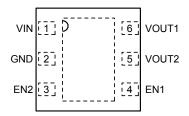

MIC5335 Block Diagram


Ordering Information

Part number	Manufacturing Part Number	Marking	Voltage*	Junction Temp. Range	Package
MIC5335-1.8/1.5YMT	MIC5335-GFYMT	GPF	1.8V/1.5V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-1.8/1.6YMT	MIC5335-GWYMT	GPW	1.8V/1.6V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-1.8/1.8YMT	MIC5335-GGYMT	GPG	1.8V/1.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.5/1.8YMT	MIC5335-JGYMT	JPG	2.5V/1.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.5/2.5YMT	MIC5335-JJYMT	JPJ	2.5V/2.5V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.6/1.85YMT	MIC5335-KDYMT	KPD	2.6V/1.85	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.6/1.8YMT	MIC5335-KGYMT	KPG	2.6V/1.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.7/2.7YMT	MIC5335-LLYMT	LPL	2.7V/2.7V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.8/1.5YMT	MIC5335-MFYMT	MPF	2.8V/1.5V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.8/1.8YMT	MIC5335-MGYMT	MPG	2.8V/1.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.8/2.6YMT	MIC5335-MKYMT	MPK	2.8V/2.6V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.8/2.8YMT	MIC5335-MMYMT	MPM	2.8V/2.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.85/1.85YMT	MIC5335-NDYMT	NPD	2.85V/1.85V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.85/2.6YMT	MIC5335-NKYMT	NPK	2.85V/2.6V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.85/2.85YMT	MIC5335-NNYMT	NPN	2.85V/2.85V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.9/1.5YMT	MIC5335-OFYMT	OPF	2.9V/1.5V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.9/1.8YMT	MIC5335-OGYMT	OPG	2.9V/1.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-2.9/2.9YMT	MIC5335-OOYMT	OPO	2.9V/2.9V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.0/1.8YMT	MIC5335-PGYMT	PPG	3.0V/1.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.0/2.5YMT	MIC5335-PJYMT	PPJ	3.0V/2.5V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.0/2.6YMT	MIC5335-PKYMT	PPK	3.0V/2.6V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.0/2.8YMT	MIC5335-PMYMT	PPM	3.0V/2.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.0/2.85YMT	MIC5335-PNYMT	PPN	3.0V/2.85V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.0/3.0YMT	MIC5335-PPYMT	PPP	3.0V/3.0V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/1.5YMT	MIC5335-SFYMT	SPF	3.3V/1.5V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/1.8YMT	MIC5335-SGYMT	SPG	3.3V/1.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/2.5YMT	MIC5335-SJYMT	SPJ	3.3V/2.5V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/2.6YMT	MIC5335-SKYMT	SPK	3.3V/2.6V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/2.7YMT	MIC5335-SLYMT	SPL	3.3V/2.7V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/2.8YMT	MIC5335-SMYMT	SPM	3.3V/2.8V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/2.85YMT	MIC5335-SNYMT	SPN	3.3V/2.85V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/2.9YMT	MIC5335-SOYMT	SPO	3.3V/2.9V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/3.0YMT	MIC5335-SPYMT	SPP	3.3V/3.0V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/3.2YMT	MIC5335-SRYMT	SPR	3.3V/3.2V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®
MIC5335-3.3/3.3YMT	MIC5335-SSYMT	SPS	3.3V/3.3V	–40°C to +125°C	6-Pin 1.6x1.6 Thin MLF®

Note:

^{*} For other voltages available. Contact Micrel Marketing for details.

Pin Configuration

6-pin 1.6mm × 1.6mm Thin $\mathrm{MLF}^{^{\otimes}}$ Top View

Pin Description

Pin Number Thin MLF-6	Pin Name	Pin Function	
1	VIN	Supply Input.	
2	GND	Ground	
3	EN2	Enable Input (regulator 2). Active High Input. Logic High = On; Logic Low = Off; Do not leave floating.	
4	EN1	Enable Input (regulator 1). Active High Input. Logic High = On; Logic Low = Off; Do not leave floating.	
5	VOUT2	Regulator Output – LDO2	
6	VOUT1	Regulator Output – LDO1	
HS Pad	EPAD	Exposed heatsink pad connected to ground internally.	

Absolute Maximum Ratings(1)

Supply Voltage (V _{IN})	0V to +6V
Enable Input Voltage (V _{EN})	0V to +6V
Power Dissipation	.Internally Limited (3)
Lead Temperature (soldering, 3sec	c260°C
Storage Temperature (T _S)	65°C to +150°C
Storage Temperature (T _S) ESD Rating ⁽⁴⁾	2kV

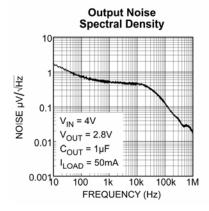
Operating Ratings⁽²⁾

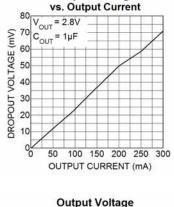
Supply voltage (V _{IN})	+2.3V to +5.5V
Enable Input Voltage (V _{EN})	0V to V _{IN}
Junction Temperature	40°C to +125°C
Junction Thermal Resistance	
Thin MLF $^{\$}$ -6 ($ heta_{JA}$)	100°C/W

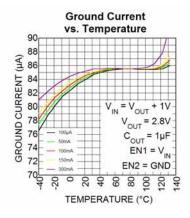
Electrical Characteristics⁽⁵⁾

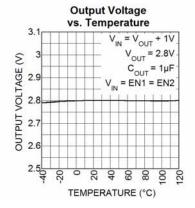
 V_{IN} = EN1 = EN2 = V_{OUT} + 1.0V; higher of the two regulator outputs, $I_{OUTLDO1}$ = $I_{OUTLDO2}$ = 100 μ A; C_{OUT1} = C_{OUT2} = 1 μ F; T_J = 25°C, **bold** values indicate -40°C $\leq T_J \leq +125$ °C, unless noted.

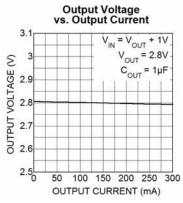
Parameter	Conditions	Min	Тур	Max	Units
Output Voltage Accuracy	Variation from nominal V _{OUT}	-2.0		+2.0	%
	Variation from nominal V _{OUT} ; –40°C to +125°C	-3.0		+3.0	%
Line Regulation	$V_{IN} = V_{OUT} + 1V \text{ to } 5.5V; I_{OUT} = 100 \mu\text{A}$		0.02	0.3 0.6	%/V %/V
Load Regulation	I _{OUT} = 100μA to 300mA		0.3	2.0	%
Dropout Voltage (Note 6)	I _{OUT} = 100μA		0.1		mV
	I _{OUT} = 100mA		25	75	mV
	I _{OUT} = 150mA		35	100	mV
	I _{OUT} = 300mA		75	200	mV
Ground Current	EN1 = High; EN2 = Low; I _{OUT} = 100μA to 300mA		90	125	μA
	EN1 = Low; EN2 = High; I _{OUT} = 100μA to 300mA		90	125	μΑ
	EN1 = EN2 = High; I _{OUT1} = 300mA, I _{OUT2} = 300mA		150	220	μΑ
Ground Current in Shutdown	EN1 = EN2 = 0V		0.01	2	μA
Ripple Rejection	f = 1kHz; C _{OUT} = 1.0μF		65		dB
	$f = 20kHz; C_{OUT} = 1.0\mu F$		45		
Current Limit	V _{OUT} = 0V	340	550	950	mA
Output Voltage Noise	C _{OUT} = 1.0μF; 10Hz to 100kHz		90		μV_{RMS}
Enable Inputs (EN1 / EN2)					
Enable Input Voltage	Logic Low			0.2	V
	Logic High	1.1			V
Enable Input Current	V _{IL} ≤ 0.2V		0.01	1	μΑ
	V _{IH} ≥ 1.0V		0.01	1	μΑ
Turn-on Time (See Timing D	iagram)	1	•		•
Turn-on Time (LDO1 and 2)	C _{OUT} = 1.0μF		30	100	μs

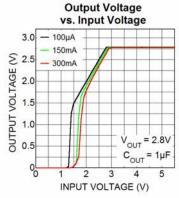

Notes:

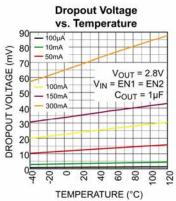

- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- 3. The maximum allowable power dissipation of any T_A (ambient temperature) is P_{D(max)} = (T_{J(max)} T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
- 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.
- 5. Specification for packaged product only.
- 6. Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal V_{OUT}. For outputs below 2.3V, the dropout voltage is the input-to-output differential with the minimum input voltage 2.3V.

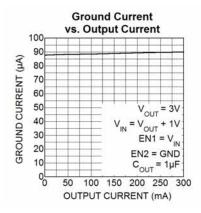

May 2008 5 M9999-051508

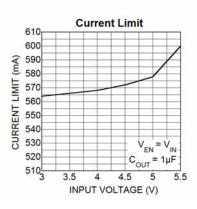

Dropout Voltage

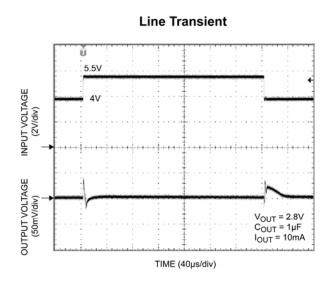

Typical Characteristics

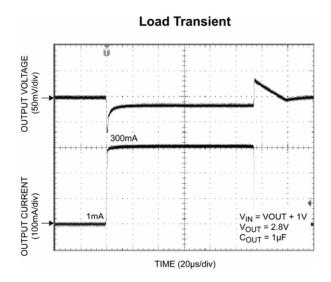


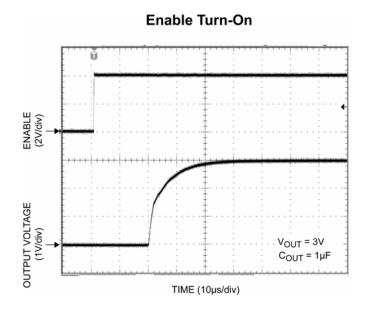












Functional Characteristics

Applications Information

Enable/Shutdown

The MIC5335 comes with dual active-high enable pins that allow each regulator to be enabled independently. Forcing the enable pin low disables the regulator and sends it into a "zero" off-mode-current state. In this state, current consumed by the regulator goes nearly to zero. Forcing the enable pin high enables the output voltage. The active-high enable pin uses CMOS technology and the enable pin cannot be left floating; a floating enable pin may cause an indeterminate state on the output.

Input Capacitor

The MIC5335 is a high-performance, high bandwidth device. Therefore, it requires a well-bypassed input supply for optimal performance. A 1µF capacitor is required from the input-to-ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit.

Output Capacitor

The MIC5335 requires an output capacitor of $1\mu F$ or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High ESR capacitors may cause high frequency oscillation. The output capacitor can be increased, but performance has been optimized for a $1\mu F$ ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors on the market. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

No-Load Stability

Unlike many other voltage regulators, the MIC5335 will remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications.

Thermal Considerations

The MIC5335 is designed to provide 300mA of continuous current for both outputs in a very small package. Maximum ambient operating temperature can be calculated based upon the output current and the voltage drop across the part. Given that the input voltage is 3.3V, the output voltage is 2.8V for V_{OUT1} , 2.5V for V_{OUT2} and the output current = 300mA. The actual power dissipation of the regulator circuit can be determined using the equation:

$$\begin{split} P_D &= (V_{\text{IN}} - V_{\text{OUT1}}) \; I_{\text{OUT1}} + (V_{\text{IN}} - V_{\text{OUT2}}) \; I_{\text{OUT2}} + V_{\text{IN}} \; I_{\text{GND}} \\ \text{Because this device is CMOS and the ground current is typically <100 μA over the load range, the power dissipation contributed by the ground current is < 1% and can be ignored for this calculation. \end{split}$$

$$P_D = (3.3V - 2.8V) \times 300\text{mA} + (3.3V - 2.5V) \times 300\text{mA}$$

 $P_D = 0.39W$

To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

$$P_{D(max)} = \left(\frac{T_{J(max)} - T_{A}}{\theta_{JA}}\right)$$

 $T_{J(max)}$ = 125°C, the maximum junction temperature of the die θ_{JA} thermal resistance = 100°C/W.

The table that follows shows junction-to-ambient thermal resistance for the MIC5335 in the Thin MLF® package.

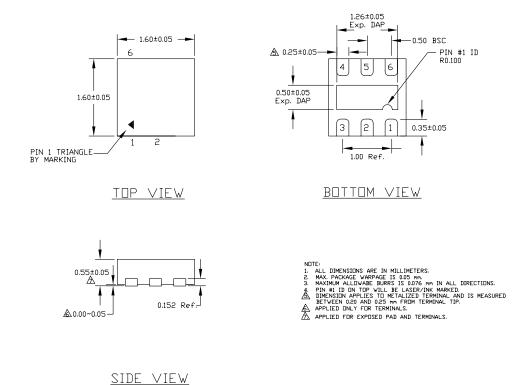
Package	θ _{JA} Recommended Minimum Footprint	€Jc	
6-Pin 1.6 X1.6 Thin MLF™	100°C/W	2°C/W	

Thermal Resistance

Substituting P_D for $P_{D(max)}$ and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The junction-to-ambient thermal resistance for the minimum footprint is 100°C/W.

The maximum power dissipation must not be exceeded for proper operation.

For example, when operating the MIC5335-MFYML at an input voltage of 3.3V and 300mA loads on each output with a minimum footprint layout, the maximum ambient operating temperature T_A can be determined as follows:


$$0.39W = (125^{\circ}C - T_A)/(100^{\circ}C/W)$$

 $T_A=86$ °C

Therefore, a 2.8V/2.5V application with 300mA at each output current can accept an ambient operating temperature of 86°C in a 1.6mm x 1.6mm Thin MLF® package. For a full discussion of heat sinking and

thermal effects on voltage regulators, refer to the "Regulator Thermals" subsection of *Micrel's Designing with Low-Dropout Voltage Regulators* handbook. This information can be found on Micrel's website at: http://www.micrel.com/_PDF/other/LDOBk_ds.pdf

Package Information

6-Pin 1.6mm x 1.6mm Thin MLF® (MT)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Inc.