ELECTRICAL CHARACTERISTICS ($\rm T_{_{A}}$ = 25°C Unless otherwise noted) | PARAMETER | | MIN | TYP | MAX | UNITS | TEST CONDITION | |--|--|--------------|------|---------------------|---|---| | Input | Forward Voltage (V_F)
Reverse Current (I_R) | | 1.2 | 1.4
10 | V
µA | $I_{\rm F} = 20 \text{mA}$ $V_{\rm R} = 6 \text{V}$ | | Output | Peak Off-state Current (I_{DRM}) Peak Blocking Voltage (V_{DRM}) On-state Voltage (V_{TM}) Critical rate of rise of | 400 | | 500
3.0 | nA
V
V | $V_{DRM} = 400 V \text{ (note 1)}$ $I_{DRM} = 500 \text{nA}$ $I_{TM} = 100 \text{mA (peak)}$ | | | off-state Voltage (dv/dt) | 600 | 1500 | | V/µs | | | Coupled | Input Current to Trigger (I _{FT})(note 2) MOC3040 MOC3041 MOC3042 MOC3043 | | | 30
15
10
5 | mA
mA
mA | $V_{TM} = 3V \text{ (note 2)}$ | | | $\begin{aligned} & \text{Holding Current , either direction (I}_{_{\text{H}}}) \\ & \text{Input to Output Isolation Voltage V}_{_{\text{ISO}}} \end{aligned}$ | 5300
7500 | 400 | | $\begin{array}{c} \mu A \\ V_{\text{RMS}} \\ V_{\text{PK}} \end{array}$ | See note 3
See note 3 | | Zero
Crossing
Charact-
-eristic | Inhibit Voltage (V_{IH})
Leakage in Inhibited State (I_S) | | | 20
500 | ν μΑ | $I_F = Rated I_{FT}$ $MT1-MT2 \ Voltage$ $above \ which \ device$ $will \ not \ trigger$ $I_F = Rated \ I_{FT}$ | | | | | | | | $V_{DRM} = Rated V_{DRM}$ Off-state | 22/5/12 DB91048m-AAS/A8 Note 1. Test voltage must be applied within dv/dt rating. Note 2. Guaranteed to trigger at an I_F value less than or equal to max. I_{FT} , recommended I_F lies between Rated I_{FT} and absolute max. I_F . Note 3. Measured with input leads shorted together and output leads shorted together.