Ordering Information

Part Number	Top Mark	Package	Packing Method
FFB2222A	.1P	SC70 6L	Tape and Reel
FMB2222A	.1P	SSOT 6L	Tape and Reel
MMPQ2222A	MMPQ2222A	SOIC 16L	Tape and Reel

Absolute Maximum Ratings⁽¹⁾

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. Values are at $T_A = 25^{\circ}$ C unless otherwise noted.

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	45	V
V _{CBO}	Collector-Base Voltage	75	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ι _C	Collector Current - Continuous	500	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Note:

1. These ratings are based on a maximum junction temperature of 150°C. These are steady-state limits. Fairchild Semiconductor should be consulted on applications involving pulsed or low-duty cycle operations.

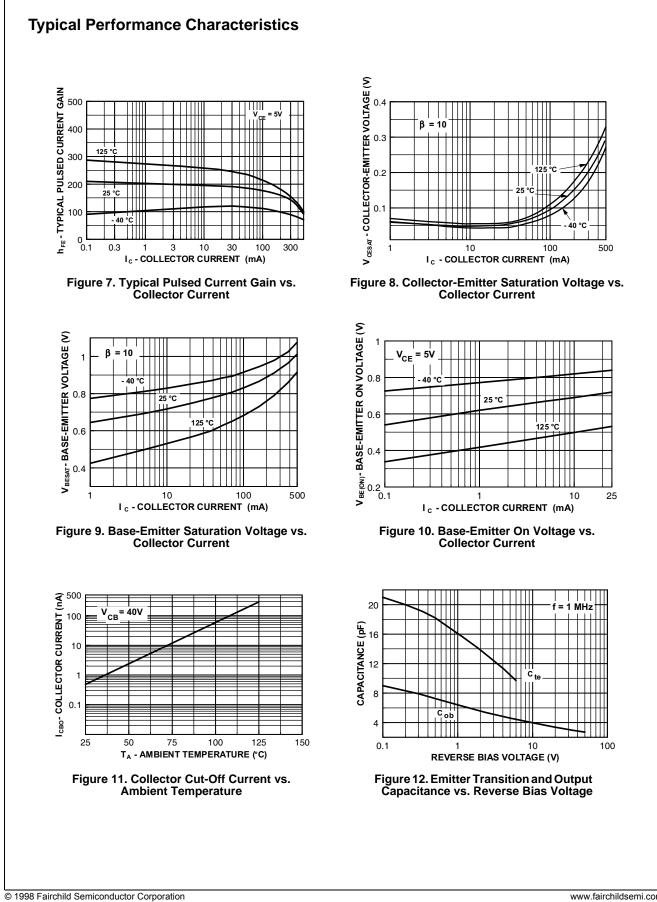
Thermal Characteristics⁽²⁾

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter		Unit		
	Farameter	FFB2222A	FMB2222A	MMPQ2222A	Onit
PD	Total Device Dissipation	300	700	1,000	mW
	Derate Above 25°C	2.4	5.6	8.0	mW/°C
R _{θJA}	Thermal Resistance, Junction-to-Ambient	415	180		
	Thermal Resistance, Junction-to-Ambient, Effective 4 Dies			125	°C/W
	Thermal Resistance, Junction-to-Ambient, Each Die			240	

Note:

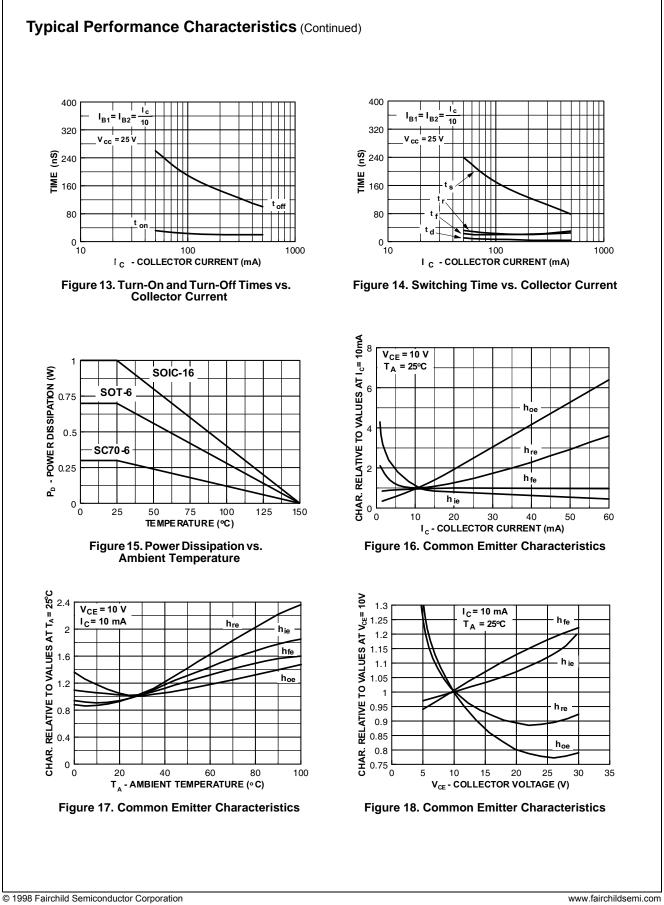
2. PCB size: FR-4, 76 mm x 114 mm x 1.57 mm (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.


Electrical Characteristics

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

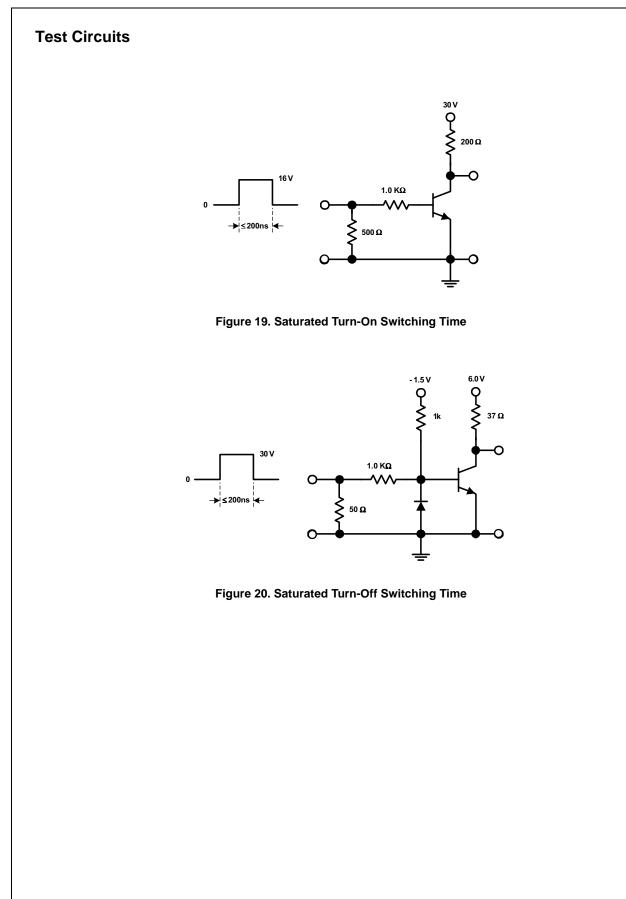
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage ⁽³⁾	I _C = 10 mA, I _B = 0	40			V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = 10 μA, I _E = 0	75			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 10 μA, I _C = 0	5.0			V
I _{CBO}	Collector Cut-Off Current	V _{CB} = 60 V, I _E = 0			10	nA
I _{EBO}	Emitter Cut-Off Current	V _{EB} = 3.0 V, I _C = 0			10	nA
	DC Current Gain	I _C = 0.1 mA, V _{CE} = 10 V	35			
h _{FE}		I _C = 1.0 mA, V _{CE} = 10 V	50			
		I _C = 10 mA, V _{CE} = 10 V	75			
		I _C = 150 mA, V _{CE} = 10 V ⁽³⁾	100		300	
		$I_{\rm C}$ = 150 mA, $V_{\rm CE}$ = 1.0 V ⁽³⁾	50			
		I _C = 500 mA, V _{CE} = 10 V ⁽³⁾	40			
V _{CE} (sat)	Collector-Emitter Saturation Voltage ⁽³⁾	I _C = 150 mA, I _B = 15 mA			0.3	v
		I _C = 500 mA, I _B = 50 mA			1.0	
V _{BE} (sat)	Base-Emitter Saturation Voltage ⁽³⁾	I _C = 150 mA, I _B = 15 mA			1.2	v
		I _C = 500 mA, I _B = 50 mA			2.0	
f _T	Current Gain - Bandwidth Product	I _C = 20 mA, V _{CE} = 20 V, f = 100 MHz		300		MHz
C _{obo}	Output Capacitance	V _{CB} = 10 V, I _E = 0, f = 100 kHz		4.0		pF
C _{ibo}	Input Capacitance	V _{EB} = 0.5 V, I _C = 0, f = 100 kHz		20		pF
NF	Noise Figure	I_{C} = 100 μA, V _{CE} = 10 V, R _S = 1.0 kΩ, f = 1.0 kHz		2.0		dB
t _d	Delay Time	V _{CC} = 30 V, V _{BE(OFF)} = 0.5 V,		8		ns
t _r	Rise Time	$I_{\rm C}$ = 150 mA, $I_{\rm B1}$ = 15 mA		20		ns
t _s	Storage Time	V _{CC} = 30 V, I _C = 150 mA,		180		ns
t _f	Fall Time	$I_{B1} = I_{B2} = 15 \text{ mA}$		40		ns

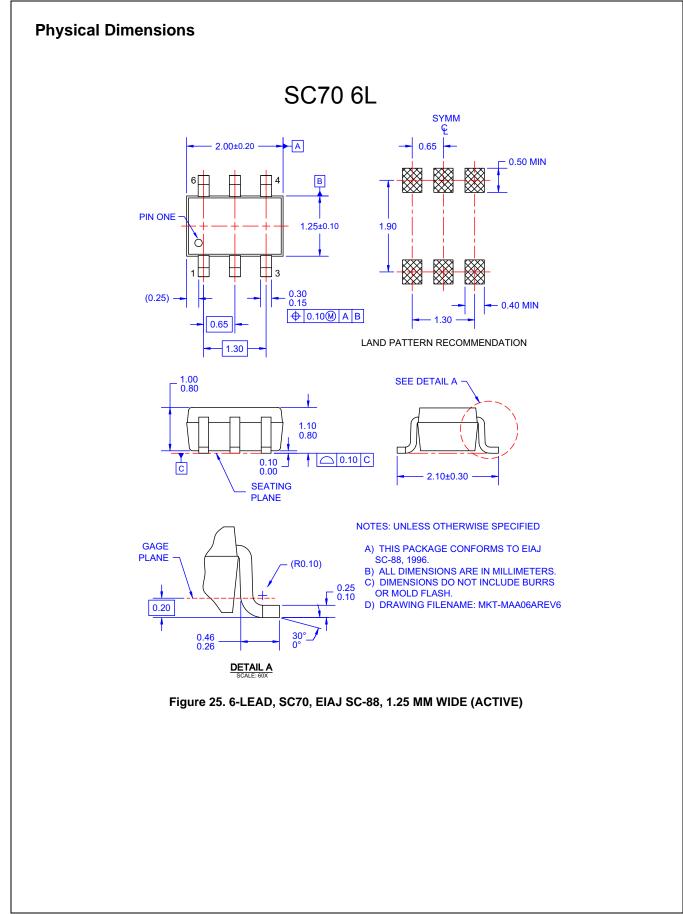
Note:

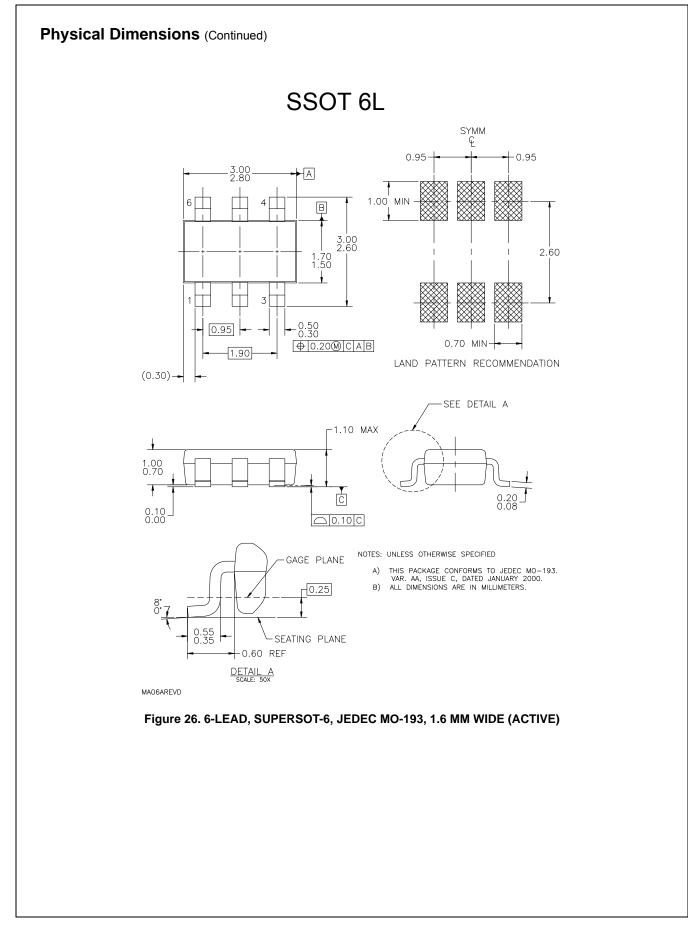

3. Pulse test: pulse width \leq 300 µs, duty cycle \leq 2.0%.

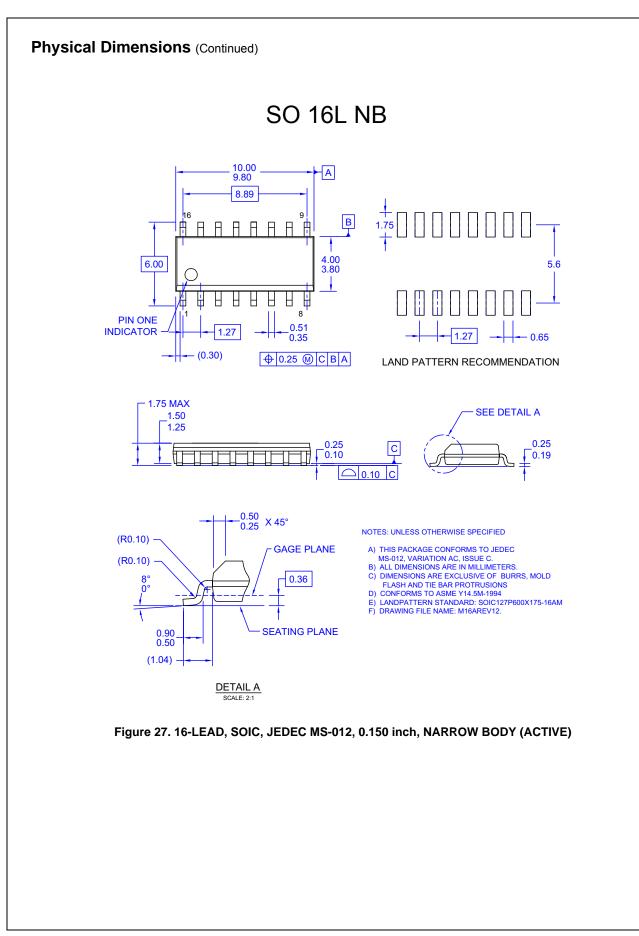
FFB2222A / FMB2222A / MMPQ2222A Rev. 1.4

FFB2222A / FMB2222A / MMPQ2222A —


NPN Multi-Chip General-Purpose Amplifier


5


FFB2222A / FMB2222A / MMPQ2222A Rev. 1.4


FFB2222A / FMB2222A / MMPQ2222A — NPN Multi-Chip General-Purpose Amplifier

FFB2222A / FMB2222A / MMPQ2222A — NPN Multi-Chip General-Purpose Amplifier

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has negligent regarding the design or manufacture of the part. ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC