

Absolute Maximum Ratings⁽¹⁾

Recommended Operating Conditions⁽³⁾

$ \begin{array}{c} \mbox{Supply Voltage V_{DD}} & -0.5V \mbox{ to } +7V \\ \mbox{DC Switch Voltage } (V_S)^{(2)} & -0.5V \mbox{ to } V_{DD} \mbox{ +}0.5V \\ \mbox{DC Input Voltage } (V_{IN})^{(2)} & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ DC Output Current } (V_{OUT}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ DC Output Current } (V_{C}/I_{GND}) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ Junction Temperature under Bias } (T_J) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox{ Junction Lead Temperature } (T_L) & -0.5V \mbox{ to } \mbox{ +}7.0V \\ \mbox$	$\label{eq:supply Voltage Operating (V_{DD}) \dots 1.65V to 5.5V \\ Control Input Voltage (V_{IN}) \dots 0V to V_{DD} \\ Switch Input Voltage (V_{IN}) \dots 0V to V_{DD} \\ Output Voltage (V_{OUT}) \dots 0V to V_{DD} \\ Operating Temperature (T_A) \dots -40^{\circ}C to +85^{\circ}C \\ Input Rise and Fall Time (t_{r_5}t_f) \\ Control Input V_{DD} = 2.3V - 3.6V \dots 0ns/V to 10ns/V \\ Control Input V_{DD} = 4.5V - 5.5V \dots 0ns/V to 5ns/V \\ \end{tabular}$
	-

Notes:

1. Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

2. The input and output negative voltage ratings may be exceeded if the inut and output diode current ratings are observed.

3. Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics (Over the Operating temperature range, $T_A = -40^{\circ}C$ to 85°C)

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Тур.	Max.	Units
V _{IAR}	Analog Input Signal Range		V _{DD}	$T_A = 25^{\circ}C \&$ -40°C to 85°C	0		V _{DD}	v
		$I_{O} = 30 mA, V_{IN} = 0V$				4	6	
R _{ON}		$I_{O} = -30 mA$, $V_{IN} = 2.4 V$	4.5V	$T_A = 25^{\circ}C$		5	8	
		$I_{O} = -30 mA$, $V_{IN} = 4.5 V$				8	13	
		$I_{O} = 30 mA$, $V_{IN} = 0V$					6	1
R _{ON}	$I_{O} = -30 mA$, $V_{IN} = 2.4 V$	4.5V				8	1	
		$I_{O} = -30 mA$, $V_{IN} = 4.5 V$		85 C			13	-
R _{ON}		$I_{O} = 24mA, V_{IN} = 0V$	2.01/	$T_A = 25^{\circ}C$		5	8	
KON		$I_{O} = -24 mA$, $V_{IN} = 3.0 V$	3.00			12	19	
D	On Desistance (4)	$I_{O} = 24 mA$, $V_{IN} = 0V$	2.014	$T_{A} = 25^{\circ}C \& -40^{\circ}C \text{ to } 85^{\circ}C \qquad 0$ $T_{A} = 25^{\circ}C \qquad -$ $T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C \qquad -$			8	
R _{ON}	$I_{O} = -30 \text{mA}, V_{IN} = I_{O} = -30 \text{mA}, V_{IN} = I_{O} = -30 \text{mA}, V_{IN} = I_{O} = 30 \text{mA}, V_{IN} = I_{O} = 30 \text{mA}, V_{IN} = I_{O} = -30 \text{mA}, V_{IN} = I_{O} = -30 \text{mA}, V_{IN} = I_{O} = -30 \text{mA}, V_{IN} = I_{O} = -24 \text{mA}, V_{IN} = I_{O} = I_{O} = -24 $	$I_{O} = -24 mA$, $V_{IN} = 3.0 V$	3.0V 85°C	85°C			19	Ω
D		$I_{O} = 24 mA$, $V_{IN} = 0V$	2.21/	T 2500		6	9	
R _{ON}	$I_{O} = -30mA, V_{IN} = 2.4V \qquad 4.5V$ $I_{O} = -30mA, V_{IN} = 4.5V$ $I_{O} = -30mA, V_{IN} = 4.5V$ $I_{O} = 30mA, V_{IN} = 0V$ $I_{O} = -30mA, V_{IN} = 2.4V \qquad 4.5V$ $I_{O} = -30mA, V_{IN} = 4.5V$ $I_{O} = -24mA, V_{IN} = 0V$ $I_{O} = -24mA, V_{IN} = 3.0V$ $I_{O} = -24mA, V_{IN} = 3.0V$ $3.0V$	2.3 V	$T_A = 25^{\circ}C$		16	24	1	
D		$I_{O} = 24 mA$, $V_{IN} = 0V$	2.21	$T_A = -40^{\circ}C$ to			9]
R _{ON}		$I_{O} = -24 mA$, $V_{IN} = 2.4 V$	2.3 V	85°C			24	
р		$I_{O} = 24 mA$, $V_{IN} = 0V$	1.651	T - 25%		8	12	
R _{ON}	$I_{O} = -24 mA$, $V_{IN} = 1.65 V$	1.03 V	$I_A = 23 C$		27	39		
D	1	$I_{O} = 24mA, V_{IN} = 0V$	- 1.65V				12	_
R _{ON}		$I_{\rm O} = -24 {\rm mA}, V_{\rm IN} = 1.65 {\rm V}$					39	

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Тур.	Max.	Units
		$I_{\rm A} = -30 {\rm mA}, V_{\rm BN} = 3.15 {\rm V}$	4.5V			0.15		
4 D	On-Resistance	$I_{\rm A}$ = -24mA, $V_{\rm BN}$ = 2.1V	3.0V	T = 25%		0.2		
ΔR_{ON}	Match Between Channels ^(4, 5, 6)	$I_{\rm A}$ = -8mA, $V_{\rm BN}$ = 1.6V	2.3V	$T_A = 25^{\circ}C$		0.3		
		$I_{\rm A}$ = -4mA, $V_{\rm BN}$ = 1.15V	1.65V			0.3		0
		$I_A = -30 \text{mA}, \ 0 \le V_{BN} \le V_{DD}$	5.0V			6		Ω
D	On-Resistance	$I_A = -24 \text{mA}, 0 \le V_{BN} \le V_{DD}$	3.3V	$T_{1} = 25\%$		12		
R _{ONF}	Flatness ^(4, 5, 7)	$I_A = -8mA, \ 0 \le V_{BN} \le V_{DD}$	2.5V	$T_A = 25^{\circ}C$		22		
		$I_A = -4mA, \ 0 \le V_{BN} \le V_{DD}$	1.8V			90		
V	Input High Volt- age	Logic High Level	$V_{CC} = 1.65V$ to 1.95V	$\begin{array}{c c} T_A = 25^{\circ}C & V \\ \& -40^{\circ}C & \\ to 85^{\circ}C & 0 \end{array}$	0.75 V _{CC}			
V _{IH}			$V_{\rm CC} = 2.3 V$ to 5.5 V		0.7 V _{CC}			
X 7	Input Low Volt-	Logic LowLevel	$V_{CC} = 1.65V$ to 1.95V				0.25 V _{CC}	V
V _{IL}	age		$V_{\rm CC} = 2.3 \text{V}$ to 5.5 V				0.25 V _{CC}	
		$0 \le V_{IN} \le 5.5 V$	$V_{CC} \le 0V \le 5.5V$	$T_A = 25^{\circ}C$			±0.1	
Curent	Input Leakage Curent			$T_A = -40^{\circ}C$ to 85°C			±1.0	
		$ 0 \leq \sqrt{n_1} \leq \sqrt{n_2}$	$\begin{array}{l} V_{CC} \leq 1.65V \leq \\ 5.5V \end{array}$	$T_A = 25^{\circ}C$			±0.1	
	OFF State Leak- age Current			$T_A = -40^{\circ}C$ to 85°C			±10	μA
				$T_A = 25^{\circ}C$			1	
I _{CC}	Quiescent Supply Current	All Channels ON or OFF, V_{IN} = V_{DD} or GND, I_{OUT} = 0	$V_{CC} = 5.5 V$	$T_A = -40^{\circ}C$ to 85°C			10	

DC Electrical Characteristics Cont. (Over the Operating temperature range, $T_A = -40^{\circ}$ C to 85°C)

Notes:

4. Measured by voltage drop between A and B pins at the indicated current through the device. On-Resistance is determined by the lower of the voltages on two ports (A or B).

Parameter is characterized but not tested in production. 5.

6. $\Delta R_{ON} = R_{ON} \max - R_{ON} \min$. measured at identical V_{DD}, temperature and voltage levels.

Flatness is defined as difference between maximum and minimum value of On-Resistance over the specified range of conditions. 7.

8. Guaranteed by design.

Capacitance⁽¹²⁾

Parameters	Description	Test Conditions	Supply Voltage	Тетр	Min.	Тур.	Max.	Units
C _{IN}	Controll Input					2.3		
C _{IO-B}	For B Port, Switch OFF	$f = 1 MHz^{(12)}$	$V_{CC} = 5.0 V$	$T_A = 25^{\circ}C$		6.5		pF
C _{IOA-ON}	For A Port, Switch ON	$f = 1 \text{ MHz}^{(12)}$				18.5		

Switch and AC Characteristics

Parameters	Description	Test Conditions	Supply Voltage	Temp	Min.	Тур.	Max.	Units
		See test circut diagram 1 and 2 V_I Open ⁽¹⁰⁾	$V_{CC} = 2.3 V$ to 2.7V	$T_A = 25^{\circ}C \&$ -40°C to 85°C		1.2		
	Propagation De- lay: A to Bn		$V_{\rm CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$			0.8		
t _{PHL}	lay. A to bli		$V_{\rm CC} = 4.5 V$ to 5.5 V	-40 C to 85 C		0.3		
		Card and simple dia	$V_{\rm CC} = 1.65 V$ to 1.95V		7		23	
t _{PZL}	Output Enable	See test circut dia- gram 1 and 2 $V_I = 2$	$V_{\rm CC} = 2.3 V$ to 2.7V	T 2000	3.5		13	
t _{PZH}	Turn ON Time: A to Bn	V_{CC} for t_{PZL} , $V_I =$	$V_{\rm CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$	$T_A = 25^{\circ}C$	2.5		6.9	
		0V for t _{PZH}	$V_{\rm CC} = 4.5 V$ to 5.5 V		1.7		5.2	
		Saa taat airaut dia	$V_{CC} = 2.5 V$				24	
t _{PZL}	Output Enable	See test circut dia- gram 1 and 2 $V_I = 2$	$V_{CC} = 3.3 V$	$T_{A} = 25^{\circ}C \&$			14	
t _{PZH}	Turn ON Time: A to Bn	V_{CC} for t_{PZL} , $V_I =$	$V_{\rm CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$	-40°C to 85°C			7.6	
		0V for t _{PZH}	$V_{\rm CC} = 4.5 V$ to 5.5 V				5.7	
		See test circut dia- gram 1 and 2 $V_I = 2$ V_{CC} for t_{PZL} , $V_I =$ $0V$ for t_{PZH}	$V_{\rm CC} = 1.65 V$ to 1.95V		3		12.5	ns
t _{PLZ}	Output Disable-		$V_{CC} = 2.3 V$ to 2.7V	$T_{\rm A} = 25^{\circ}{\rm C}$	2		7	
t _{PHZ}	Turn OFF Time: A to Bn		$V_{\rm CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$		1.5		5	
			$V_{\rm CC} = 4.5 V$ to 5.5 V		0.8		3.5	
	Output Disable-	See test circut dia- gram 1 and 2 $V_I = 2$ V_{CC} for t_{PZL} , $V_I =$ $0V$ for t_{PZH}	$V_{CC} = 2.5 V$	$T_A = 25^{\circ}C \&$ -40°C to 85°C			13	
t _{PLZ}			$V_{CC} = 3.3 V$				7.5	
t _{PHZ}	Turn OFF Time: A to Bn		$V_{CC} = 3.0V \text{ to } 3.6V$				5.3	
			$V_{\rm CC} = 4.5 V$ to 5.5 V				3.8	
			$V_{CC} = 2.5 V$		0.5			
	Break Before	See Test Circut diagram 9. ⁽⁹⁾	$V_{CC} = 3.3 V$	$T_A = 25^{\circ}C \&$ -40°C to 85°C	0.5			-
t _{BM}	Make Time		$V_{\rm CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$		0.5			
			$V_{CC} = 4.5 V$ to 5.5 V		0.5			
		$C_{\rm L} = 0.1$ nF, $V_{\rm GEN} =$				7		
Q Charge Injection	Charge Injection $0V, R_{GEN} = 0\Omega$, See test circut 4	$V_{CC} = 3.3 V$	$T_A = 25^{\circ}C$		3		pC	
O _{IRR}	Off Isolation	$R_{L} = 50\Omega,$ $V_{GEN} = 0V, R_{GEN} = 0\Omega, \text{ See test circut}$ $5^{(11)}$	$V_{CC} = 1.65 V$ to 5.5 V	$T_{\rm A} = 25^{\circ}{\rm C}$		-57		dB
X _{TALK}	Crosstalk Isola- tion	See test circut 6	$V_{CC} = 1.65 V$ to 5.5 V	$T_A = 25^{\circ}C$		-54		
f _{3dB}	-3dB Bandwidth	See test circut 9	$V_{\rm CC} = 1.65 V$ to 5.5V	$T_A = 25^{\circ}C$		250		MHz

Notes:

9. Guaranteed by design.

10. Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch On-Resistance and the 50pF load capacitance, whne driven by an ideal voltage source with zero output impedance.

11. Off Isolation = 20 Log_{10} [V_A / V_{Bn}] and is measured in dB.

12. $T_A = 25^{\circ}C$, f = 1MHz. Capacitance is characterized but not tested in production.

PI5A3157

Downloaded from Arrow.com.

Test Circuits and Timing Diagrams

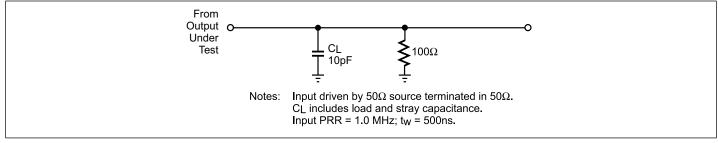


Figure 1. AC Test Circuit

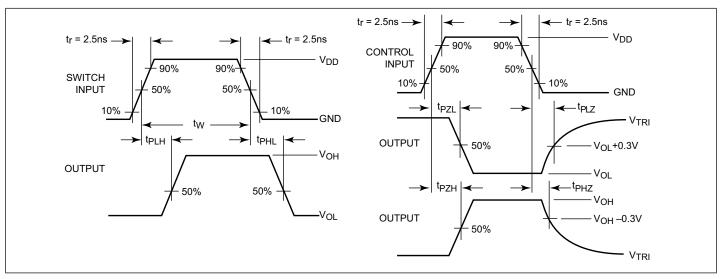


Figure 2. AC Waveforms

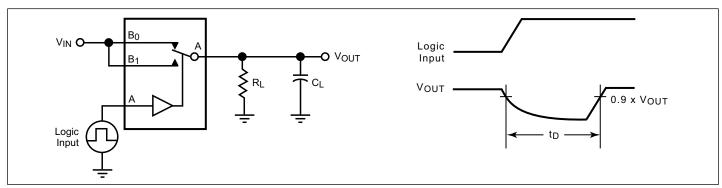


Figure 3. Break Before Make Interval Timing

5

A product Line of Diodes Incorporated

PI5A3157

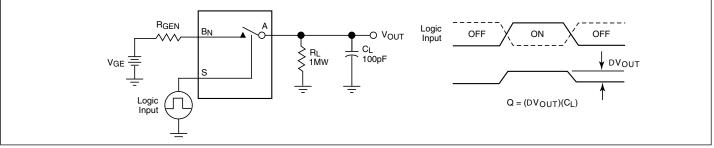
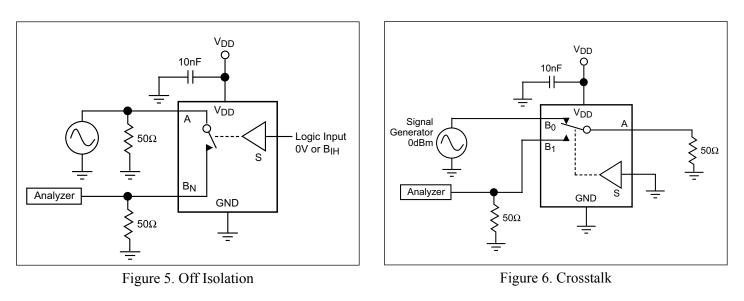



Figure 4. Charge Injection Test

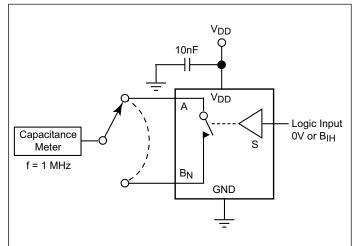


Figure 7. Channel Off Capacitance

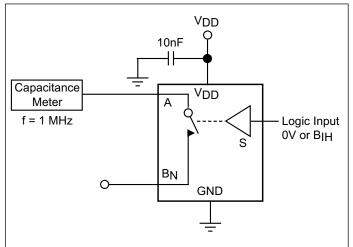


Figure 8. Channel On Capacitance

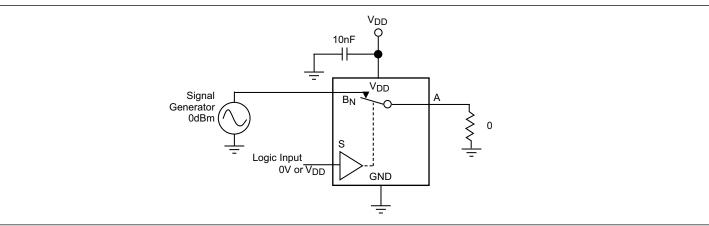
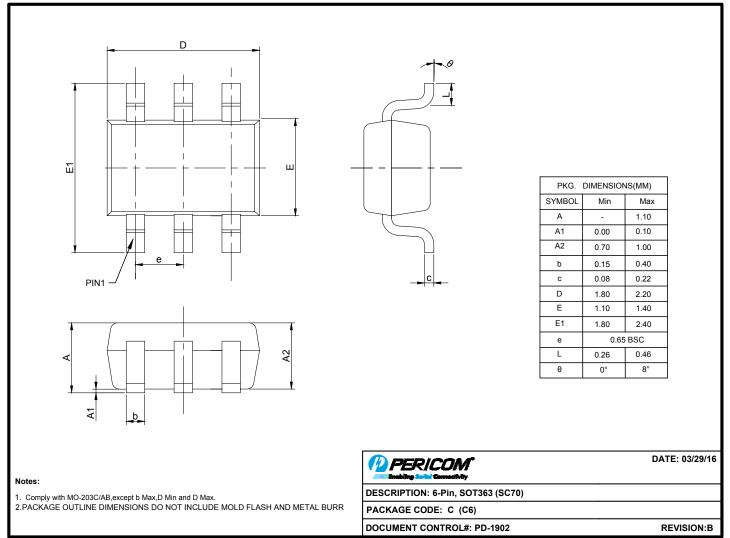


Figure 9. Bandwidth

Part Marking

C Package



kD: PI5A3157BC6E XX: Date Code (Year & Workweek) The Bar of "D" means Fab3 of Magnachip

Packaging Mechanical: 6-SC70 (C)

16-0078

For latest package info.

please check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Code	Packaging Code	Package Description	Top Mark
PI5A3157CEX	С	6-pin, SOT363 (SC70)	ZM

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free. 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm

antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

Downloaded from Arrow.com.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the
- failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com

Downloaded from Arrow.com.