

Overview

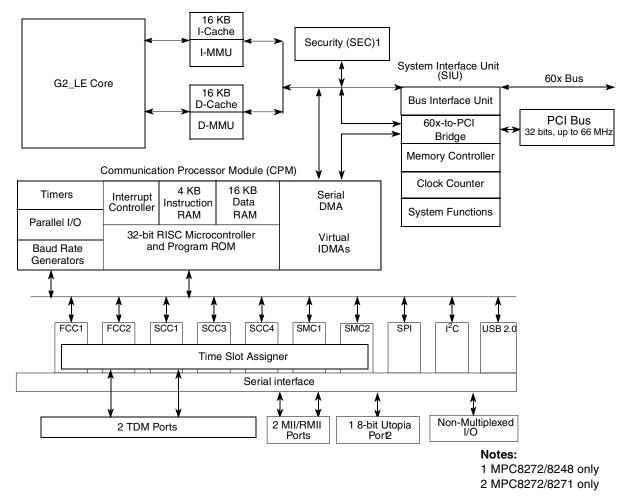
1 Overview

This table shows the functionality supported by each SoC in the MPC8272 family.

	SoCs				
Functionality		MPC8272	MPC8248	MPC8271	MPC8247
	Package ¹		516 F	PBGA	
Serial communications controllers (SCCs)		3	3	3	3
QUICC multi-channel controller (QMC)		Yes	Yes	Yes	Yes
Fast communication controllers (FCCs)		2	2	2	2
I-Cache (Kbyte)		16	16	16	16
D-Cache (Kbyte)		16	16	16	16
Ethernet (10/100)		2	2	2	2
UTOPIA II Ports		1	0	1	0
Multi-channel controllers (MCCs)		0	0	0	0
PCI bridge		Yes	Yes	Yes	Yes
Transmission convergence (TC) layer			—		—
Inverse multiplexing for ATM (IMA)		—	—	—	—
Universal serial bus (USB) 2.0 full/low rate	!	1	1	1	1
Security engine (SEC)		Yes	Yes	—	—

Table 1. MPC8272 PowerQUICC II Family Functionality

¹ See Table 2.


Devices in the MPC8272 family are available in two packages—the VR or ZQ package—as shown in . For package ordering information, see Section 10, "Ordering Information."

Code (Package)	VR (516 PBGA—Lead free)	ZQ (516 PBGA—Lead spheres)
	MPC8272VR	MPC8272ZQ
Device	MPC8248VR	MPC8248ZQ
Device	MPC8271VR	MPC8271ZQ
	MPC8247VR	MPC8247ZQ

Table 2. MPC8272 PowerQUICC II Device Packages

This figure shows the block diagram of the SoC.

1.1 Features

The major features of the SoC are as follows:

- Dual-issue integer (G2_LE) core
 - A core version of the MPC603e microprocessor
 - System core microprocessor supporting frequencies of 266-400 MHz
 - Separate 16 KB data and instruction caches:
 - Four-way set associative
 - Physically addressed
 - LRU replacement algorithm
 - Power Architecture®-compliant memory management unit (MMU)
 - Common on-chip processor (COP) test interface
 - Supports bus snooping for cache coherency

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Overview

- Floating-point unit (FPU) supports floating-point arithmetic
- Support for cache locking
- Low-power consumption
- Separate power supply for internal logic (1.5 V) and for I/O (3.3 V)
- Separate PLLs for G2_LE core and for the communications processor module (CPM)
 - G2_LE core and CPM can run at different frequencies for power/performance optimization
 - Internal core/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 7:1, 8:1
 - Internal CPM/bus clock multiplier that provides ratios 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1, 8:1 ratios
- 64-bit data and 32-bit address 60x bus
 - Bus supports multiple master designs—up to two external masters
 - Supports single transfers and burst transfers
 - 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
- 60x-to-PCI bridge
 - Programmable host bridge and agent
 - 32-bit data bus, 66 MHz, 3.3 V
 - Synchronous and asynchronous 60x and PCI clock modes
 - All internal address space available to external PCI host
 - DMA for memory block transfers
 - PCI-to-60x address remapping
- System interface unit (SIU)
 - Clock synthesizer
 - Reset controller
 - Real-time clock (RTC) register
 - Periodic interrupt timer
 - Hardware bus monitor and software watchdog timer
 - IEEE 1149.1 JTAG test access port
- Eight bank memory controller
 - Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash, and other user-definable peripherals
 - Byte write enables
 - 32-bit address decodes with programmable bank size
 - Three user-programmable machines, general-purpose chip-select machine, and page mode pipeline SDRAM machine
 - Byte selects for 64-bit bus width (60x)
 - Dedicated interface logic for SDRAM
- Disable CPU mode

- Integrated security engine (SEC) (MPC8272 and MPC8248 only)
 - Supports DES, 3DES, MD-5, SHA-1, AES, PKEU, RNG and RC-4 encryption algorithms in hardware
- Communications processor module (CPM)
 - Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications peripherals
 - Interfaces to G2_LE core through on-chip dual-port RAM and DMA controller. (Dual-port RAM size is 16 KB plus 4 KB dedicated instruction RAM.)
 - Microcode tracing capabilities
 - Eight CPM trap registers
- Universal serial bus (USB) controller
 - Supports USB 2.0 full/low rate compatible
 - USB host mode
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loopback mode for diagnostics (12 Mbps only)
 - Supports USB slave mode
 - Four independent endpoints support control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - CRC5 checking
 - NRZI encoding/decoding with bit stuffing
 - 12- or 1.5-Mbps data rate
 - Flexible data buffers with multiple buffers per frame
 - Automatic retransmission upon transmit error
 - Serial DMA channels for receive and transmit on all serial channels
 - Parallel I/O registers with open-drain and interrupt capability
 - Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
 - Two fast communication controllers (FCCs) supporting the following protocols:
 - 10-/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII)
 - Transparent
 - HDLC—up to T3 rates (clear channel)

Overview

- One of the FCCs supports ATM (MPC8272 and MPC8271 only)—full-duplex SAR at 155 Mbps, 8-bit UTOPIA interface 31 Mphys, AAL5, AAL1, AAL2, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 64-K external connections
- Three serial communications controllers (SCCs) identical to those on the MPC860 supporting the digital portions of the following protocols:
 - Ethernet/IEEE 802.3 CDMA/CS
 - HDLC/SDLC and HDLC bus
 - Universal asynchronous receiver transmitter (UART)
 - Synchronous UART
 - Binary synchronous (BiSync) communications
 - Transparent
 - QUICC multichannel controller (QMC) up to 64 channels
 - Independent transmit and receive routing, frame synchronization.
 - Serial-multiplexed (full-duplex) input/output 2048, 1544, and 1536 Kbps PCM highways
 - Compatible with T1/DS1 24-channel and CEPT E1 32-channel PCM highway, ISDN basic rate, ISDN primary rate, and user defined.
 - Subchanneling on each time slot.
 - Independent transmit and receive routing, frame synchronization and clocking
 - Concatenation of any not necessarily consecutive time slots to channels independently for receiver/transmitter
 - Supports H1,H11, and H12 channels
 - Allows dynamic allocation of channels
 - SCC3 in NMSI mode is not usable when USB is enabled.
- Two serial management controllers (SMCs), identical to those of the MPC860
 - Provides management for BRI devices as general-circuit interface (GCI) controllers in time-division-multiplexed (TDM) channels
 - Transparent
 - UART (low-speed operation)
- One serial peripheral interface identical to the MPC860 SPI
- One I^2C controller (identical to the MPC860 I^2C controller)
 - Microwire compatible
 - Multiple-master, single-master, and slave modes
- Up to two TDM interfaces
 - Supports one groups of two TDM channels
 - 1024 bytes of SI RAM
- Eight independent baud rate generators and 14 input clock pins for supplying clocks to FCC, SCC, SMC, and USB serial channels
- Four independent 16-bit timers that can be interconnected as two 32-bit timers

- PCI bridge
 - PCI Specification revision 2.2-compliant and supports frequencies up to 66 MHz
 - On-chip arbitration
 - Support for PCI to 60x memory and 60x memory to PCI streaming
 - PCI host bridge or peripheral capabilities
 - Includes four DMA channels for the following transfers:
 - PCI-to-60x to 60x-to-PCI
 - 60x-to-PCI to PCI-to-60x
 - PCI-to-60x to PCI-to-60x
 - 60x-to-PCI to 60x-to-PCI
 - Includes the configuration registers required by the PCI standard (which are automatically loaded from the EPROM to configure the MPC8272) and message and doorbell registers
 - Supports the I_2O standard
 - Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998)
 - Support for 66 MHz, 3.3 V specification
 - 60x-PCI bus core logic, which uses a buffer pool to allocate buffers for each port

2 Operating Conditions

This table shows the maximum electrical ratings.

 Table 3. Absolute Maximum Ratings¹

Rating	Symbol	Value	Unit
Core supply voltage ²	VDD	-0.3 - 2.25	V
PLL supply voltage ²	VCCSYN	-0.3 - 2.25	V
I/O supply voltage ³	VDDH	-0.3 - 4.0	V
Input voltage ⁴	VIN	GND(-0.3) - 3.6	V
Junction temperature	Тј	120	°C
Storage temperature range	T _{STG}	(–55) – (+150)	°C

¹ Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.

- ² Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V during normal operation. It is recommended that VDD/VCCSYN should be raised before or simultaneous with VDDH during power-on reset. VDD/VCCSYN may exceed VDDH by more than 0.4 V during power-on reset for no more than 100 ms.
- ³ Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation.
- ⁴ Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Operating Conditions

This table lists recommended operational voltage conditions.

Table 4. Recommended Operating Conditions¹

Rating	Symbol	Value	Unit
Core supply voltage	VDD	1.425 – 575	V
PLL supply voltage	VCCSYN	1.425 – 575	V
I/O supply voltage	VDDH	3.135 – 3.465	V
Input voltage	VIN	GND (-0.3) - 3.465	V
Junction temperature (maximum)	Тj	105 ²	°C
Ambient temperature	T _A	0–70 ²	°C

¹ **Caution:** These are the recommended and tested operating conditions. Proper operation outside of these conditions is not guaranteed.

² Note that for extended temperature parts the range is $(-40)_{T_A}$ – 105_{T_j} .

This SoC contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or V_{CC}).

This figure shows the undershoot and overshoot voltage of the 60x bus memory interface of the SoC. Note that in PCI mode the I/O interface is different.

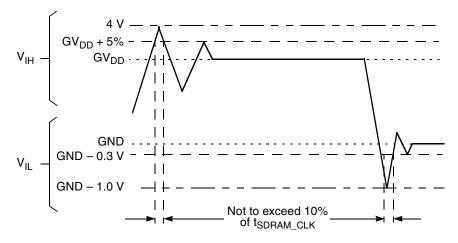


Figure 2. Overshoot/Undershoot Voltage

This table shows DC electrical characteristics.

Table 5. D	C Electrical	Characteristics ¹
------------	--------------	------------------------------

Characteristic	Symbol	Min	Max	Unit
Input high voltage—all inputs except TCK, $\overline{\text{TRST}}$ and $\overline{\text{PORESET}^2}$	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ⁴	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}	—	10	μA
Signal low input current, V _{IL} = 0.8 V	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	Ι _Η	—	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁵ (UTOPIA pins only): $I_{OH} = -8.0\text{mA}$ PA[8-31] PB[18-31] PC[0-1,4-29] PD[7-25, 29-31]	V _{OH}	2.4	_	V
In UTOPIA mode ⁵ (UTOPIA pins only): I _{OL} = 8.0mA PA[8–31] PB[18–31] PC[0–1,4–29] PD[7–25, 29–31]	V _{OL}	_	0.5	V

Characteristic	Symbol	Min	Max	Unit
I <u>OL</u> = 6.0mA	V _{OL}	—	0.4	V
BR	-			
BG/IRQ6				
ABB/IRQ2				
TS				
A[0-31]				
<u>TT[0-4]</u>				
TBST				
TSIZE[0-3]				
AACK				
ARTRY				
DBG/IRQ7 DBB/IRQ3				
D[0–63] IRQ3/CKSTP_OUT/EXT_BR3				
IRQ4/CORE_SRESET/EXT_BG3				
IRQ5/TBEN/EXT_DBG3/CINT				
PSDVAL				
TA				
TEA				
GBL/IRQ1				
CI/BADDR29/IRQ2				
WT/BADDR30/IRQ3				
BADDR31/IRQ5/CINT				
CPU_BR/INT_OUT				
IRQ0/NMI_OUT				
PORESET/PCI_RST				
HRESET				
SRESET				
RSTCONF				

Table 5. DC Electrical Characteristics¹ (continued)

Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}		0.4	V
<u>ČŠ</u> [0–5]	01			
CS6/BCTL1/SMI				
CS7/TLBSYNC				
BADDR27/ IRQ1				
BADDR28/ IRQ2				
ALE/ IRQ4				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4				
PSDAMUX/PGPL5				
PCI_CFG0 (PCI_HOST_EN)				
PCI_CFG1 (PCI_ARB_EN)				
PCI_CFG2 (DLL_ENABLE)				
MODCK1/RSRV/TC(0)/BNKSEL(0)				
MODCK2/CSE0/TC(1)/BNKSEL(1)				
MODCK3CSE1/TC(2)/BNKSEL(2)				
$I_{OL} = 3.2 \text{mA}$				
PCI_PAR				
PCI_FRAME				
PCI_TRDY				
PCI_IRDY				
PCI_STOP				
PCI_DEVSEL				
PCI_IDSEL				
PCI_PERR				
PCI_SERR				
PCI_REQ0				
PCI_REQ1/ CPI_HS_ES				
PCI_REQ1/ CPI_RS_ES				
PCI_GNT0 PCI_GNT1/ CPI_HS_LES				
PCI_GNT1/ CPI_HS_LES PCI_GNT2/ CPI_HS_ENUM				
PCI_GNT2/ CPI_HS_ENOM PCI_RST				
PCI_AD(0-31)				
PCI_C(0-3)/BE(0-3)				
PA[8-31]				
PB[18-31]				
PC[0-1,4-29]				
PC[0–1,4–29] PD[7–25, 29–31] TDO				

Table 5. DC Electrical Characteristics¹ (continued)

¹ The default configuration of the CPM pins (PA[8–31], PB[18–31], PC[0–1,4–29], PD[7–25, 29–31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

 ² TCK, TRST and PORESET have min VIH = 2.5V.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

⁴ The leakage current is measured for nominal VDDH,VCCSYN, and VDD.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

⁵ MPC8272 and MPC8271 only.

Table 6.

Characteristic	Symbol	Min	Мах	Unit
Input high voltage—all inputs except TCK, TRST and PORESET ¹	V _{IH}	2.0	3.465	V
Input low voltage	V _{IL}	GND	0.8	V
CLKIN input high voltage	V _{IHC}	2.4	3.465	V
CLKIN input low voltage	V _{ILC}	GND	0.4	V
Input leakage current, V _{IN} = VDDH ²	I _{IN}	_	10	μA
Hi-Z (off state) leakage current, V _{IN} = VDDH ²	I _{OZ}		10	μA
Signal low input current, $V_{IL} = 0.8 V^3$	١L	_	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	_	1	μA
Output high voltage, $I_{OH} = -2 \text{ mA}$ except UTOPIA mode, and open drain pins In UTOPIA mode ⁴ (UTOPIA pins only): $I_{OH} = -8.0 \text{mA}$	V _{OH}	2.4	_	V
In UTOPIA mode ⁴ (UTOPIA pins only): I _{OL} = 8.0mA	V _{OL}	_	0.5	V
I _{QL} = 6.0mA BR BG ABB/IRQ2 TS A[0-31] TT[0-4] TBST TSIZE[0-3] AACK ARTRY DBG DBB/IRQ3 D[0-63] //EXT_BR3 //EXT_BR3 //EXT_BG3 /TBEN/EXT_DBG3/CINT PSDVAL TA TEA GBL/IRQ1 CI/BADDR29/IRQ2 WT/BADDR30/IRQ3 BADDR31/IRQ5/CINT CPU_BR IRQ0/NMI_OUT /PCI_RST HRESET SRESET RSTCONF	V _{OL}		0.4	V

Table	6.
-------	----

Oh ann a ta sia tia	O		84	11
Characteristic	Symbol	Min	Max	Unit
I _{OL} = 5.3mA	V _{OL}	—	0.4	V
<u>CS</u> [0-9]				
CS(10)/BCTL1				
CS(11)/AP(0)				
BADDR[27–28]				
ALE				
BCTLO				
PWE[0-7]/PSDDQM[0-7]/PBS[0-7]				
PSDA10/PGPL0				
PSDWE/PGPL1				
POE/PSDRAS/PGPL2				
PSDCAS/PGPL3				
PGTA/PUPMWAIT/PGPL4/PPBS				
PSDAMUX/PGPL5				
LWE[0-3]LSDDQM[0-3]/LBS[0-3]/PCI_CFG[0-3]				
LSDA10/LGPL0/PCI_MODCKH0				
LSDWE/LGPL1/PCI_MODCKH1				
LOE/LSDRAS/LGPL2/PCI_MODCKH2				
LSDCAS/LGPL3/PCI_MODCKH3				
LGTA/LUPMWAIT/LGPL4/LPBS				
LSDAMUX/LGPL5/PCI_MODCK				
LWR				
MODCK[1-3]/AP[1-3]/TC[0-2]/BNKSEL[0-2]				
I _{OL} = 3.2mA				
L_A14/PAR				
L_A15/FRAME/SMI				
L_A16/TRDY				
L_A17/IRDY/CKSTP_OUT				
L_A18/STOP				
L_A19/DEVSEL				
L_A20/IDSEL				
L_A21/PERR				
L_A22/SERR				
L_A23/REQ0				
L_A24/REQ1/HSEJSW				
L_A25/GNT0				
L_A26/GNT1/HSLED				
L_A27/GNT2/HSENUM				
L_A28/RST/CORE_SRESET				
L_A29/INTAL_A30/REQ2				
L_A31				
LCL_D[0-31)]/AD[0-31]				
LCL_DP[03]/C/BE[0-3]				
PA[0-31]				
PB[4–31]				
PC[0-31]				
PD[4–31]				
TDO				
QREQ				

1 TCK, $\overline{\text{TRST}}$ and $\overline{\text{PORESET}}$ have min VIH = 2.5V.

² The leakage current is measured for nominal VDDH,VCCSYN, and VDD.
 ³ V_{IL} for IIC interface does not match IIC standard, but does meet IIC standard for V_{OL} and should not cause any compatibility issue.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Thermal Characteristics

⁴ MPC8280, MPC8275VR, MPC8275ZQ only.

4 Thermal Characteristics

This table describes thermal characteristics. See Table 2 for information on a given SoC's package. Discussions of each characteristic are provided in Section 4.1, "Estimation with Junction-to-Ambient Thermal Resistance," through Section 4.7, "References." For the these discussions, $P_D = (V_{DD} \times I_{DD}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

Characteristic	Symbol	Value	Unit	Air Flow
Junction-to-ambient—		27	0000	Natural convection
single-layer board ¹	R _{θJA}	21	°C/W	1 m/s
Junction-to-ambient-	P	19	- -	Natural convection
four-layer board	R _{θJA}	16	°C/W	1 m/s
Junction-to-board ²	R _{θJB}	11	°C/W	—
Junction-to-case ³	$R_{ extsf{ heta}JC}$	8	°C/W	—
Junction-to-package top ⁴	R _{θJT}	2	°C/W	_

Table 7. Thermal Characteristics

¹ Assumes no thermal vias

² Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

³ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

⁴ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in C can be obtained from the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta JA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

Thermal Characteristics

4.2 Estimation with Junction-to-Case Thermal Resistance

Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most packages, a better model is required.

4.3 Estimation with Junction-to-Board Thermal Resistance

A simple package thermal model which has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case thermal resistance covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. It has been observed that the thermal performance of most plastic packages, especially PBGA packages, is strongly dependent on the board temperature.

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W) T_B = board temperature (°C) P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and by attaching the thermal balls to the ground plane.

Thermal Characteristics

4.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor model can be used with the thermal simulation of the application, or a more accurate and complex model of the package can be used in the thermal simulation.

4.5 **Experimental Determination**

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per JEDEC JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.6 Layout Practices

Each VDD and VDDH pin should be provided with a low-impedance path to the board's power supplies. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VDD and VDDH power supplies should be bypassed to ground using bypass capacitors located as close as possible to the four sides of the package. For filtering high frequency noise, a capacitor of 0.1uF on each VDD and VDDH pin is recommended. Further, for medium frequency noise, a total of 2 capacitors of 47uF for VDD and 2 capacitors of 47uF for VDDH are also recommended. The capacitor leads and associated printed circuit traces connecting to chip VDD, VDDH and ground should be kept to less than half an inch per capacitor lead. Boards should employ separate inner layers for power and GND planes.

All output pins on the SoC have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VDD and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

4.7 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd. Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) Specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956 **JEDEC** Specifications

http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

Power Dissipation 5

This table provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. For a complete list of possible clock configurations, see Section 7, "Clock Configuration Modes."

	СРМ		CPU		P _{INT} (W) ^{2,3}		
Bus (MHz)	Multiplication Factor	CPM (MHz)	Multiplication Factor	CPU (MHz)	Vddl 1.	5 Volts	
	Factor		Factor		Nominal	Maximum	
66.67	3	200	4	266	1	1.2	
100	2	200	3	300	1.1	1.3	
100	2	200	4	400	1.3	1.5	
133	2	267	3	400	1.5	1.8	

Table 8. Estimated Power Dissipation for Various Configurations¹

¹ Test temperature = 105° C

² $P_{INT} = I_{DD} \times V_{DD}$ Watts

³ Values do not include I/O. Add the following estimates for active I/O based on the following bus speeds:

66.7 MHz = 0.35 W (nominal), 0.4 W (maximum)

83.3 MHz = 0.4 W (nominal), 0.5 W (maximum)

100 MHz = 0.5 W (nominal), 0.6 W (maximum)

133 MHz = 0.7 W (nominal), 0.8 W (maximum)

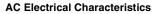
6 AC Electrical Characteristics

The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for 66.67/83.33/100/133 MHz devices. Note that AC timings are based on a 50-pf load for MAX Delay and 10-pf load for MIN delay. Typical output buffer impedances are shown in this table.

Output Buffers	Typical Impedance (Ω)
60x bus	45 or 27 ²
Memory controller	45 or 27 ²
Parallel I/O	45
PCI	27

¹ These are typical values at 65° C. Impedance may vary by ±25% with process and temperature.

² Impedance value is selected through SIUMCR[20,21]. See the SoC reference manual.


6.1 CPM AC Characteristics

This table lists CPM output characteristics.

Spec Number				Value (ns)								
	Characteristic	N	laximu	m Dela	ıy	Minimum Delay						
Max	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp36a	sp37a	FCC outputs—internal clock (NMSI)	6	5.5	5.5	5.5	0.5	0.5	0.5	0.5		
sp36b	sp37b	FCC outputs—external clock (NMSI)	8	8	8	8	2	2	2	2		
sp38a	sp39a	SCC/SMC/SPI/I2C outputs—internal clock (NMSI)	10	10	10	10	0	0	0	0		
sp38b	sp39b	SCC/SMC/SPI/I2C outputs—external clock (NMSI)	8	8	8	8	2	2	2	2		
sp40	sp41	TDM outputs/SI	11	11	11	11	2.5	2.5	2.5	2.5		
sp42	sp43	TIMER/IDMA outputs	11	11	11	11	0.5	0.5	0.5	0.5		
sp42a	sp43a	PIO outputs	11	11	11	11	0.5	0.5	0.5	0.5		

Table 10. AC Characteristics for CPM Outputs¹

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

This table lists CPM input characteristics.

NOTE: Rise/Fall Time on CPM Input Pins

It is recommended that the rise/fall time on CPM input pins should not exceed 5 ns. This should be enforced especially on clock signals. Rise time refers to signal transitions from 10% to 90% of VCC; fall time refers to transitions from 90% to 10% of VCC.

Spec Number			Value (ns)								
	Characteristic		Se	tup		Hold					
Setup	Hold	66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp16a	sp17a	FCC inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0	
sp16b	sp17b	FCC inputs—external clock (NMSI)	2.5	2.5	2.5	2.5	2	2	2	2	
sp18a	sp19a	SCC/SMC/SPI/I2C inputs—internal clock (NMSI)	6	6	6	6	0	0	0	0	
sp18b	sp19b	SCC/SMC/SPI/I2C inputs—external clock (NMSI)	4	4	4	4	2	2	2	2	
sp20	sp21	TDM inputs/SI	3	3	3	3	2.5	2.5	2.5	2.5	
sp22	sp23	PIO/TIMER/IDMA inputs	8	8	8	8	0.5	0.5	0.5	0.5	

Table 11. AC Characteristics for CPM Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

NOTE

Although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge.

This figure shows the FCC internal clock.

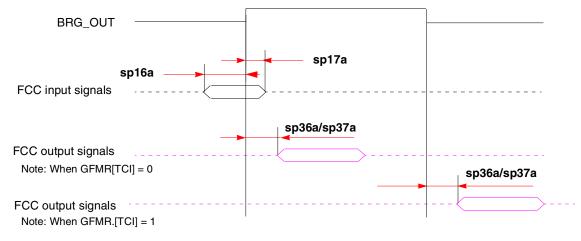


Figure 3. FCC Internal Clock Diagram

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

This figure shows the FCC external clock.

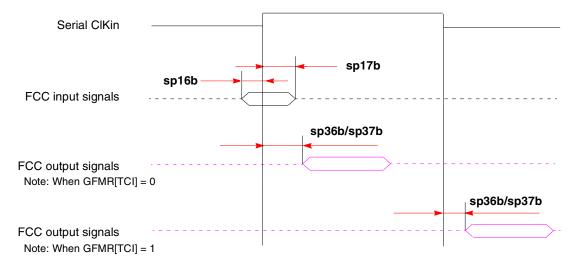
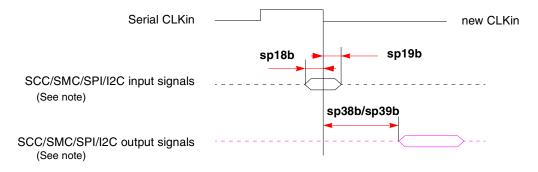
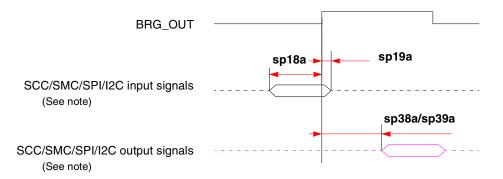



Figure 4. FCC External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C external clock.

Note: There are four possible timing conditions for SPI:

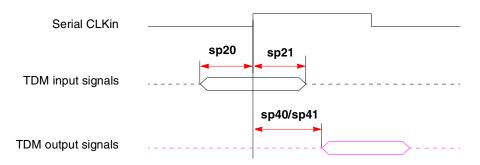
- 1. Input sampled on the rising edge and output driven on the rising edge.
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge (shown).
- 4. Input sampled on the falling edge and output driven on the rising edge.


Note: There are two possible timing conditions for SCC/SMC/I²C:

- 1. Input sampled on the falling edge and output driven on the falling edge (shown).
- 2. Input sampled on the falling edge and output driven on the rising edge.

Figure 5. SCC/SMC/SPI/I²C External Clock Diagram

This figure shows the SCC/SMC/SPI/I²C internal clock.



Note: There are four possible timing conditions for SCC and SPI:

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 6. SCC/SMC/SPI/I²C Internal Clock Diagram

This figure shows TDM input and output signals.

Note: There are four possible TDM timing conditions:

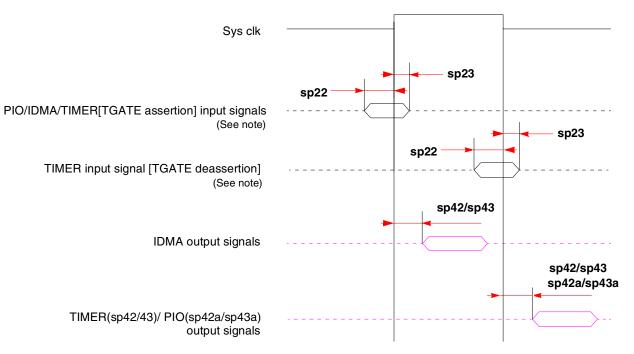

- 1. Input sampled on the rising edge and output driven on the rising edge (shown).
- 2. Input sampled on the rising edge and output driven on the falling edge.
- 3. Input sampled on the falling edge and output driven on the falling edge.
- 4. Input sampled on the falling edge and output driven on the rising edge.

Figure 7. TDM Signal Diagram

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

This figure shows PIO and timer signals.

Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.

Figure 8. PIO and Timer Signal Diagram

6.2 SIU AC Characteristics

This table lists SIU input characteristics.

NOTE: CLKIN Jitter and Duty Cycle

The CLKIN input to the SoC should not exceed +/- 150 psec of jitter (peak-to-peak). This represents total input jitter—the combination of short term (peak-to-peak) and long term (cumulative). The duty cycle of CLKIN should not exceed the ratio of 40:60.

NOTE: Spread Spectrum Clocking

Spread spectrum clocking is allowed with 1% input frequency down-spread at maximum 60 KHz modulation rate regardless of input frequency.

NOTE: PCI AC Timing

The SoC meets the timing requirements of *PCI Specification Revision 2.2.* See Section 7, "Clock Configuration Modes," and "Note: Tval (Output Hold)" to determine if a specific clock configuration is compliant.

NOTE: Conditions

The following conditions must be met in order to operate the MPC8272 family devices with 133 MHz bus: single PowerQUICC II Bus mode must be used (no external master, BCR[EBM] = 0); data bus must be in Pipeline mode (BRx[DR] = 1); internal arbiter and memory controller must be used. For expected load of above 40 pF, it is recommended that data and address buses be configured to low (25 Ω) impedance (SIUMCR[HLBE0] = 1, SIUMCR[HLBE1] = 1).

Spec Number				Value (ns)								
	Characteristic	Setup				Hold						
Setup	Hold		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp11	sp10	AACK/TA/TS/DBG/BG/BR/ARTRY/TEA	6	5	3.5	N/A	0.5	0.5	0.5	N/A		
sp12	sp10	Data bus in normal mode	5	4	3.5	N/A	0.5	0.5	0.5	N/A		
sp13	sp10	Data bus in pipeline mode (without ECC and PARITY)	N/A	4	2.5	1.5	N/A	0.5	0.5	0.5		
sp15	sp10	All other pins	5	4	3.5	N/A	0.5	0.5	0.5	N/A		

Table 12. AC Characteristics for SIU Inputs¹

¹ Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

This table lists SIU output characteristics.

Table 13.	C Characteri	stics for SIU	Outputs ¹
-----------	--------------	---------------	----------------------

Spec Number				Value (ns)								
	Characteristic	ſ	Maximu	m Delay	/	Minimum Delay						
Мах	Min		66 MHz	83 MHz	100 MHz	133 MHz	66 MHz	83 MHz	100 MHz	133 MHz		
sp31	sp30	PSDVAL/TEA/TA	7	6	5.5	N/A	1	1	1	N/A		
sp32	sp30	ADD/ADD_atr./BADDR/CI/GBL/WT	8	6.5	5.5	4.5 ²	1	1	1	1 ²		
sp33	sp30	Data bus ³	6.5	6.5	5.5	4.5	0.8	0.8	0.8	1		
sp34	sp30	Memory controller signals/ALE	6	5.5	5.5	4.5	1	1	1	1		
sp35	sp30	All other signals	6	5.5	5.5	N/A	1	1	1	N/A		

¹ Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin.

² Value is for ADD only; other sp32/sp30 signals are not applicable.

³ To achieve 1 ns of hold time at 66.67/83.33/100 MHZ, a minimum loading of 20 pF is required.

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

NOTE

Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing.

This figure shows the interaction of several bus signals.

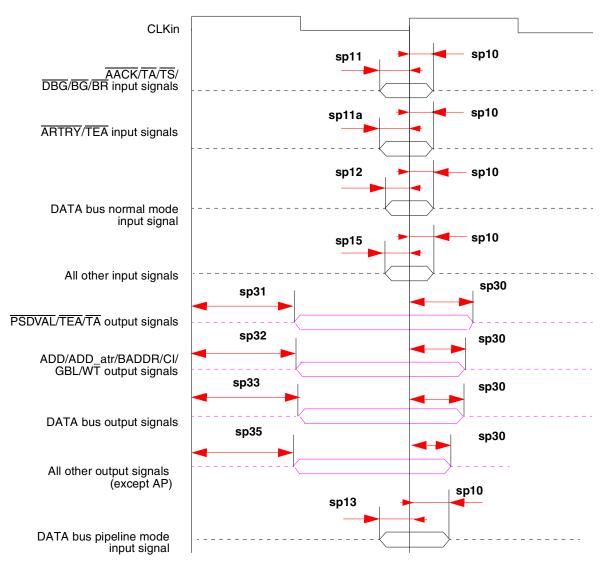


Figure 9. Bus Signals

This figure shows signal behavior in MEMC mode.

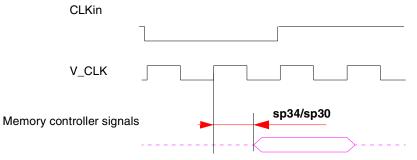


Figure 10. MEMC Mode Diagram

NOTE

Generally, all SoC bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 14.

PLL Clock Ratio	Tick Spacing (T1 Occurs at the Rising Edge of CLKin)						
	T2	тз	Τ4				
1:2, 1:3, 1:4, 1:5, 1:6	1/4 CLKin	1/2 CLKin	3/4 CLKin				
1:2.5	3/10 CLKin	1/2 CLKin	8/10 CLKin				
1:3.5	4/14 CLKin	1/2 CLKin	11/14 CLKin				

This table is a representation of the information in Table 14.

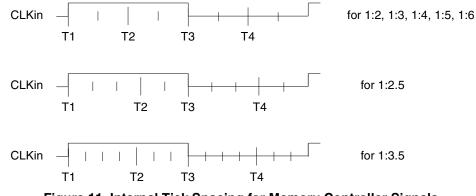


Figure 11. Internal Tick Spacing for Memory Controller Signals

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

NOTE

The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin's rising edge.

6.3 JTAG Timings

This table lists the JTAG timings.

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	—	ns	—
JTAG external clock pulse width measured at 1.4V	t _{JTKHKL}	15	—	ns	—
JTAG external clock rise and fall times	t _{JTGR} and t _{JTGF}	0	5	ns	6
TRST assert time	t _{TRST}	25	—	ns	3, 6
Input setup times Boundary-scan data TMS, TDI	^t jtdvkh t _{jtivkh}	4 4		ns ns	4 7 4 7
Input hold times Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns ns	4 7 4 7
Output valid times Boundary-scan data TDO	t _{JTKLDV} t _{JTKLOV}	_	10 10	ns ns	5 7 5 7
Output hold times Boundary-scan data TDO	t _{JTKLDX} t _{JTKLOX}	1 1	_	ns ns	5 7 5 7
JTAG external clock to output high impedance Boundary-scan data TDO	t _{jtkldz} t _{jtkloz}	1 1	10 10	ns ns	5,6 5,6

Table 15. JTAG Timings¹

¹ All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

² The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t(_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

- ³ TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- ⁴ Non-JTAG signal input timing with respect to t_{TCLK}.
- ⁵ Non-JTAG signal output timing with respect to t_{TCLK}.
- ⁶ Guaranteed by design.
- ⁷ Guaranteed by design and device characterization.

7 Clock Configuration Modes

As shown in this table, the clocking mode is set according to two sources:

- PCI_CFG[0]— An input signal. Also defined as "PCI_HOST_EN." See Chapter 6, "External Signals," and Chapter 9, "PCI Bridge," in the SoC reference manual.
- PCI_MODCK—Bit 27 in the Hard Reset Configuration Word. See Chapter 5, "Reset," in the SoC reference manual.

Pi	ns	Clocking Mode	PCI Clock Frequency Range (MHz)	Reference
PCI_CFG[0] ¹	PCI_MODCK ²	Clocking Mode	Torolock rrequency hange (Milz)	nelerence
0	0	PCI host	50–66	Table 17
0	1		25–50	Table 18
1	0	PCI agent	50–66	Table 19
1	1		25–50	Table 20

Table 16. SoC Clocking Modes

¹ PCI_HOST_EN

² Determines PCI clock frequency range.

Within each mode, the configuration of bus, core, PCI, and CPM frequencies is determined by seven bits during the power-on reset—three hardware configuration pins (MODCK[1–3]) and four bits from hardware configuration word[28–31] (MODCK_H). Both the PLLs and the dividers are set according to the selected clock operation mode as described in the following sections.

NOTE

Clock configurations change only after PORESET is asserted.

NOTE: Tval (Output Hold)

The minimum Tval = 2 ns when PCI_MODCK = 1, and the minimum Tval = 1 ns when PCI_MODCK = 0. Therefore, designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing.

7.1 PCI Host Mode

These tables show configurations for PCI host mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI host mode the input clock is the bus clock.

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU — Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
			Defau	ilt Mod	es (MO	DCK_H=0000)		•			
000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	60.0	80.0	2.5	150.0	200.0	3	180.0	240.0	3	50.0	66.7
0000_011	60.0	80.0	2.5	150.0	200.0	3.5	210.0	280.0	3	50.0	66.7
0000_100	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0000_101	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_110	50.0	66.7	3.5	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0000_111	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
	1		F	-ull Cor	nfigurati	on Modes					
0001_000	50.0	66.7	3	150.0	200.0	5	250.0	333.3	3	50.0	66.7
0001_001	50.0	66.7	3	150.0	200.0	6	300.0	400.0	3	50.0	66.7
0001_010	50.0	66.7	3	150.0	200.0	7	350.0	466.6	3	50.0	66.7
0001_011	50.0	66.7	3	150.0	200.0	8	400.0	533.3	3	50.0	66.7
	1			1							
0010_000	50.0	66.7	4	200.0	266.6	5	250.0	333.3	4	50.0	66.7
0010_001	50.0	66.7	4	200.0	266.6	6	300.0	400.0	4	50.0	66.7
0010_010	50.0	66.7	4	200.0	266.6	7	350.0	466.6	4	50.0	66.7
0010_011	50.0	66.7	4	200.0	266.6	8	400.0	533.3	4	50.0	66.7
	1			1							
0010_100	75.0	100.0	4	300.0	400.0	5	375.0	500.0	6	50.0	66.7
0010_101	75.0	100.0	4	300.0	400.0	5.5	412.5	549.9	6	50.0	66.7
0010_110	75.0	100.0	4	300.0	400.0	6	450.0	599.9	6	50.0	66.7
			-								
0011_000	50.0	66.7	5	250.0	333.3	5	250.0	333.3	5	50.0	66.7
0011_001	50.0	66.7	5	250.0	333.3	6	300.0	400.0	5	50.0	66.7
0011_010	50.0	66.7	5	250.0	333.3	7	350.0	466.6	5	50.0	66.7
0011_011	50.0	66.7	5	250.0	333.3	8	400.0	533.3	5	50.0	66.7
0100_000						Reserved					

 Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2}

Clock Configuration Modes

Mode ³		Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPU – Multiplication	CPU Clock (MHz)		PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	50.0	66.7	6	300.0	400.0	6	300.0	400.0	6	50.0	66.7
0100_010	50.0	66.7	6	300.0	400.0	7	350.0	466.6	6	50.0	66.7
0100_011	50.0	66.7	6	300.0	400.0	8	400.0	533.3	6	50.0	66.7
0101_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0101_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0101_010	50.0	66.7	2	100.0	133.3	3.5	175.0	233.3	2	50.0	66.7
0101_011	50.0	66.7	2	100.0	133.3	4	200.0	266.6	2	50.0	66.7
0101_100	50.0	66.7	2	100.0	133.3	4.5	225.0	300.0	2	50.0	66.7
		-					-	-			
0101_101	83.3	111.1	3	250.0	333.3	3.5	291.7	388.9	5	50.0	66.7
0101_110	83.3	111.1	3	250.0	333.3	4	333.3	444.4	5	50.0	66.7
0101_111	83.3	111.1	3	250.0	333.3	4.5	375.0	500.0	5	50.0	66.7
				1=0.0			4				
0110_000	60.0	80.0	2.5	150.0	200.0	2.5	150.0		3	50.0	66.7
0110_001	60.0	80.0	2.5	150.0	200.0	3	180.0		3	50.0	66.7
0110_010	60.0	80.0	2.5	150.0	200.0	3.5	210.0		3	50.0	66.7
0110_011	60.0	80.0	2.5	150.0	200.0	4	240.0	320.0	3	50.0	66.7
0110_100	60.0	80.0	2.5	150.0	200.0	4.5	270.0	360.0	3	50.0	66.7
0110_101 0110_110	60.0 60.0	80.0 80.0	2.5 2.5	150.0 150.0	200.0 200.0	5		400.0 480.0	3 3	50.0 50.0	66.7 66.7
0111_000						Reserved					
0111_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0111_010	50.0	66.7	3	150.0	200.0	3.5	175.0	233.3	3	50.0	66.7
0111_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0111_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
1000 000						Deserved					
1000_000	<u> </u>	00.0	6	0000	000.0	Reserved	000.0	000.0		50.0	00-
1000_001	66.7	88.9	3	200.0	266.6	3	200.0	266.6	4	50.0	66.7

Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Clock Configuration Modes

Mode ³	Bus ((M	Clock Hz)	CPM Multiplication		Clock Hz)	CPU — Multiplication	CPU Clock (MHz)		PCI Division	PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1000_010	66.7	88.9	3	200.0	266.6	3.5	233.3	311.1	4	50.0	66.7
1000_011	66.7	88.9	3	200.0	266.6	4	266.7	355.5	4	50.0	66.7
1000_100	66.7	88.9	3	200.0	266.6	4.5	300.0	400.0	4	50.0	66.7
1000_101	66.7	88.9	3	200.0	266.6	6	400.0	533.3	4	50.0	66.7
1000_110	66.7	88.9	3	200.0	266.6	6.5	433.3	577.7	4	50.0	66.7
1001_000						Reserved					
1001_001						Reserved					
1001_010	57.1	76.2	3.5	200.0	266.6	3.5	200.0	266.6	4	50.0	66.7
1001_011	57.1	76.2	3.5	200.0	266.6	4	228.6	304.7	4	50.0	66.7
1001_100	57.1	76.2	3.5	200.0	266.6	4.5	257.1	342.8	4	50.0	66.7
						_					
1001_101	85.7	114.3		300.0		5	428.6		6	50.0	66.7
1001_110	85.7	114.3		300.0		5.5	471.4		6	50.0	66.7
1001_111	85.7	114.3	3.5	300.0	400.0	6	514.3	685.6	6	50.0	66.7
1010_000	75.0	100.0	2	150.0	200.0	2	150.0	200.0	3	50.0	66.7
1010_001	75.0	100.0	2	150.0	200.0	2.5	187.5	250.0	3	50.0	66.7
1010_010	75.0	100.0	2	150.0	200.0	3	225.0	300.0	3	50.0	66.7
1010_011	75.0	100.0	2	150.0	200.0	3.5	262.5	350.0	3	50.0	66.7
1010_100	75.0	100.0	2	150.0	200.0	4	300.0	400.0	3	50.0	66.7
1010_101	100.0	133.3	2	200.0	266.6	2.5	250.0	333.3	4	50.0	66.7
1010_110		133.3			266.6	3		400.0	4	50.0	66.7
1010_111		133.3			266.6	3.5		466.6	4	50.0	66.7
	1	1	l	1	I	l	1	I	<u> </u>	<u> </u>	
1011_000						Reserved					
1011_001	80.0	106.7	2.5	200.0	266.6	2.5	200.0	266.6	4	50.0	66.7
1011_010	80.0	106.7	2.5	200.0	266.6	3	240.0	320.0	4	50.0	66.7
1011_011	80.0	106.7	2.5	200.0	266.6	3.5	280.0	373.3	4	50.0	66.7

 Table 17. Clock Configurations for PCI Host Mode (PCI_MODCK=0)^{1,2} (continued)

			-						-		
Mode ³	Bus ((Mi	Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1011_100	80.0	106.7	2.5	200.0	266.6	4	320.0	426.6	4	50.0	66.7
1011_101	80.0	106.7	2.5	200.0	266.6	4.5	360.0	480.0	4	50.0	66.7
1101_000	100.0	133.3	2.5	250.0	333.3	3	300.0	400.0	5	50.0	66.7
1101_001	100.0	133.3	2.5	250.0	333.3	3.5	350.0	466.6	5	50.0	66.7
1101_010	100.0	133.3	2.5	250.0	333.3	4	400.0	533.3	5	50.0	66.7
1101_011	100.0	133.3	2.5	250.0	333.3	4.5	450.0	599.9	5	50.0	66.7
1101_100	100.0	133.3	2.5	250.0	333.3	5	500.0	666.6	5	50.0	66.7
1101_101	125.0	166.7	2	250.0	333.3	3	375.0	500.0	5	50.0	66.7
1101_110	125.0	166.7	2	250.0	333.3	4	500.0	666.6	5	50.0	66.7
1110_000	100.0	133.3	3	300.0	400.0	3.5	350.0	466.6	6	50.0	66.7
1110_001	100.0	133.3	3	300.0	400.0	4	400.0	533.3	6	50.0	66.7
1110_010	100.0	133.3	3	300.0	400.0	4.5	450.0	599.9	6	50.0	66.7
1110_011	100.0	133.3	3	300.0	400.0	5	500.0	666.6	6	50.0	66.7
1110_100	100.0	133.3	3	300.0	400.0	5.5	550.0	733.3	6	50.0	66.7
1100_000						Reserved					
1100_001						Reserved					
1100_010	Reserved										

Table 17. Clock Configurations for PCI Host M	lode (PCI_MODCK=0) ^{1,2} (continued)
---	---

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. SeeTable 18 for lower range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 0, the ratio of CPM_CLK/PCI_CLK should be calculated from SCCR[PCIDF] as follows:

 $CPM_CLK/PCI_CLK = (PCIDF + 1) / 2.$

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU – Multiplication	CPU Clock (MHz)		PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
			Defa	ult Mode	es (MO	DCK_H=0000)					
0000_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0000_001	50.0	100.0	2	100.0	200.0	3	150.0	300.0	4	25.0	50.0
0000_010	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0000_011	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0000_100	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0000_101	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0000_110	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
0000_111	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
	ł	•	ŀ	ull Cor	figurati	on Modes	4	•			
0001_000	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
0001_001	50.0	100.0	3	150.0	300.0	6	300.0	600.0	6	25.0	50.0
0001_010	50.0	100.0	3	150.0	300.0	7	350.0	700.0	6	25.0	50.0
0001_011	50.0	100.0	3	150.0	300.0	8	400.0	800.0	6	25.0	50.0
	1			1	1		1				
0010_000	50.0	100.0	4	200.0	400.0	5	250.0	500.0	8	25.0	50.0
0010_001	50.0	100.0	4	200.0	400.0	6	300.0	600.0	8	25.0	50.0
0010_010	50.0	100.0	4	200.0	400.0	7	350.0	700.0	8	25.0	50.0
0010_011	50.0	100.0	4	200.0	400.0	8	400.0	800.0	8	25.0	50.0
						_					
0010_100	37.5	75.0	4		300.0	5		375.0	6	25.0	50.0
0010_101	37.5	75.0	4		300.0	5.5		412.5	6	25.0	50.0
0010_110	37.5	75.0	4	150.0	300.0	6	225.0	450.0	6	25.0	50.0
0011_000	30.0	50.0	5	150.0	250.0	5	150.0	250.0	5	30.0	50.0
0011_001	25.0	50.0	5	125.0	250.0	6	150.0	300.0	5	25.0	50.0
0011_010	25.0	50.0	5	125.0	250.0	7	175.0	350.0	5	25.0	50.0
0011_011	25.0	50.0	5	125.0	250.0	8	200.0	400.0	5	25.0	50.0
	[
0100_000						Reserved					

 Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2}

Clock Configuration Modes

Mode ³	Bus ((M	Clock Hz)	CPM Multiplication	CPM Clock (MHz)		CPU - Multiplication	CPU Clock (MHz)		PCI — Division Eactor ⁶	PCI Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
0100_001	25.0	50.0	6	150.0	300.0	6	150.0	300.0	6	25.0	50.0
0100_010	25.0	50.0	6	150.0	300.0	7	175.0	350.0	6	25.0	50.0
0100_011	25.0	50.0	6	150.0	300.0	8	200.0	400.0	6	25.0	50.0
0101_000	60.0	100.0	2	120.0	200.0	2.5	150.0	250.0	4	30.0	50.0
0101_001	50.0	100.0	2	100.0	200.0	3	150.0		4	25.0	50.0
0101_010	50.0	100.0	2	100.0	200.0	3.5	175.0	350.0	4	25.0	50.0
0101_011	50.0	100.0	2	100.0	200.0	4	200.0		4	25.0	50.0
0101_100	50.0	100.0	2	100.0	200.0	4.5	225.0	450.0	4	25.0	50.0
		1			1					1	
0101_101	42.9	83.3	3	128.6	250.0	3.5	150.0	291.7	5	25.7	50.0
0101_110	41.7	83.3	3	125.0	250.0	4	166.7	333.3	5	25.0	50.0
0101_111	41.7	83.3	3	125.0	250.0	4.5	187.5	375.0	5	25.0	50.0
						1					
0110_000	60.0	120.0	2.5	150.0	300.0	2.5	150.0	300.0	6	25.0	50.0
0110_001	60.0	120.0	2.5	150.0	300.0	3	180.0	360.0	6	25.0	50.0
0110_010	60.0	120.0	2.5	150.0	300.0	3.5	210.0	420.0	6	25.0	50.0
0110_011	60.0	120.0	2.5	150.0	300.0	4	240.0	480.0	6	25.0	50.0
0110_100	60.0	120.0	2.5	150.0	300.0	4.5	270.0	540.0	6	25.0	50.0
0110_101	60.0	120.0	2.5	150.0	300.0	5	300.0	600.0	6	25.0	50.0
0110_110	60.0	120.0	2.5	150.0	300.0	6	360.0	720.0	6	25.0	50.0
0111_000						Reserved					
0111_000	50.0	100.0	3	150.0	300.0	3	150.0	300.0	6	25.0	50.0
0111_001	50.0	100.0	3			3.5		350.0	6	25.0 25.0	50.0
0111_010	50.0	100.0	3			4		400.0	6	25.0 25.0	50.0
0111_00	50.0	100.0	3	150.0	300.0	4.5		400.0	6	25.0	50.0
	-	_				<u> </u>			L	_	_
1000_000						Reserved					
1000_001	66.7	133.3	3	200.0	400.0	3	200.0	400.0	8	25.0	50.0

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 18. Clock Configurations for PCI Host Mode (PCI_MOD	CK=1) ^{1,2} (continued)
---	----------------------------------

Mode ³		Clock	0511		Clock	0511		Clock			Clock
	(MI	Hz)	CPM Multiplication	(M	Hz)	CPU Multiplication	(M	Hz)	PCI Division	(M	Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1000_010	66.7	133.3	3	200.0	400.0	3.5	233.3	466.7	8	25.0	50.0
1000_011	66.7	133.3	3	200.0	400.0	4	266.7	533.3	8	25.0	50.0
1000_100	66.7	133.3	3	200.0	400.0	4.5	300.0	600.0	8	25.0	50.0
1000_101	66.7	133.3	3	200.0	400.0	6	400.0	800.0	8	25.0	50.0
1000_110	66.7	133.3	3	200.0	400.0	6.5	433.3	866.7	8	25.0	50.0
											•
1001_000						Reserved					
1001_001		Reserved									
1001_010	57.1	114.3	3.5	200.0	400.0	3.5	200.0	400.0	8	25.0	50.0
1001_011	57.1	114.3	3.5	200.0	400.0	4	228.6	457.1	8	25.0	50.0
1001_100	57.1	114.3	3.5	200.0	400.0	4.5	257.1	514.3	8	25.0	50.0
1001_101	42.9	85.7	3.5	150.0	300.0	5	214.3	428.6	6	25.0	50.0
1001_110	42.9	85.7	3.5	150.0	300.0	5.5	235.7	471.4	6	25.0	50.0
1001_111	42.9	85.7	3.5	150.0	300.0	6	257.1	514.3	6	25.0	50.0
											•
1010_000	75.0	150.0	2	150.0	300.0	2	150.0	300.0	6	25.0	50.0
1010_001	75.0	150.0	2	150.0	300.0	2.5	187.5	375.0	6	25.0	50.0
1010_010	75.0	150.0	2	150.0	300.0	3	225.0	450.0	6	25.0	50.0
1010_011	75.0	150.0	2	150.0	300.0	3.5	262.5	525.0	6	25.0	50.0
1010_100	75.0	150.0	2	150.0	300.0	4	300.0	600.0	6	25.0	50.0
											•
1010_101	100.0	200.0	2	200.0	400.0	2.5	250.0	500.0	8	25.0	50.0
1010_110	100.0	200.0	2	200.0	400.0	3	300.0	600.0	8	25.0	50.0
1010_111	100.0	200.0	2	200.0	400.0	3.5	350.0	700.0	8	25.0	50.0
					1		1				
1011_000						Reserved					
1011_001	80.0	160.0	2.5	200.0	400.0	2.5	200.0	400.0	8	25.0	50.0
1011_010	80.0	160.0	2.5	200.0	400.0	3	240.0	480.0	8	25.0	50.0
1011_011	80.0	160.0	2.5	200.0	400.0	3.5	280.0	560.0	8	25.0	50.0
1011_100	80.0	160.0	2.5	200.0	400.0	4	320.0	640.0	8	25.0	50.0

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	PCI Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor ⁶	Low	High
1011_101	80.0	160.0	2.5	200.0	400.0	4.5	360.0	720.0	8	25.0	50.0
1101_000	50.0	100.0	2.5	125.0	250.0	3	150.0	300.0	5	25.0	50.0
1101_001	50.0	100.0	2.5	125.0	250.0	3.5	175.0	350.0	5	25.0	50.0
1101_010	50.0	100.0	2.5	125.0	250.0	4	200.0	400.0	5	25.0	50.0
1101_011	50.0	100.0	2.5	125.0	250.0	4.5	225.0	450.0	5	25.0	50.0
1101_100	50.0	100.0	2.5	125.0	250.0	5	250.0	500.0	5	25.0	50.0
1101_101	62.5	125.0	2	125.0	250.0	3	187.5	375.0	5	25.0	50.0
1101_110	62.5	125.0	2	125.0	250.0	4	250.0	500.0	5	25.0	50.0
1110_000	50.0	100.0	3	150.0	300.0	3.5	175.0	350.0	6	25.0	50.0
1110_001	50.0	100.0	3	150.0	300.0	4	200.0	400.0	6	25.0	50.0
1110_010	50.0	100.0	3	150.0	300.0	4.5	225.0	450.0	6	25.0	50.0
1110_011	50.0	100.0	3	150.0	300.0	5	250.0	500.0	6	25.0	50.0
1110_100	50.0	100.0	3	150.0	300.0	5.5	275.0	550.0	6	25.0	50.0
1100_000						Reserved					
1100_001						Reserved					
1100_010						Reserved					

Table 18. Clock Configurations for PCI Host Mode (PCI_MODCK=1)^{1,2} (continued)

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPU frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 17 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

Clock Configuration Modes

- ⁶ CPM_CLK/PCI_CLK ratio. When PCI_MODCK = 1, the ratio of CPM_CLK/PCI_CLK should be calculated from PCIDF as follows: PCIDF = 3 > CPM_CLK/PCI_CLK = 4 PCIDF = 5 > CPM_CLK/PCI_CLK = 6 PCIDF = 7 > CPM_CLK/PCI_CLK = 8
 - PCIDF = 9 > CPM_CLK/PCI_CLK = 5
 - PCIDF = B > CPM_CLK/PCI_CLK = 6

7.2 PCI Agent Mode

These tables show configurations for PCI agent mode. The frequency values listed are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. Note that in PCI agent mode the input clock is PCI clock.

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
			Defau	ilt Mod	es (MO	DCK_H=0000)					
0000_000	60.0	66.7	2	120.0	133.3	2.5	150.0	166.7	2	60.0	66.7
0000_001	50.0	66.7	2	100.0	133.3	3	150.0	200.0	2	50.0	66.7
0000_010	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0000_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0000_100	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0000_101	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0000_110	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
0000_111	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.7
			F	ull Con	figurat	ion Modes					
0001_001	60.0	66.7	2	120.0	133.3	5	150.0	166.7	4	30.0	33.3
0001_010	50.0	66.7	2	100.0	133.3	6	150.0	200.0	4	25.0	33.3
0001_011	50.0	66.7	2	100.0	133.3	7	175.0	233.3	4	25.0	33.3
0001_100	50.0	66.7	2	100.0	133.3	8	200.0	266.6	4	25.0	33.3
	•			•	•						
0010_001	50.0	66.7	3	150.0	200.0	3	180.0	240.0	2.5	60.0	80.0
0010_010	50.0	66.7	3	150.0	200.0	3.5	210.0	280.0	2.5	60.0	80.0
0010_011	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
0010_100	50.0	66.7	3	150.0	200.0	4.5	270.0	360.0	2.5	60.0	80.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2}

Clock Configuration Modes

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division	Bus Clock (MHz)	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0011_000				1		Reserved		1		1	
0011_001						Reserved					
0011_010						Reserved					
0011_011						Reserved					
0011_100						Reserved					
0100_000						Reserved					
0100_001	50.0	66.7	3	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0100_010	50.0	66.7	3		200.0	3.5	175.0	200.0	3	50.0	66.7
0100_011	50.0	66.7	3	150.0	200.0	4	200.0	266.6	3	50.0	66.7
0100_100	50.0	66.7	3	150.0	200.0	4.5	225.0	300.0	3	50.0	66.7
0101_000	50.0	66.7	5	250.0	333.3	2.5	250.0	333.3	2.5	100.0	133.3
0101_001	50.0	66.7	5	250.0	333.3	3	300.0	400.0	2.5	100.0	133.3
0101_010	50.0	66.7	5	250.0	333.3	3.5	350.0	466.6	2.5	100.0	133.3
0101_011	50.0	66.7	5	250.0	333.3	4	400.0	533.3	2.5	100.0	133.3
0101_100	50.0	66.7	5	250.0	333.3	4.5	450.0	599.9	2.5	100.0	133.3
0101_101	50.0	66.7	5	250.0	333.3	5	500.0	666.6	2.5	100.0	133.3
0101_110	50.0	66.7	5	250.0	333.3	5.5	550.0	733.3	2.5	100.0	133.3
	1										
0110_000			ſ	I		Reserved		I		I	1
0110_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
0110_010	50.0	66.7	4	200.0		3.5	233.3	311.1	3	66.7	88.9
0110_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
0110_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
0111 000	50.0	<u> </u>	<u>^</u>	450.0	000 5	^	450.0	000.0	2	75.0	100 -
0111_000	50.0	66.7	3		200.0	2		200.0	2	75.0	100.0
0111_001	50.0	66.7	3	150.0		2.5	187.5	250.0	2	75.0	100.0
0111_010	50.0	66.7	3	150.0		3	225.0	300.0	2	75.0	100.0
0111_011	50.0	66.7	3	150.0	200.0	3.5	262.5	350.0	2	75.0	100.0

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division	Bus ((M	
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1000_000						Reserved					
1000_000	50.0	66.7	3	150.0	200.0	2.5	150.0	166.7	2.5	60.0	80.0
1000_001	50.0	66.7	3	150.0		3	180.0	240.0	2.5	60.0	80.0
1000_011	50.0	66.7	3	150.0		3.5	210.0	280.0	2.5	60.0	80.0
1000_100	50.0	66.7	3	150.0	200.0	4	240.0	320.0	2.5	60.0	80.0
1000_101	50.0	66.7	3	150.0		4.5	270.0	360.0	2.5	60.0	80.0
1001_000						Reserved					
1001_001						Reserved					
1001_010						Reserved					
1001_011	50.0	66.7	4	200.0	266.6	4	200.0	266.6	4	50.0	66.7
1001_100	50.0	66.7	4	200.0	266.6	4.5	225.0	300.0	4	50.0	66.7
1010_000						Reserved					
1010_001	50.0	66.7	4	200.0	266.6	3	200.0	266.6	3	66.7	88.9
1010_010	50.0	66.7	4	200.0	266.6	3.5	233.3	311.1	3	66.7	88.9
1010_011	50.0	66.7	4	200.0	266.6	4	266.7	355.5	3	66.7	88.9
1010_100	50.0	66.7	4	200.0	266.6	4.5	300.0	400.0	3	66.7	88.9
1011_000						Reserved					
1011_001	50.0	66.7	4	200.0	266.6	2.5	200.0	266.6	2.5	80.0	106.
1011_010	50.0	66.7	4	200.0	266.6	3	240.0	320.0	2.5	80.0	106.
1011_011	50.0	66.7	4	200.0	266.6	3.5	280.0	373.3	2.5	80.0	106.
1011_100	50.0	66.7	4	200.0	266.6	4	320.0	426.6	2.5	80.0	106.
	1	1	1	1	1		1	r		r	
1011_101	50.0	66.7	4	200.0	266.6	2.5	250.0	333.3	2	100.0	133.
1011_110	50.0	66.7	4	200.0	266.6	3	300.0	400.0	2	100.0	133.
1011_111	50.0	66.7	4	200.0	266.6	3.5	350.0	466.6	2	100.0	133.

Table 19. Clock Configurations for PCI Agent Mode (PCI_MODCK=0)^{1,2} (continued)

Clock Configuration Modes

Mode ³	PCI ((MI	Clock Hz)	CPM Multiplication	· · ·		CPU Multiplication	CPU Clock (MHz)		Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1100_101	50.0	66.7	6	300.0	400.0	4	400.0	533.3	3	100.0	133.3
1100_110	50.0	66.7	6	300.0	400.0	4.5	450.0	599.9	3	100.0	133.3
1100_111	50.0	66.7	6	300.0	400.0	5	500.0	666.6	3	100.0	133.3
1101_000	50.0	66.7	6	300.0	400.0	5.5	550.0	733.3	3	100.0	133.3
											•
1101_001	50.0	66.7	6	300.0	400.0	3.5	420.0	559.9	2.5	120.0	160.0
1101_010	50.0	66.7	6	300.0	400.0	4	480.0	639.9	2.5	120.0	160.0
1101_011	50.0	66.7	6	300.0	400.0	4.5	540.0	719.9	2.5	120.0	160.0
1101_100	50.0	66.7	6	300.0	400.0	5	600.0	799.9	2.5	120.0	160.0
											•
1110_000	50.0	66.7	5	250.0	333.3	2.5	312.5	416.6	2	125.0	166.7
1110_001	50.0	66.7	5	250.0	333.3	3	375.0	500.0	2	125.0	166.7
1110_010	50.0	66.7	5	250.0	333.3	3.5	437.5	583.3	2	125.0	166.7
1110_011	50.0	66.7	5	250.0	333.3	4	500.0	666.6	2	125.0	166.7
											•
1110_100	50.0	66.7	5	250.0	333.3	4	333.3	444.4	3	83.3	111.1
1110_101	50.0	66.7	5	250.0	333.3	4.5	375.0	500.0	3	83.3	111.1
1110_110	50.0	66.7	5	250.0	333.3	5	416.7	555.5	3	83.3	111.1
1110_111	50.0	66.7	5	250.0	333.3	5.5	458.3	611.1	3	83.3	111.1
			1			1					
1100_000	Reserved										
1100_001	Reserved										
1100_010						Reserved					

Table 19. Clock Configurations	for PCI Agent Mode (PC	CI MODCK=0) ^{1,2}	(continued)

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPU frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 20 for lower range configurations.

- ³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.
- ⁴ CPM multiplication factor = CPM clock/bus clock

⁵ CPU multiplication factor = Core PLL multiplication factor

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU		Clock Hz)	Bus		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Multiplication Factor ⁴	Low	High	Multiplication Factor ⁵	Low	High	Division Factor	Low	High
			Defau	ilt Mod	es (MO	DCK_H=0000)					
0000_000	30.0	50.0	4	120.0	200.0	2.5	150.0	250.0	2	60.0	100.0
0000_001	25.0	50.0	4	100.0	200.0	3	150.0	300.0	2	50.0	100.0
0000_010	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0000_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
0000_100	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0000_101	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0000_110	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
0000_111	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.0
			F	- ull Cor	nfigurati	on Modes					
0001_001	30.0	50.0	4	120.0	200.0	5	150.0	250.0	4	30.0	50.0
0001_010	25.0	50.0	4	100.0	200.0	6	150.0	300.0	4	25.0	50.0
0001_011	25.0	50.0	4	100.0	200.0	7	175.0	350.0	4	25.0	50.0
0001_100	25.0	50.0	4	100.0	200.0	8	200.0	400.0	4	25.0	50.0
	1							1			1
0010_001	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
0010_010	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
0010_011	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
0010_100	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
0011_000						Reserved					
0011_001	37.5	50.0	4	150.0	200.0	3	150.0	200.0	3	50.0	66.7
0011_010	32.1	50.0	4	128.6	200.0	3.5	150.0	233.3	3	42.9	66.7
0011_011	28.1	50.0	4	112.5	200.0	4	150.0	266.7	3	37.5	66.7
0011_100	25.0	50.0	4	100.0	200.0	4.5	150.0	300.0	3	33.3	66.7
	•							•		-	•
0100_000						Reserved					
0100_001	25.0	50.0	6	150.0	300.0	3	150.0	300.0	3	50.0	100.0
0100_010	25.0	50.0	6	150.0	300.0	3.5	175.0	350.0	3	50.0	100.0
0100_011	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2}

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
0100_100	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
	_										
0101_000	30.0	50.0	5	150.0	250.0	2.5	150.0	250.0	2.5	60.0	100.0
0101_001	25.0	50.0	5	125.0	250.0	3	150.0	300.0	2.5	50.0	100.0
0101_010	25.0	50.0	5	125.0	250.0	3.5	175.0	350.0	2.5	50.0	100.0
0101_011	25.0	50.0	5	125.0	250.0	4	200.0	400.0	2.5	50.0	100.0
0101_100	25.0	50.0	5	125.0	250.0	4.5	225.0	450.0	2.5	50.0	100.0
0101_101	25.0	50.0	5	125.0	250.0	5	250.0	500.0	2.5	50.0	100.0
0101_110	25.0	50.0	5	125.0	250.0	5.5	275.0	550.0	2.5	50.0	100.0
0110_000		Reserved									
0110_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
0110_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
0110_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
0110_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
0111_000	25.0	50.0	6	150.0	300.0	2	150.0	300.0	2	75.0	150.0
0111_001	25.0	50.0	6	150.0	300.0	2.5	187.5	375.0	2	75.0	150.0
0111_010	25.0	50.0	6	150.0	300.0	3	225.0	450.0	2	75.0	150.0
0111_011	25.0	50.0	6	150.0	300.0	3.5	262.5	525.0	2	75.0	150.0
1000_000						Reserved					
1000_001	25.0	50.0	6	150.0	300.0	2.5	150.0	300.0	2.5	60.0	120.0
1000_010	25.0	50.0	6	150.0	300.0	3	180.0	360.0	2.5	60.0	120.0
1000_011	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1000_100	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1000_101	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1001_000						Reserved					
1001_001						Reserved					

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

Mode ³		Clock Hz)	CPM Multiplication		Clock Hz)	CPU Multiplication		Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1001_010		Reserved									
1001_011	25.0	50.0	8	200.0	400.0	4	200.0	400.0	4	50.0	100.0
1001_100	25.0	50.0	8	200.0	400.0	4.5	225.0	450.0	4	50.0	100.0
1010_000		Reserved									
1010_001	25.0	50.0	8	200.0	400.0	3	200.0	400.0	3	66.7	133.3
1010_010	25.0	50.0	8	200.0	400.0	3.5	233.3	466.7	3	66.7	133.3
1010_011	25.0	50.0	8	200.0	400.0	4	266.7	533.3	3	66.7	133.3
1010_100	25.0	50.0	8	200.0	400.0	4.5	300.0	600.0	3	66.7	133.3
1011_000						Reserved					-
1011_001	25.0	50.0	8	200.0	400.0	2.5	200.0	400.0	2.5	80.0	160.
1011_010	25.0	50.0	8	200.0	400.0	3	240.0	480.0	2.5	80.0	160.
1011_011	25.0	50.0	8	200.0	400.0	3.5	280.0	560.0	2.5	80.0	160.
1011_100	25.0	50.0	8	200.0	400.0	4	320.0	640.0	2.5	80.0	160.
	1	1		1	1		1			1	r
1011_101	25.0	50.0	8	200.0	400.0	2.5	250.0	500.0	2	100.0	200.
1011_110	25.0	50.0	8	200.0	400.0	3	300.0	600.0	2	100.0	200.
1011_111	25.0	50.0	8	200.0	400.0	3.5	350.0	700.0	2	100.0	200.0
1100_101	25.0	50.0	6	150.0	300.0	4	200.0	400.0	3	50.0	100.0
1100_110	25.0	50.0	6	150.0	300.0	4.5	225.0	450.0	3	50.0	100.0
1100_111	25.0	50.0	6	150.0	300.0	5	250.0	500.0	3	50.0	100.
1101_000	25.0	50.0	6	150.0	300.0	5.5	275.0	550.0	3	50.0	100.0
						•					•
1101_001	25.0	50.0	6	150.0	300.0	3.5	210.0	420.0	2.5	60.0	120.0
1101_010	25.0	50.0	6	150.0	300.0	4	240.0	480.0	2.5	60.0	120.0
1101_011	25.0	50.0	6	150.0	300.0	4.5	270.0	540.0	2.5	60.0	120.0
1101_100	25.0	50.0	6	150.0	300.0	5	300.0	600.0	2.5	60.0	120.0

Mode ³		Clock Hz)	CPM Multiplication	-	Clock Hz)			Clock Hz)	Bus Division		Clock Hz)
MODCK_H- MODCK[1-3]	Low	High	Factor ⁴	Low	High	Factor ⁵	Low	High	Factor	Low	High
1110_000	25.0	50.0	5	125.0	250.0	2.5	156.3	312.5	2	62.5	125.0
1110_001	25.0	50.0	5	125.0	250.0	3	187.5	375.0	2	62.5	125.0
1110_010	28.6	50.0	5	142.9	250.0	3.5	250.0	437.5	2	71.4	125.0
1110_011	25.0	50.0	5	125.0	250.0	4	250.0	500.0	2	62.5	125.0
	•	•		•				•			
1110_100	25.0	50.0	5	125.0	250.0	4	166.7	333.3	3	41.7	83.3
1110_101	25.0	50.0	5	125.0	250.0	4.5	187.5	375.0	3	41.7	83.3
1110_110	25.0	50.0	5	125.0	250.0	5	208.3	416.7	3	41.7	83.3
1110_111	25.0	50.0	5	125.0	250.0	5.5	229.2	458.3	3	41.7	83.3
	1	1		1			1	1			
1100_000						Reserved					
1100_001		Reserved									
1100_010						Reserved					

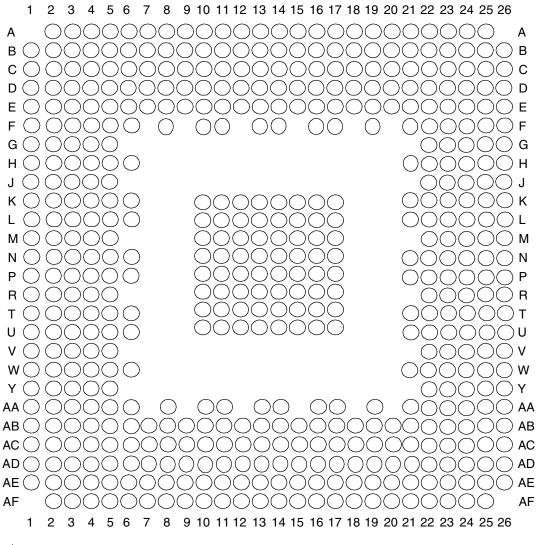
Table 20. Clock Configurations for PCI Agent Mode (PCI_MODCK=1)^{1,2} (continued)

¹ The "low" values are the minimum allowable frequencies for a given clock mode. The minimum bus frequency in a table entry guarantees only the required minimum CPU operating frequency. The "high" values are for the purpose of illustration only. Users must select a mode and input bus frequency so that the resulting configuration does not exceed the frequency rating of the user's device. The minimum CPU frequency is 150 MHz for commercial temperature devices and 175 MHz for extended temperature devices. The minimum CPM frequency is 120 MHz.

² PCI_MODCK determines the PCI clock frequency range. See Table 19 for higher range configurations.

³ MODCK_H = hard reset configuration word [28–31] (see Section 5.4 in the SoC reference manual). MODCK[1-3] = three hardware configuration pins.

⁴ CPM multiplication factor = CPM clock/bus clock


⁵ CPU multiplication factor = Core PLL multiplication factor

8 Pinout

This figure and table show the pin assignments and pinout for the 516 PBGA package.

This figure shows the pinout of the 516 PBGA package as viewed from the top surface.

Not to Scale

Figure 12. Pinout of the 516 PBGA Package (View from Top)

This table lists the pins of the MPC8272. Note that the pins in the "MPC8272/8271 Only" column relate to Utopia functionality.

Table	21.	Pin	out
-------	-----	-----	-----

Pin I				
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball		
B	R	A19		
BG/	BG/IRQ6			
ABB/	IRQ2	C1		

Pinout

Table 21. Pinout (continued)
--------------------	------------

Pin N	ame				
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball			
T	S	D1			
A	0	A3			
A	A1				
A	2	D8			
A	3	C6			
A	4	A4			
A	5	A6			
A	6	B6			
A	7	C7			
A	8	В7			
A	9	A7			
A1	0	D9			
A1	1	E11			
A1	2	C9			
A1	3	В9			
A1	4	D11			
A1	5	A9			
A1	6	B10			
A1	7	A10			
A1	8	B11			
A1	9	A11			
A2	20	D12			
A2	21	A12			
A2	22	D13			
A2	23	B13			
A2	24	C13			
A2	25	C14			
A2	26	B14			
A2	27	D14			
A2	28	E14			
A2	29	A14			

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pin N	Pin Name					
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball				
A3	0	B15				
A3	1	A15				
TT	0	B3				
TT	1	E8				
TT	2	D7				
TT	3	C4				
TT	4	E7				
TBS	T	E3				
TSIZ	20	E4				
TSIZ	21	E5				
TSIZ	72	C3				
TSIZ	Z3	D5				
ĀĀČ	x	D3				
ART	RY	C2				
DBG/I	RQ7	F16				
DBB/II	RQ3	D18				
DC)	AC1				
D1		AA1				
D2	2	V3				
De	3	R5				
D4	ŀ	P4				
DS	5	M4				
De	3	J4				
D7	7	G1				
DE	3	W6				
DS)	Y3				
D1	0	V1				
D1	1	N6				
D1:	2	P3				
D1:	3	M2				
D1	4	J5				

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
D1	5	G3
D1	6	AB3
D1	7	Y1
D1	8	T4
D1	9	Т3
D2	0	P2
D2	1	M1
D2	2	J1
D2	3	G4
D2	4	AB2
D2	5	W4
D2	6	V2
D2	7	T1
D2	8	N5
D2	9	L1
D3	D30	
D3	D31	
D3	2	W5
D3	3	W2
D3	4	Т5
D3	5	T2
D3	6	N1
D3	7	К3
D3	D38	
D39		F1
D40		AA2
D41		W1
D4	2	U3
D4	3	R2
D4	4	N2
D4	5	L2

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
D4	6	H4
D4	7	F2
D4	8	AB1
D4	9	U4
D5	0	U1
D5	1	R3
D5	2	N3
D5	3	К2
D5	4	H5
D5	5	F4
D5	6	AA3
D5	7	U5
D5	8	U2
D59		P5
D60		М3
D61		K4
D62		H3
D63		E1
IRQ3/CKSTP_C	DUT/EXT_BR3	B16
IRQ4/CORE_SRESET/EXT_BG3		C15
IRQ5/TBEN/EXT_DBG3/CINT		Y4
PSD	/AL	C19
TA		AA4
TEA		AB6
GBL/IRQ1		D15
CI/BADDR29/IRQ2		D16
WT/BADDR30/IRQ3		C16
BADDR31/IRQ5/CINT		E17
CPU_BR/I	NT_OUT	B20
CSO		AE6
CS1		AD7

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
CS	52	AF5
<u>C</u> S	33	AC8
<u>C</u> S	54	AF6
<u>C</u> S	35	AD8
CS6/BC	TL1/SMI	AC9
CS7/TLE	BISYNC	AB9
BADDR2	27/IRQ1	AB8
BADDR2	28/IRQ2	AC7
ALE/Ī	RQ4	AF4
BCT	<u>FLO</u>	AF3
PWE0/PSDD	DQM0/PBS0	AD6
PWE1/PSDD	DQM1/PBS1	AE5
PWE2/PSDD	DQM2/PBS2	AE3
PWE3/PSDD	DQM3/PBS3	AF2
PWE4/PSDDQM4/PBS4		AC6
PWE5/PSDDQM5/PBS5		AC5
PWE6/PSDDQM6/PBS6		AD4
PWE7/PSDDQM7/PBS7		AB5
PSDA10/PGPL0		AE2
PSDWE	/PGPL1	AD3
POE/PSDR	AS/PGPL2	AB4
PSDCAS	/PGPL3	AC3
PGTA/PUPM	WAIT/PGPL4	AD2
PSDAMUX/PGPL5		AC2
PCI_MODE ¹		AD22
PCI_CFG0 (PCI_HOST_EN)		AC21
PCI_CFG1 (PCI_ARB_EN)		AE22
PCI_CFG2 (DLL_ENABLE)		AE23
PCI_ PAR		AF12
PCI_FI	RAME	AD15
PCI_1	FRDY	AF16

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_IF	RDY	AF15
PCI_S	ТОР	AE15
PCI_DE	VSEL	AE14
PCI_ID	SEL	AC17
PCI_PI	ERR	AD14
PCI_SI	ERR	AD13
PCI_R	EQO	AE20
PCI_REQ1/CF	PCI_HS_ES	AF14
PCI_G	NTO	AD20
PCI_GNT1/CP	CI_HS_LED	AE13
PCI_GNT2/CPC	RI_HS_ENUM	AF21
PCI_F	IST	AF22
PCI_II	NTA	AE21
PCI_REQ2		AB14
DLLOUT		AC22
PCI_AD0		AF7
PCI_AD1		AE10
PCI_A	AD2	AB10
PCI_AD3		AD10
PCI_AD4		AE9
PCI_A	ND5	AF8
PCI_A	AD6	AC10
PCI_A	AD7	AE11
PCI_A	ND8	AB11
PCI_A	ND9	AF10
PCI_AD10		AF9
PCI_AD11		AB12
PCI_AD12		AC12
PCI_AD13		AD12
PCI_AD14		AF11
PCI_A	D15	AB13

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PCI_/	AD16	AE16
PCI_/	AD17	AF17
PCI_/	AD18	AD16
PCI_/	AD19	AC16
PCI_/	AD20	AF18
PCI_/	AD21	AB16
PCI_/	AD22	AD17
PCI_/	AD23	AF19
PCI_/	AD24	AB17
PCI_/	AD25	AF20
PCI_/	AD26	AE19
PCI_/	AD27	AC18
PCI_/	AD28	AB18
PCI_/	AD29	AD19
PCI_/	PCI_AD30	
PCI_/	PCI_AD31	
PCI_C	PCI_C0/BE0	
PCI_C	PCI_C1/BE1	
PCI_C	2/BE2	AC15
PCI_C	3/BE3	AE18
IRQ0/N	MI_OUT	A17
TR	ST ²	E21
тс	СК	B22
ТМ	IS	C23
TDI		B24
TDO		A22
TRIS		B23
PORESET ² /PCI_RST		C24
HRESET		D22
SRE	SRESET	
RSTC	CONF	A24

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Table 21. Pinout (continued)

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
MODCK1/RSRV/	C0/BNKSEL0	A20
MODCK2/CSE0/1	C1/BNKSEL1	C20
MODCK3/CSE1/1	C2/BNKSEL2	A21
CLKI	V1	D21
PA8/SMF	RXD2	AF25 ³
PA9/SM ⁻	TXD2	AA22 ³
PA10/MSNUM5	FCC1_UT_RXD0	AB23 ³
PA11/MSNUM4	FCC1_UT_RXD1	AD26 ³
PA12/MSNUM3	FCC1_UT_RXD2	AD25 ³
PA13/MSNUM2	FCC1_UT_RXD3	AA24 ³
PA14/FCC1_MII_HDLC_RXD3	FCC1_UT_RXD4	W22 ³
PA15/FCC1_MII_HDLC_RXD2	FCC1_UT_RXD5	Y24 ³
PA16/FCC1_MII_HDLC_RXD1	FCC1_UT_RXD6	T22 ³
PA17/FCC1_MII_HDLC_RXD0/ FCC1_MII_TRAN_RXD/FCC1_RMII_RX D0	FCC1_UT_RXD7	W26 ³
PA18/FCC1_MII_HDLC_TXD0/FCC1_MII _TRAN_TXD/ FCC1_RMII_TXD0	FCC1_UT_TXD7	V26 ³
PA19/FCC1_MII_HDLC_TXD1/FCC1_RM II_TXD1	FCC1_UT_TXD6	R23 ³
PA20/FCC1_MII_HDLC_TXD2	FCC1_UT_TXD5	P25 ³
PA21/FCC1_MII_HDLC_TXD3	FCC1_UT_TXD4	N22 ³
PA22	FCC1_UT_TXD3	N26 ³
PA23	FCC1_UT_TXD2	N23 ³
PA24/MSNUM1	FCC1_UT_TXD1	H26 ³
PA25/MSNUM0	FCC1_UT_TXD0	G25 ³
PA26/FCC1_MII_RMIIRX_ER	FCC1_UT_RXCLAV	L22 ³
PA27/FCC1_MII_RX_DV/FCC1_RMII_CR S_DV	FCC1_UT_RXSOC	G24 ³
PA28/FCC1_MII_RMII_TX_EN	FCC1_UT_RXENB	G23 ³
PA29/FCC1_MII_TX_ER	FCC1_UT_TXSOC	B26 ³
PA30/FCC1_MII_CRS/FCC1_RTS	FCC1_UT_TXCLAV	A25 ³

Table 21. Pinout (continued)
--------------------	------------

Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball
PA31/FCC1_MII_COL	FCC1_UT_TXENB	G22 ³
PB18/FCC2_MII	_HDLC_RXD3	T25 ³
PB19/FCC2_MII_	_HDLC_RXD2	P22 ³
PB20/FCC2_MII_HI	DLC_RMII_RXD1	L25 ³
PB21/FCC2_MII_HDLC_RMII	_RXD0/FCC2_TRAN_RXD	J26 ³
PB22/FCC2_MII_HDLC_TX FCC2_RM		U23 ³
PB23/FCC2_MII_HDLC_T	XD1/FCC2_RMII_TXD1	U26 ³
PB24/FCC2_MII_HDLC	_TXD2/L1RSYNCB2	M24 ³
PB25/FCC2_MII_HDLC	_TXD3/L1TSYNCB2	M23 ³
PB26/FCC2_MII_	CRS/L1RXDB2	H24 ³
PB27/FCC2_MII_	COL/L1TXDB2	E25 ³
PB28/FCC2_MII_RMII_RX	LER/FCC2_RTS/TXD1	D26 ³
PB29/FCC2_MII	_RMII_TX_EN	K21 ³
PB30/FCC2_MII_RX_DV	/FCC2_RMII_CRS_DV	D24 ³
PB31/FCC2_MII_TX_ER		E23 ³
PC0/DREQ3/BRGO7/S	MSYN1/L1CLKOA2	AF23 ³
PC1/BRGO6	/L1RQA2	AD23 ³
PC4/SMRXD1/SI2_I	_1ST4/FCC2_CD	AB22 ³
PC5/SMTXD1/SI2_L	1ST3/FCC2_CTS	AE24 ³
PC6/FCC1_CD/SI2_L1ST2	FCC1_UT_RXADDR2	AF24 ³
PC7/FCC1_CTS	FCC1_UT_TXADDR2	AE26 ³
PC8/CD4/RTS1/SI	2_L1ST2/CTS3	AC24 ³
PC9/CTS4/L1	TSYNCA2	AA23 ³
PC10/CD3/USB_RN		AB25 ³
PC11/CTS3/USB_RP/L1TXD3A2		V22 ³
PC12	FCC1_UT_RXADDR1	AA26 ³
PC13/BRGO5	FCC1_UT_TXADDR1	V23 ³
PC14/CD1	FCC1_UT_RXADDR0	W24 ³
PC15/CTS1	FCC1_UT_TXADDR0	U24 ³
PC16/CLK16		T23 ³

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Pin Na			
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
PC17/CLK15/BR	GO8/DONE2	T26 ³	
PC18/CLK14	/TGATE2	R26 ³	
PC19/CLK13/BR0	GO7/TGATE1	P24 ³	
PC20/CLK12	2/USBOE	L26 ³	
PC21/CLK11/BR	GO6/CP_INT	L24 ³	
PC22/CLK10/DONE3	FCC1_UT_TXPRTY	L23 ³	
PC23/CLK9/BRGO	05/DACK3/CD1	K24 ³	
PC24/CLK8/TIN3/TOU	T4/DREQ2/BRGO1	K23 ³	
PC25/CLK7/BRGO4	/DACK2/SPISEL	F26 ³	
PC26/CLK6/TO	UT3/TMCLK	H23 ³	
PC27/CLK5/BRGO3/TOUT1	FCC1_UT_RXPRTY	K22 ³	
PC28/CLK4/TIN1/T	OUT2/SPICLK	D25 ³	
PC29/CLK3/TIN2/	BRGO2/CTS1	F24 ³	
PD7/SMSYN2	FCC1_UT_TXADDR3	AB21 ³	
PD14/I20	DSCL	AC26 ³	
PD15/I2CSDA		Y23 ³	
PD16/SPIMISO	FCC1_UT_TXPRTY	AA25 ³	
PD17/BRGO2/SPIMOSI	FCC1_UT_RXPRTY	Y26 ³	
PD18/SPICLK	FCC1_UT_RXADDR4	W25 ³	
PD19/SPISEL/BRGO1	FCC1_UT_TXADDR4	V25 ³	
PD20/RTS4/L1	RSYNCA2	R24 ³	
PD21/TXD4/L	1RXD0A2	P23 ³	
PD22/RXD4/L1TXD0A2		N25 ³	
PD23/RTS3/USB_TP		K26 ³	
PD24/TXD3/USB_TN		K25 ³	
PD25/RXD3/USB_RXD		J25 ³	
PD29/RTS1	FCC1_UT_RXADDR3	C26 ³	
PD30/TX	XD1	E24 ³	
PD31/R	XD1	B25 ³	
VCCS	YN	C18	
VCCSY	/N1	K6	

Pin N	Pin Name		
MPC8272/MPC8248 and MPC8271/MPC8247	MPC8272/MPC8271 Only	Ball	
CLK	IN2	C21	
No cor	nnect ⁴	D19 ⁴ , J3 ⁴ , AD24 ⁵	
I/O po	ower	B4, F3, J2, N4, AD1, AD5, AE8, AC13, AD18, AB24, AB26, W23, R25, M25, F25, C25, C22, B17, B12, B8, E6, F6, H6, L5, L6, P6, T6, U6, V5, Y5, AA6, AA8, AA10, AA11, AA14, AA16, AA17, AB19, AB20, W21, U21, T21, P21, N21, M22, J22, H21, F21, F19, F17, E16, F14, E13, E12, F10, E10, E9	
Core F	Power	F5, K5, M5, AA5, AB7, AA13, AA19, AA21, Y22, AC25, U22, R22, L21, H22, E22, E20, E15, F13, F11, F8, L3, V4, W3, AC11, AD11, AB15, U25, T24, J24, H25, F23, B19, D17, C17, D10, C10	
Gro	und	E19, E2, K1, Y2, AE1, AE4, AD9, AC14, AE17, AC19, AE25, V24, P26, M26, G26, E26, B21, C12, C11, C8, A8, B18, A18, A2, B1, B2, A5, C5, D4, D6, G2, L4, P1, R1, R4, AC4, AE7, AC23, Y25, N24, J23, A23, D23, D20, E18, A13, A16, K10, K11, K12, K13, K14, K15, K16, K17, L10, L11, L12, L13, L14, L15, L16, L17, M10, M11, M12, M13, M14, M15, M16, M17, N10, N11, N12, N13, N14, N15, N16, N17, P10, P11, P12, P13, P14, P15, P16, P17, R10, R11, R12, R13, R14, R15, R16, R17, T10, T11, T12, T13, T14, T15, T16, T17, U10, U11, U12, U13, U14, U15, U16, U17	

Table 21. Pinout (continued)

¹ Must be tied to ground.

 2 Should be tied to VDDH via a 2K Ω external pull-up resistor.

³ The default configuration of the CPM pins (PA[8–31], PB[18–31], PC[0–1,4–29], PD[7–25, 29–31]) is input. To prevent excessive DC current, it is recommended either to pull unused pins to GND or VDDH, or to configure them as outputs.

⁴ This pin is not connected. It should be left floating.

⁵ Must be pulled down or left floating

Package Description

9 Package Description

This figure shows the side profile of the PBGA package to indicate the direction of the top surface view.

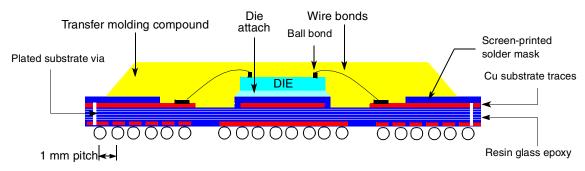


Figure 13. Side View of the PBGA Package Remove

9.1 Package Parameters

This table provides package parameters.

Table 22. Package Parameters

Code	Туре	Outline (mm)	Interconnects	Pitch (mm)	Nominal Unmounted Height (mm)
VR, ZQ	PBGA	27 x 27	516	1	2.25

NOTE: Temperature Reflow for the VR Package

In the VR package, sphere composition is lead-free (see Table 2). This requires higher temperature reflow than what is required for other PowerQUICC II packages. Consult "Freescale PowerQUICC II Pb-Free Packaging Information" (MPC8250PBFREEPKG) available on www.freescale.com.

9.2 Mechanical Dimensions

This figure provides the mechanical dimensions and bottom surface nomenclature of the 516 PBGA package.

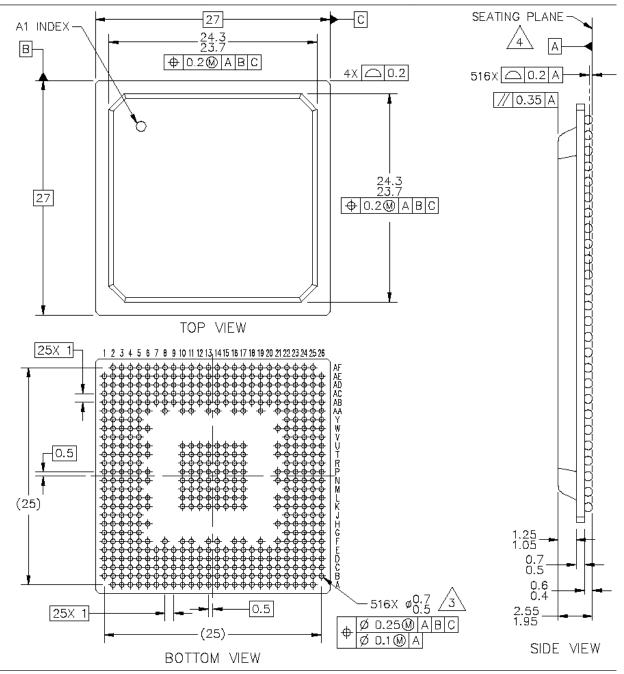


Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature—516 PBGA

MPC8272 PowerQUICC II Family Hardware Specifications, Rev. 3

Ordering Information

10 Ordering Information

This figure provides an example of the Freescale part numbering nomenclature for the SoC. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Freescale sales office.

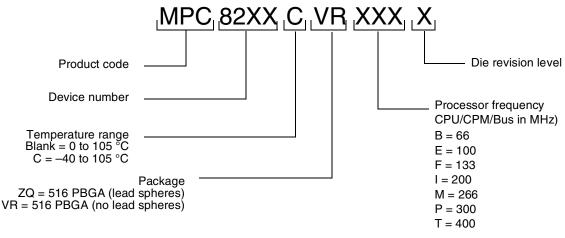


Figure 15. Freescale Part Number Key

11 Document Revision History

This table summarizes changes to this document.

Table 23. Document Revision History

Revision	Date	Substantive Changes
3	09/2011	In Figure 15, "Freescale Part Number Key," added speed decoding information below processor frequency information.
2	12/2008	 Modified Figure 5, "SCC/SMC/SPI/I2C External Clock Diagram," and added second section of figure notes. In Table 12, modified "Data bus in pipeline mode" row and showed 66 MHz as "N/A." In Section 10, "Ordering Information," added "F = 133" to CPU/CPM/Bus Frequency. Added footnote concerning CPM_CLK/PCI_CLK ratio to column "PCI Division Factor" in Table 17, "Clock Configurations for PCI Host Mode (PCI_MODCK=0)," and Table 18, "Clock Configurations for PCI Host Mode (PCI_MODCK=1),." Removed overbar from DLL_ENABLE in Table 21, "Pinout."
1.5	12/2006	• Section 6, "AC Electrical Characteristics," removed deratings statement and clarified AC timing descriptions.
1.4	05/2006	Added row for 133 MHz configurations to Table 8.
1.3	02/2006	Inserted Section 6.3, "JTAG Timings."

Table 23. Document Revision	History	(continued)
-----------------------------	---------	-------------

Revision	Date	Substantive Changes
1.2	09/2005	 Added 133-MHz to the list of frequencies in the opening sentence of Section 6, "AC Electrical Characteristics". Added 133 MHz columns to Table 9, Table 11, Table 12, and Table 13. Added footnote 2 to Table 13. Added the conditions note directly above Table 12.
1.1	01/2005	Modification for correct display of assertion level ("overbar") for some signals
1.0	12/2004	 Section 1.1: Added 8:1 ratio to Internal CPM/bus clock multiplier values Section 2: removed voltage tracking note Table 3: Note 2 updated regarding VDD/VCCSYN relationship to VDDH during power-on reset Table 4: Updated VDD and VCCSYN to 1.425 V - 1.575 V Table 8: Note 2 updated to reflect VIH=2.5 for TCK, TRST, PORESET; request for external pull-up removed. Section 4.6: Updated description of layout practices Table 8: Note 3 added regarding IIC compatibility Table 8: Note 3 added regarding IIC compatibility Table 8: Note 3 added regarding IIC compatibility Table 9: updated PCI impedance to 27Ω, updated 60x and MEMC values and added note to reflect configurable impedance Section 6: Added sentence providing derating factor Section 6: Added values for following specs: sp36b, sp37a, sp38a, sp39a, sp38b, sp40, sp41, sp42, sp43, sp42a Table 11: updated values for following specs: sp16a, sp16b, sp18a, sp18b, sp20, sp21, sp22 Section 6.2: added CLKIN jitter note Table 12: combined specs sp11 and sp11a Table 13: sp30 Data Bus minimum delay values changed to 0.8 Section 7: unit of ns added to Tval notes Section 7: Updated all notes to reflect updated CPU Fmin of 150 MHz commercial temp devices, 175 MHz extended temp; CPM Fmin of 120 MHz. Section 7: Clock Configuration Modes": Updated all table footnotes reflect updated CPU Fmin of 120 MHz. Table 21: correct superscript of footnote number after pin AD22 Table 21: signals referring to TDMs C2 and D2 removed

Document Revision History

	- .	
Revision	Date	Substantive Changes
0.2	12/2003	 Table 1: New Table 2: New Table 4: Modification of VDD and VCCSYN to 1.45–1.60 V Table 8: Addition of note 2 regarding TRST and PORESET (see V_{IH} row of Table 8) Table 8 and Table 21: Addition of muxed signals CPCI_HS_LED to POI_GREQ1 (AF14) CPCI_HS_LED to POI_GNT1 (AF13) CPCI_HS_ENDM to PCI_GNT2 (AF21) Table 8 and Table 21: Modification of PCI signal names for consistency with PCI signal names on other PowerQUICC II devices: PCI_CFG0 (PCI_HOST_EN) (AC21) PCI_CFG2 (DLL_ENABLE) (AE23) PCI_CFG2 (DLL_ENABLE) (AE23) PCI_PAR (AF12) PCI_TRDY (AF16) PCI_TRDY (AF16) PCI_TRDY (AF15) PCI_TRDY (AF15) PCI_TRDY (AF15) PCI_STOP (AE15) DEVSEL (AE14) PCI_DSEL (AC17) PCI_DSEL (AC17) PCI_REQD-2 (AA220, AF14, AB14) PCI_SER (AD13) PCI_REQD-2 (AA220, AF14, AB14) PCI_CO_3 (AE12, AF13, AC15, AE18) PCI_AD0-31 Table 8 and Table 21: Corrected assertion level (added "-") PCI_HOST_EN (AC21) and PCI_AB_EN (AE22) Table 7: Addition of R_{0,1}T and note 4 Sections 4.1-4.5 and 4.7 on thermal characteristics: New Sections 7, "Clock Configuration Modes": Modification to first paragraph. Note that PCI_MOEX80 Family and MPC8260 Family. Addition of "Note: Temperature Reflow for the VR Package" on page 56 Table 21: Addition of R0_1T and Thermal (D19) and TPORESET (C24) Table 21: Removal of Thermal0 (D19) and Thermal1(J3). These pins are now "No connects." Note 4 unchanged. Table 21: Removal of Spare0 (AD24). This pin is now a "No connect." Note 5 unchanged.
0.1	9/2003	 Addition of the MPC8271 and the MPC8247 (these devices do not have a security engine) Table 8: Addition of note 2 to V_{IH} Table 8: Changed I_{OL} for 60x signals to 6.0 mA Modification of note 1 for Table 17, Table 18, Table 19, and Table 20 Table 21: Addition of ball AD9 to GND. In rev 0 of this document, AD8 was listed as assigned to both CS5 and GND. AD8 is only assigned to CS5. Table 21: Addition of note 4 to Thermal0 (D19) and Thermal1(J3) Addition of ZQ package code to Figure 15
0	5/2003	NDA release

Table 23. Document Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC, QorlQ, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet, QorlQ Qonverge, QUICC Engine, and VortiQa are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2002–2011 Freescale Semiconductor, Inc.

Document Number: MPC8272EC Rev. 3 09/2011

