Sep 2008
	•	Revised Table 2 on page 4 and Table 3 on page 5	
	•	Updated values in Figure 11 on page 10.	
	•	Removed two schematics	
	•	Updated Figures 3 - 8	
04	•	Updated "Contact Information" on page 13.	Feb 2009

Data Sheet

CONTACT INFORMATION

Marketing

SST Communications Corp.

5340 Alla Road, Ste. 210 Los Angeles, CA 90066 Tel: 310-577-3600

Fax: 310-577-3605

Sales and Marketing Offices

NORTH AMERICA

Silicon Storage Technology, Inc.

1171 Sonora Court Sunnyvale, CA 94086-5308

Tel: 408-735-9110 Fax: 408-735-9036

EUROPE

Silicon Storage Technology Ltd.

Mark House 9-11 Queens Road Hersham, Surrey KT12 5LU UK

Tel: 44 (0) 1932-238133 Fax: 44 (0) 1932-230567

JAPAN

SST Japan

NOF Tameike Bldg, 9F 1-1-14 Akasaka, Minato-ku Tokyo, Japan 107-0052 Tel: 81-3-5575-5515

Fax:81-3-5575-5516

ASIA PACIFIC NORTH

SST Macao

Room N, 6th Floor, Macao Finance Center, No. 202A-246, Rua de Pequim, Macau

Tel: 853-2870-6022 Fax: 853-2870-6023

ASIA PACIFIC SOUTH

SST Communications Co.

16F-6, No. 75, Sec.1, Sintai 5th Rd Sijhih City, Taipei County 22101 Taiwan, R.O.C.

Tel: 886-2-8698-1198 Fax: 886-2-8698-1190

KOREA

SST Korea

6F, Heungkuk Life Insurance Bldg 6-7 Sunae-Dong, Bundang-Gu, Sungnam-Si Kyungki-Do, Korea, 463-020

Tel: 82-31-715-9138 Fax: 82-31-715-9137