

32-bit ARM® Cortex®-M3 FM3 Microcontroller

The MB9A310A Series are a highly integrated 32-bit microcontroller that target for high-performance and cost-sensitive embedded control applications.

The MB9A310A Series are based on the ARM Cortex-M3 Processor and on-chip Flash memory and SRAM, and peripheral functions, including Motor Control Timers, ADCs and Communication Interfaces (USB, UART, CSIO, I²C, LIN).

The products which are described in this datasheet are placed into TYPE1 product categories in "FM3 Family Peripheral Manual".

Features

32-bit ARM® Cortex®-M3 Core

- ■Processor version: r2p1
- ■Up to 40 MHz Frequency Operation
- ■Integrated Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 48 peripheral interrupts and 16 priority levels
- ■24-bit System timer (Sys Tick): System timer for OS task management

On-chip Memories

[Flash memory]

- ■Up to 512 Kbyte
- ■Read cycle: 0 wait-cycle
- ■Security function for code protection

[SRAM]

This Series contain a total of up to 32 Kbyte on-chip SRAM. On-chip SRAM is composed of two independent SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code bus and D-code bus of Cortex-M3 core. SRAM1 is connected to System bus.

■ SRAM0: Up to 16 Kbytes ■ SRAM1: Up to 16 Kbytes

USB Interface

USB interface is composed of Device and Host. PLL for USB is built-in, USB clock can be generated by multiplication of Main clock.

[USB device]

- ■USB2.0 Full-Speed supported
- ■Max 6 EndPoint supported
 - □ EndPoint 0 is control transfer
 - □ EndPoint 1,2 can be selected Bulk-transfer, Interrupt-transfer or Isochronous-transfer
 - □ EndPoint 3,4 and 5 can be selected Bulk-transfer, Interrupt-transfer
 - □ EndPoint1-5 is comprised Double Buffer
 - · Endpoint 0, 2 to 5: 64bytes
 - · Endpoint 1: 256bytes

[USB host]

- ■USB2.0 Full/Low speed supported
- ■Bulk-transfer, interrupt-transfer and Isochronous-transfer support
- ■USB Device connected/dis-connected automatically detect
- ■IN/OUT token handshake packet automatically
- ■Max 256-byte packet-length supported
- ■Wake-up function supported

Multi-function Serial Interface (Max eight channels)

- ■4 channels with 16 steps × 9bit FIFO (ch.4-ch.7), 4 channels without FIFO (ch.0-ch.3)
- Operation mode is selectable from the followings for each channel.
 - □ UART
- □ CSIO
- □ LIN
- □ I²C

[UART]

- ■Full duplex double buffer
- Selection with or without parity supported
- ■Built-in dedicated baud rate generator
- ■External clock available as a serial clock
- Hardware Flow control: Automatically control the transmission by CTS/RTS (only ch.4)*
- Various error detection functions available (parity errors, framing errors, and overrun errors)
 - *: MB9AF311LA, F312LA and F314LA do not support Hardware Flow control

[CSIO]

- ■Full-duplex double buffer
- ■Built-in dedicated baud rate generator
- ■Overrun error detection function available

[LIN]

- ■LIN protocol Rev.2.1 supported
- ■Full-duplex double buffer
- ■Master/Slave mode supported
- ■LIN break field generation (can be changed 13-16bit length)
- ■LIN break delimiter generation (can be changed 1-4bit length)
- Various error detection functions available (parity errors, framing errors, and overrun errors)

[I²C]

Standard-mode (Max 100kbps) / Fast-mode (Max 400kbps) supported

External Bus Interface*

- ■Supports SRAM, NOR Flash device
- ■Up to 8 chip selects
- ■8-/16-bit Data width
- ■Up to 25-bit Address bit
- ■Maximum area size : Up to 256 Mbytes
- Supports Address/Data multiplex
- ■Supports external RDY function
 - *: MB9AF311LA, F312LA and F314LA do not support External Bus Interface

DMA Controller (8channels)

The DMA Controller has an independent bus from the CPU, so CPU and DMA Controller can process simultaneously.

- ■8 independently configured and operated channels
- ■Transfer can be started by software or request from the built-in peripherals
- ■Transfer address area: 32 bit (4 Gbytes)
- Transfer mode: Block transfer/Burst transfer/Demand transfer
- ■Transfer data type: byte/half-word/word

■ Transfer block count: 1 to 16
■ Number of transfers: 1 to 65536

A/D Converter (Max 16channels)

[12-bit A/D Converter]

- Successive Approximation type
- ■Built-in 3units*
- ■Conversion time: 1.0 µs@5 V
- Priority conversion available (priority at 2levels)
- ■Scanning conversion mode
- ■Built-in FIFO for conversion data storage (for SCAN conversion: 16steps, for Priority conversion: 4 steps)
 *: MB9AF311LA, F312LA, F314LA built-in 2units

Base Timer (Max 8channels)

Operation mode is selectable from the followings for each channel.

- ■16-bit PWM timer
- ■16-bit PPG timer
- ■16-/32-bit reload timer
- ■16-/32-bit PWC timer

Multi-function Timer (Max 2units)

The Multi-function timer is composed of the following blocks.

- ■16-bit free-run timer × 3 ch/unit
- ■Input capture × 4 ch/unit
- ■Output compare × 6 ch/unit
- ■A/D activation compare × 3 ch/unit
- ■Waveform generator × 3 ch/unit
- ■16-bit PPG timer × 3 ch/unit

The following function can be used to achieve the motor control.

- ■PWM signal output function
- ■DC chopper waveform output function
- Dead time function
- ■Input capture function
- ■A/D converter activate function
- ■DTIF (Motor emergency stop) interrupt function

Quadrature Position/Revolution Counter (QPRC) (Max 2units)

The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. Moreover, it is possible to use up/down counter.

- ■The detection edge of the three external event input pins AIN, BIN and ZIN is configurable.
- ■16-bit position counter
- ■16-bit revolution counter
- ■Two 16-bit compare registers

Dual Timer (32-/16-bit Down Counter)

The Dual Timer consists of two programmable 32-/16-bit down counters.

Operation mode is selectable from the followings for each timer channel.

- ■Free-running
- ■Periodic (=Reload)
- ■One-shot

Watch Counter

The Watch counter is used for wake up from Low-Power Consumption mode.

Interval timer: up to 64 s (Max) @ Sub Clock: 32.768 kHz

Watch dog Timer (2channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs, a "Hardware" watchdog and a, "Software" watchdog.

The "Hardware" watchdog timer is clocked by the built-in low speed CR oscillator. Therefore, the "Hardware" watchdog is active in any low-power consumption modes except STOP mode.

External Interrupt Controller Unit

- ■Up to 16 external interrupt input pins.
- ■Include one non-maskable interrupt (NMI) input pin.

General-Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for external bus or peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to.

- ■Capable of pull-up control per pin
- ■Capable of reading pin level directly
- ■Built-in the port relocate function
- ■Up to 83 fast General Purpose I/O Ports @ 100pin Package
- Some ports are 5V tolerant I/O (MB9AF315MA/NA, MB9AF316MA/NA only)

Please see "Pin Description" to confirm the corresponding pins.

CRC (Cyclic Redundancy Check) Accelerator

The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage.

■CCITT CRC16 Generator Polynomial: 0x1021

■IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7

CCITT CRC16 and IEEE-802.3 CRC32 are supported.

Clock and Reset

[Clocks]

Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).

■ Main Clock: 4 MHz to 48 MHz

■Sub Clock: 32.768 kHz

■Built-in high-speed CR Clock: 4 MHz
■Built-in low-speed CR Clock: 100 kHz

■Main PLL Clock

[Resets]

- ■Reset requests from INITX pins
- ■Power-on reset
- ■Software reset
- ■Watchdog timers reset
- ■Low-voltage detector reset
- ■Clock supervisor reset

Clock Super Visor (CSV)

Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.

- External clock failure (clock stop) is detected, reset is asserted.
- ■External frequency anomaly is detected, interrupt or reset is asserted.

Low-Voltage Detector (LVD)

This Series include 2-stage monitoring of voltage on the VCC. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset.

■LVD1: error reporting via interrupt

■LVD2: auto-reset operation

Low-Power Consumption Mode

Three Low-Power Consumption modes supported.

- **■**SLEEP
- **■**TIMER
- **■**STOP

Debug

- Serial Wire JTAG Debug Port (SWJ-DP)
- ■Embedded Trace Macrocells (ETM).*
 - *: MB9AF311LA/MA, F312LA/MA, F314LA/MA, F315MA and F316MA support only SWJ-DP.

Power Supply

- Two Power Supplies
- ■VCC = 2.7 V to 5.5 V: Correspond to the wide range

voltage.

■USBVCC = 3.0 V to 3.6 V: for USB I/O power supply,

when USB is used.

= 2.7 V to 5.5 V: when GPIO is used.

Contents

1. Product Lineup	7
2. Packages	8
3. Pin Assignment	9
4. List of Pin Functions	15
5. I/O Circuit Type	40
6. Handling Precautions	45
6.1 Precautions for Product Design	45
6.2 Precautions for Package Mounting	46
6.3 Precautions for Use Environment	47
7. Handling Devices	48
8. Block Diagram	50
9. Memory Size	51
10. Memory Map	51
11. Pin Status in Each CPU State	55
12. Electrical Characteristics	59
12.1 Absolute Maximum Ratings	59
12.2 Recommended Operating Conditions	61
12.3 DC Characteristics	62
12.3.1 Current rating	62
12.3.2 Pin Characteristics	64
12.4 AC Characteristics	65
12.4.1 Main Clock Input Characteristics	65
12.4.2 Sub Clock Input Characteristics	
12.4.3 Built-in CR Oscillation Characteristics	
12.4.4 Operating Conditions of Main PLL and USB PLL (In the case of using main clock for input clock of PLL)	67
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in high speed CR for the input clock	
of the main PLL)	67
12.4.6 Reset Input Characteristics	68
12.4.7 Power-on Reset Timing	68
12.4.8 External Bus Timing	69
12.4.9 Base Timer Input Timing	76
12.4.10 CSIO/UART Timing	77
12.4.11 External Input Timing	
12.4.12 Quadrature Position/Revolution Counter timing	
12.4.13 I ² C Timing	88
12.4.14 ETM timing	89
12.4.15 JTAG Timing	90
12.5 12-bit A/D Converter	91
12.6 USB characteristics	94
12.7 Low-voltage Detection Characteristics	98
12.8 Flash Memory Write/Erase Characteristics	
12.8.1 Write / Erase time	
12.8.2 Erase/Write cycles and data hold time	
12.9 Return Time from Low-Power Consumption Mode	
12.9.1 Return Factor: Interrupt	
12.9.2 Return Factor: Reset	
13. Ordering Information	104

MB9A310A Series

14. Pa	ackage Dimensions	
	rrata	
15.1	Part Numbers Affected	112
15.2	Qualification Status	112
15.3	Errata Summary	112
	ajor Changes	
Docui	ment History	115
Sales	s, Solutions, and Legal Information	116

1. Product Lineup

Memory Size

Product name	MB9AF311LA/MA/NA	MB9AF312LA/MA/NA	MB9AF314LA/MA/NA
On-chip Flash memory	64 Kbytes	128 Kbytes	256 Kbytes
On-chip SRAM	16 Kbytes	16 Kbytes	32 Kbytes

Product name	MB9AF315MA/NA	MB9AF316MA/NA
On-chip Flash memory	384 Kbytes	512 Kbytes
On-chip SRAM	32 Kbytes	32 Kbytes

Function

	Product name)	MB9AF311LA MB9AF312LA MB9AF314LA	MB9AF312LA MB9AF314MA MB9AF					
Pin count			64	80	100				
CPU				Cortex-M3					
CPU	Freq.		40 MHz						
Power su	pply voltage range			2.7 V to 5.5 V					
USB2.0 in	nterface (Device/Host	t)		1 ch.					
DMAC				8 ch.					
External I	Bus Interface		-	Addr:21-bit (Max) Data:8-bit CS:4 (Max) Support: SRAM, NOR Flash	Addr:25-bit (Max) Data:8-/16-bit CS:8 (Max) Support: SRAM, NOR Flash				
(UART/C	ction Serial Interface SIO/LIN/I ² C)		8 ch. (Max) ch.4 to ch.7: FIFO (16 steps x 9-bit) ch.0 to ch.3: No FIFO						
Base Tim (PWC/Re	er eload timer/PWM/PPG	S)	8 ch. (Max)						
_	A/D activation compare	3 ch.							
MF-Timer	Input capture	4 ch.		2 units (Max)					
5	Free-run timer	3 ch.	1 unit						
¥	Output compare	6 ch.							
	Waveform generat		_						
	PPG	3 ch.							
QPRC				2 ch. (Max)					
Dual Time	er			1 unit					
Watch Co	ounter			1 unit					
CRC Acc				Yes					
Watchdoo				1 ch. (SW) + 1 ch. (HW)					
External I	nterrupts		8 pins (Max) + NMI × 1	11 pins (Max) + NMI × 1	16 pins (Max) + NMI × 1				
I/O ports			51 pins (Max)	66 pins (Max)	83 pins (Max)				
12-bit A/D converter			9 ch. (2 units)	12 ch. (3 units)	16 ch. (3 units)				
CSV (Clock Super Visor)				Yes					
LVD (Low	/-Voltage Detector)		2 ch.						
Built-in C	R High-sp			4 MHz					
D-1	Low-spe	eed	100 kHz						
Debug Function			SWJ-DP SWJ-DP/ETM						

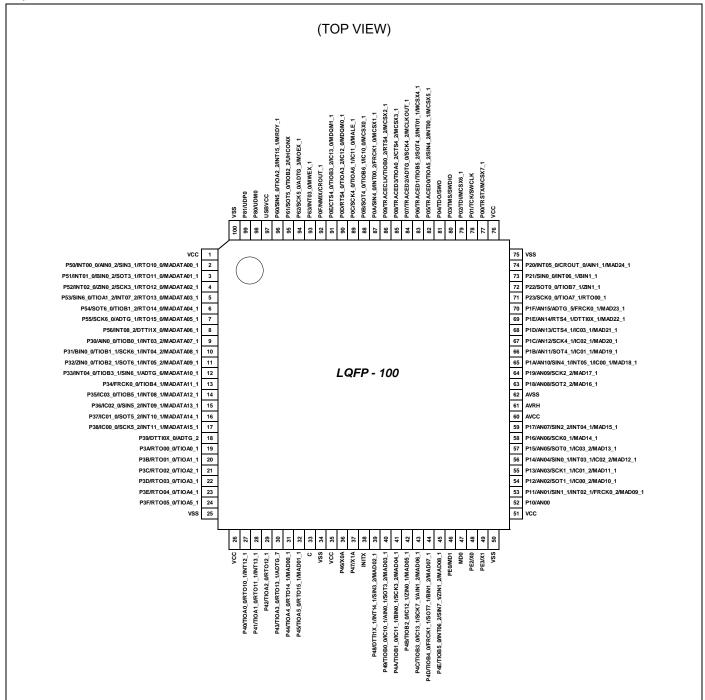
Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.
 It is necessary to use the port relocate function of the I/O port according to your function use.
 See "12. Electrical Characteristics 12.4. AC Characteristics 12.4.3. Built-in CR Oscillation Characteristics" for accuracy of built-in CR.

2. Packages

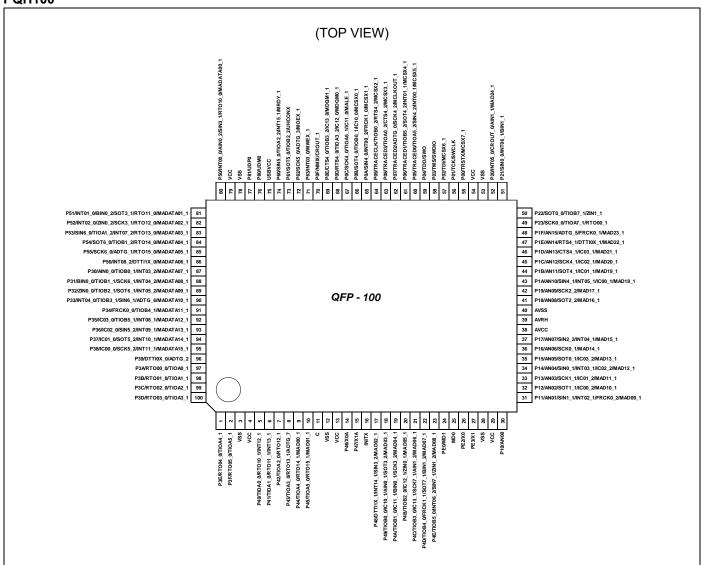
Product name Package	MB9AF311LA MB9AF312LA MB9AF314LA	MB9AF311MA MB9AF312MA MB9AF314MA MB9AF315MA MB9AF316MA	MB9AF311NA MB9AF312NA MB9AF314NA MB9AF315NA MB9AF316NA
LQFP: LQD064 (0.5 mm pitch)	0	-	-
LQFP: LQG064 (0.65 mm pitch)	O	-	-
QFN: VNC064 (0.5 mm pitch)	O	-	-
LQFP: LQH080 (0.5 mm pitch)	-	O	-
LQFP: LQI100 (0.5 mm pitch)	-	-	O
QFP : PQH100 (0.65 mm pitch)	-	-	O
BGA: LBC112 (0.8 mm pitch)	-	-	O*

Note:

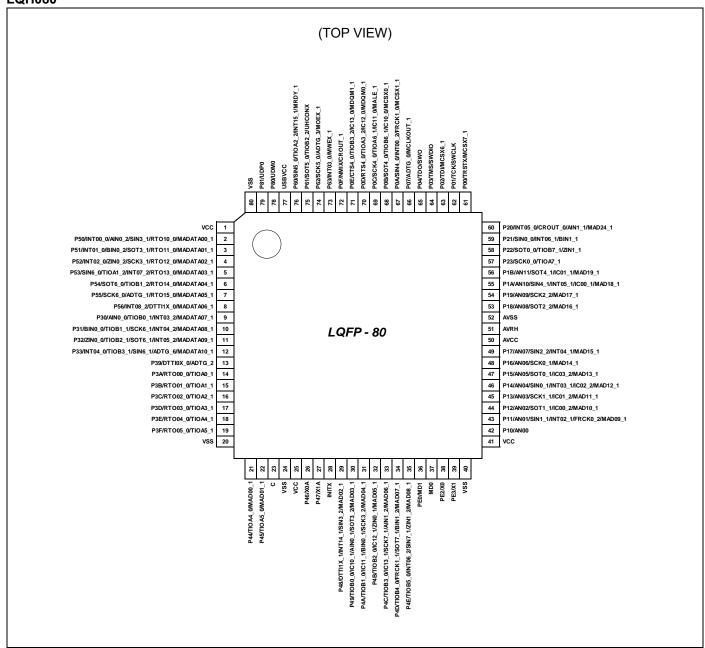

Refer to "14. Package Dimensions" for detailed information on each package.

O: Supported *: MB9AF315NA, MB9AF316NA are planning

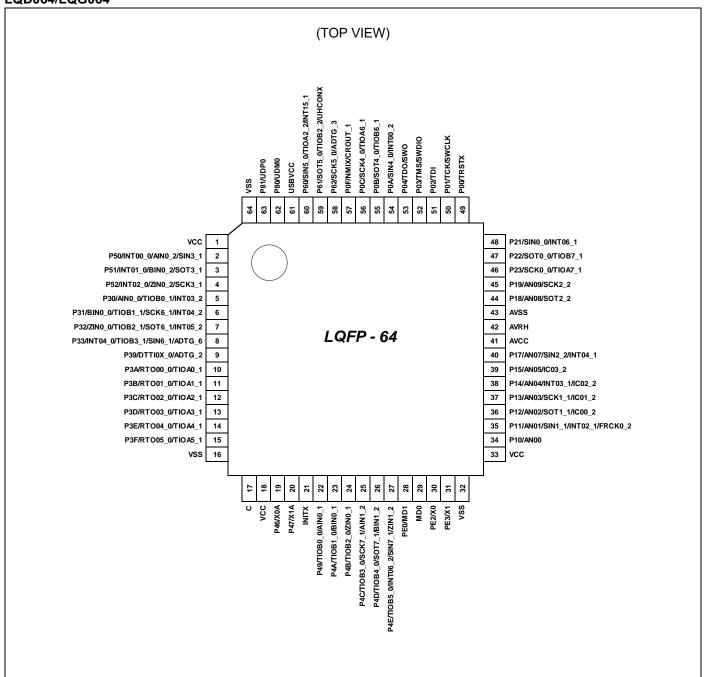
3. Pin Assignment


LQI100

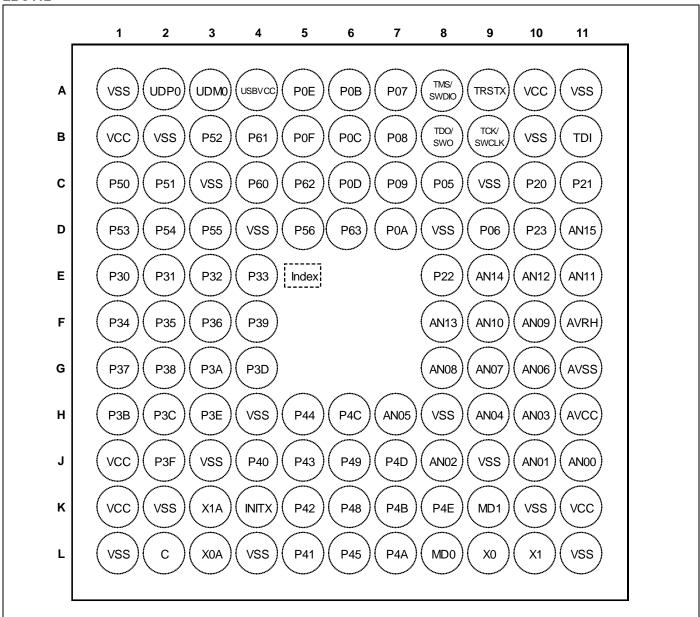
Note:


PQH100

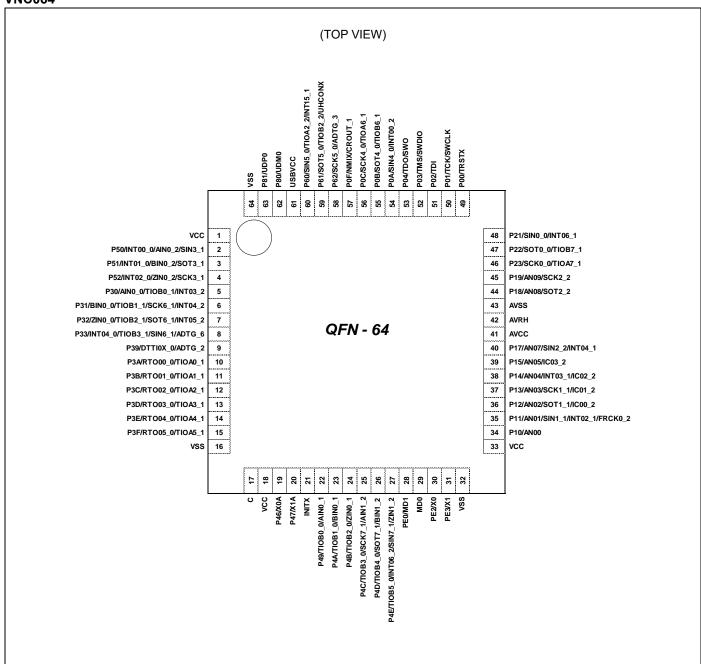
Note:


LQH080

Note:


LQD064/LQG064

Note:


LBC112

Note:

VNC064

Note:

4. List of Pin Functions

List of pin numbers

		Pin No		I/O circuit	Pin state		
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
1	79	B1	1	1	VCC	-	
					P50		
				2	INT00_0		
				2	AIN0_2		
2	80	C1	2		SIN3_1	E	Н
				-	RTO10_0 (PPG10_0)		
					MADATA00_1		
					P51		
					INT01_0		
				3	BIN0_2		
3	81	C2	3		SOT3_1 (SDA3_1)	E	н
					RTO11_0		
				-	(PPG10_0)		
				MADATA01_1			
	82 B:		4	4	P52		
					INT02_0	E	н
					ZIN0_2		
4		В3			SCK3_1 (SCL3_1)		
					RTO12_0		
				-	(PPG12_0)		
					MADATA02_1		
					P53		
					SIN6_0		
					TIOA1_2		
5	83	D1	5	-	INT07_2	E	Н
					RTO13_0 (PPG12_0)		
					MADATA03_1		
					P54		
					SOT6_0		
					(SDA6_0)		
6	84	D2	6	-	TIOB1_2	E	1
					RTO14_0		
				(PPG14_0)			
					MADATA04_1		

		Pin No		I/O circuit	Pin state												
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type										
					P55 SCK6_0												
7	85	D3	7	-	(SCL6_0) ADTG_1	E	1										
					RTO15_0 (PPG14_0)												
					MADATA05_1												
					P56												
8	86	D5	8	_	INT08_2	d E	н										
Ü					DTTI1X_0	_	' '										
					MADATA06_1												
					P30												
				5	AIN0_0												
9	87	E1	9		TIOB0_1	E	Н										
					INT03_2												
				-	MADATA07_1												
		E2 10		P31													
	88		10	6	BIN0_0	E	н										
					TIOB1_1												
10				0	SCK6_1												
															(SCL6_1)		
					INT04_2												
				-	MADATA08_1												
					P32												
					ZIN0_0	7											
									.		7	TIOB2_1	7				
11	89	E3	11		SOT6_1 (SDA6_1)	E	Н										
					INT05_2	7											
				-	MADATA09_1												
					P33												
					INT04_0												
				8	TIOB3_1	1_											
12	90	E4	12		SIN6_1	- E	Н										
					ADTG_6	1											
				-	MADATA10_1	7											
					P34	1											
					FRCK0_0	E E	1										
13	91	F1	-	-	TIOB4_1												
					MADATA11_1	-											
					ואיטהטיטיו"ן												

		Pin No		I/O circuit	Pin state																
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type														
					P35																
					IC03_0		н														
14	92	F2	-	-	TIOB5_1	E															
					INT08_1																
					MADATA12_1																
					P36																
					IC02_0																
15	93	F3	-	-	SIN5_2	E	Н														
					INT09_1																
					MADATA13_1																
					P37																
					IC01_0																
16	94	G1	_		SOT5_2	٦_	Н														
10	94	Gi	_	-	(SDA5_2)	E -	''														
					INT10_1																
					MADATA14_1																
					P38	E															
	95	G2	-	-	IC00_0		н														
17					SCK5_2 (SCL5_2)																
					INT11_1																
					MADATA15_1																
				 	P39	+															
18	96	F4	13	9	DTTI0X_0	E	1														
					ADTG_2	┪¯															
					P3A																
40	97	G3	14	10	RTO00_0	1,															
19	97	GS	14	10	(PPG00_0)	G	1														
					TIOA0_1																
					P3B																
20	98	H1	15	11	RTO01_0	G	1														
					(PPG00_0)	_															
					TIOA1_1																
					P3C	4															
21	99	H2	16	12	RTO02_0 (PPG02_0)	G	1														
					TIOA2_1	4															
					P3D																
					RTO03_0	_															
22	100	0 G4	17	13	(PPG02_0)	G	1														
					TIOA3_1																
-	-	B2	-	-	VSS	-	l														
<u> </u>	1				1																

		Pin No		I/O circuit	Pin state							
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type					
					P3E							
23	1	Н3	18	14	RTO04_0 (PPG04_0)	G	1					
					TIOA4_1	_						
					P3F							
			1.0	1	RTO05_0	\dashv						
24	2	J2	19	15	(PPG04_0)	G	1					
					TIOA5_1							
25	3	L1	20	16	VSS	-						
26	4	J1	-	-	VCC	-						
					P40							
					TIOA0_0							
27	5	J4	-	-	RTO10_1 (PPG10_1)	G	H					
					INT12_1							
					P41							
					TIOA1_0		н					
28	6	L5	-	-	RTO11_1 (PPG10_1)	G						
					INT13_1							
		7 K5			P42	G	1					
20	7		-	-	TIOA2_0							
29	7				RTO12_1							
					(PPG12_1)							
					P43							
					TIOA3_0							
30	8	J5	-	-	RTO13_1	G	1					
					(PPG12_1)							
				1	ADTG_7 P44							
			21		TIOA4_0							
31	9	H5	21	_	MAD00_1	G	1					
•				+	RTO14_1	\dashv						
			-		(PPG14_1)							
					P45							
			22		TIOA5_0		1.					
32	10	L6			MAD01_1	G	1					
			-		RTO15_1 (PPG14_1)							
-	-	K2	-	-	VSS	-						
-	-	J3	-	-	VSS	-						
-	-	H4	-	-	VSS	-						

		Pin No		I/O circuit	Pin state													
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type											
33	11	L2	23	17	С	-												
34	12	L4	24	-	VSS	-												
35	13	K1	25	18	VCC	-												
36	14	L3	26	19	P46	D	М											
30	14	Lo	20	19	X0A		IVI											
37	15	K3	27	20	P47	D	N											
31	15	N3	21	20	X1A		IN											
38	16	K4	28	21	INITX	В	С											
					P48													
					DTTI1X_1													
39	17	K6	29	-	INT14_1	E	Н											
					SIN3_2													
					MAD02_1													
	18				P49	E												
		J6	30	22	TIOB0_0		I											
					AIN0_1													
40					IC10_1													
															-	SOT3_2 (SDA3_2)		
										MAD03_1								
					P4A													
				23	TIOB1_0													
					BIN0_1													
41	19	L7	31		IC11_1	E	1											
			-	SCK3_2 (SCL3_2)														
					MAD04_1													
					P4B													
				24	TIOB2 0													
42	20	K7	32		ZIN0_1	E	1											
					IC12_1													
				-	MAD05_1													
					P4C													
					TIOB3_0	\dashv												
				25	SCK7_1	E / I*												
43	21	H6	33		(SCL7_1)		1											
		110			AIN1_2													
				-	IC13_1													
					MAD06_1													

		Pin No		I/O circuit	Pin state		
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
					P4D		
					TIOB4_0		
				26	SOT7_1		
44	22	J7	34		(SDA7_1)	E / I*	1
					BIN1_2		
				_	FRCK1_1		
					MAD07_1		
					P4E		
					TIOB5_0		
45	23	K8	35	27	INT06_2	E/I*	1
45	23	No	35		SIN7_1	= -/-	1
					ZIN1_2		
				-	MAD08_1		
40	24	1/0	20	20	MD1	_ с	Р
46	24	K9	36	28	PE0		
47	25	L8	37	29	MD0	J	D
40	26	L9	38	20	X0	_	Α
48				30	PE2	A	A
40	0.7	1.40	00	0.4	X1		В
49	27	L10	39	31	PE3	A	
50	28	L11	40	32	VSS	-	1
51	29	K11	41	33	VCC	-	
F0	20	144	40	24	P10	F	K
52	30	J11	42	34	AN00		K
					P11		
					AN01		
			1.0	35	SIN1_1		
53	31	J10	43		INT02_1	─ F	L
					FRCK0_2		
				-	MAD09_1		
					P12		
					AN02		
F.4	20	10		36	SOT1_1	-	
54	32	J8	44		(SDA1_1)	F	K
					IC00_2		
				-	MAD10_1		
-	-	K10	-	-	VSS	-	•
-	-	J9	-	-	VSS	-	

		Pin No				I/O circuit	Pin state
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
					P13		
					AN03		
55	33	H10	45	37	SCK1_1	F	К
55	33	1110	40		(SCL1_1)	'	
					IC01_2		
				-	MAD11_1		
					P14		
				38	AN04		
56	34	H9	46		INT03_1	— F	L
30	34	113	10		IC02_2		_
				_	SIN0_1		
					MAD12_1		
					P15		
				39	AN05		
57	35	H7	47		IC03_2	F	К
O1		'''	"'		SOT0_1	 '	
				-	(SDA0_1)		
					MAD13_1		
					P16		
					AN06		
58	36	G10	48	-	SCK0_1 (SCL0_1)	F	K
					MAD14_1		
					P17		
				40	AN07		
59	37	G9	49	40	SIN2_2	F	L
					INT04_1		
				-	MAD15_1		
60	38	H11	50	41	AVCC	-	1
61	39	F11	51	42	AVRH	-	
62	40	G11	52	43	AVSS	-	
					P18		
				44	AN08		
63	41	G8	53	44	SOT2_2	F	K
					(SDA2_2)		
				-	MAD16_1		
					P19		
				45	AN09		
64	42	F10	54		SCK2_2 (SCL2_2)	F	K
				-	MAD17_1		
-	-	H8	-	-	VSS	-	

		Pin No				I/O oinevit	Din state
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	I/O circuit type	Pin state type
					P1A		
					AN10		
65	43	F9	55	_	SIN4_1	F	١,
65	43	F9	ວວ	-	INT05_1	7 -	L
					IC00_1		
					MAD18_1		
					P1B		
					AN11		
66	44	E11	56	_	SOT4_1	F	к
00	7-7		30		(SDA4_1)	<u>'</u>	
					IC01_1		
					MAD19_1		
					P1C		
					AN12		
67	45	E10	_	_	SCK4_1	F	К
					(SCL4_1)		
					IC02_1		
					MAD20_1		
					P1D		
					AN13	<u> </u>	
68	46	F8	-	-	CTS4_1	F	К
					IC03_1		
					MAD21_1		
					P1E		
	47				AN14	1_	
69	47	E9	-	-	RTS4_1	F	K
					DTTI0X_1	_	
					MAD22_1		
					P1F	1	
70	1.0				AN15	1_	
70	48	D11	-	-	ADTG_5	F	K
					FRCK0_1	_	
					MAD23_1		
-	-	B10	-	-	VSS	-	
-	-	C9	-	-	VSS	-	

		Pin No				I/O circuit	Pin state
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
					P23		
			57	46	SCK0_0		
71	49	D10	01	1-0	(SCL0_0)	E	1
					TIOA7_1	_ _	
			-	-	RTO00_1 (PPG00_1)		
					P22		
				47	SOTO_0		
72	50	E8	58		(SDA0_0)	E	1
					TIOB7_1		
				-	ZIN1_1		
1					P21		
73	51	C11	59	48	SINO_0	E	Н
					INT06_1	_	
				-	BIN1_1		
					P20	_	
_,					INT05_0	- _	
74	52	C10	60	-	CROUT_0	_ E	Н
					AIN1_1	_	
	50				MAD24_1		
75 76	53 54	A11	-	-	VSS	-	
76	54	A10	-	-	VCC P00	-	
77	- E	A9	64	49	TRSTX	- _	E
77	55	A9	61	-	MCSX7_1	E	^E
				-	P01		
78	56	В9	62	50	TCK	⊢ _E	E
70	30	B3	02	30	SWCLK		-
					P02		
79	57	B11	63	51	TDI	⊢ _E	E
75	37	511		-	MCSX6_1	╡	-
				1	P03		
80	58	A8	64	52	TMS	⊢ _E	E
					SWDIO	┪¯	_
				1	P04		
81	59	B8	65	53	TDO	E	E
					SWO		
					P05		1
					TRACED0		
					TIOA5_2	┦_	_
82	60	C8	-	-	SIN4_2	— E	F
					INT00_1		
					MCSX5_1		
-	-	D8	-	-	VSS	-	1
	1	1	1	1	1		

		Pin No	_	_		I/O circuit	Pin state
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
					P06		
					TRACED1		
					TIOB5_2		
83	61	D9	-	-	SOT4_2	E	F
					(SDA4_2)		
					INT01_1		
					MCSX4_1		
					P07		
			66		ADTG_0		
84	62	A7		_	MCLKOUT_1	E	G
0.1		"			TRACED2		
			-		SCK4_2		
					(SCL4_2)		
					P08		
					TRACED3		
85	63	B7	-	-	TIOA0_2	E	G
					CTS4_2		
					MCSX3_1		
					P09		
					TRACECLK		
86	64	C7	-	-	TIOB0_2	E	G
					RTS4_2		
					MCSX2_1		
					P0A		
				54	SIN4_0		
87	65	D7	67		INT00_2	E/I*	Н
					FRCK1_0		
				-	MCSX1_1		
					P0B		
				55	SOT4_0		
88	66	A6	68		(SDA4_0)	E / I*	1
00		7.0			TIOB6_1		'
				_	IC10_0		
					MCSX0_1		
					P0C		
00	67	DC.	60	56	SCK4_0 (SCL4_0)	F / I*	
89	67	B6	69		TIOA6_1	E/I*	1
					IC11_0		
				-	MALE_1		
-	-	D4	-	-	VSS	-	•
-	-	C3	-	-	VSS	-	
	1	1	1	1	1	<u> </u>	

		Pin No				I/O circuit	Pin state
LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	Pin name	type	type
					P0D		
					RTS4_0		
90	68	C6	70	-	TIOA3_2	E	1
					IC12_0		
					MDQM0_1		
					P0E		
					CTS4_0		
91	69	A5	71	-	TIOB3_2	E	1
					IC13_0		
					MDQM1_1		
					P0F		
92	70	B5	72	57	NMIX	E	J
					CROUT_1		
					P63		
93	71	D6	73	-	INT03_0	E	Н
					MWEX_1		
					P62		
				58	SCK5_0		
94	72	C5	74	56	(SCL5_0)	E	1
					ADTG_3		
				-	MOEX_1		
					P61		
95	73	B4	75	59	SOT5_0	E	1
					(SDA5_0)		
					TIOB2_2		
					P60		
				60	SIN5_0		
96	74	C4	76		TIOA2_2	E / I*	Н
					INT15_1		
				-	MRDY_1		
97	75	A4	77	61	USBVCC	-	
98	76	A3	78	62	P80	⊣ н	0
		1.0		ļ -	UDM0		
99	77	A2	79	63	P81	— н	0
					UDP0	.,	
100	78	A1	80	64	VSS	-	

^{*: 5}V tolerant I/O on MB9AF315MA/NA and MB9AF316MA/NA

List of pin functions

					Pin No		
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
ADC	ADTG_0		84	62	A7	66	-
	ADTG_1		7	85	D3	7	-
	ADTG_2		18	96	F4	13	9
	ADTG_3		94	72	C5	74	58
	ADTG_4	A/D converter external trigger input pin	-	-	-	-	-
	ADTG_5	- piii	70	48	D11	-	-
ADTG_6		12	90	E4	12	8	
	ADTG_7		30	8	J5	-	-
	ADTG_8		-	-	-	-	-
	AN00		52	30	J11	42	34
	AN01	7	53	31	J10	43	35
	AN02	1	54	32	J8	44	36
	AN03	7	55	33	H10	45	37
	AN04		56	34	H9	46	38
	AN05		57	35	H7	47	39
	AN06	7	58	36	G10	48	-
	AN07	A/D converter analog input pin.	59	37	G9	49	40
	AN08	ANxx describes ADC ch.xx.	63	41	G8	53	44
	AN09		64	42	F10	54	45
	AN10		65	43	F9	55	-
	AN11		66	44	E11	56	-
	AN12		67	45	E10	-	-
	AN13	7	68	46	F8	-	-
	AN14	7	69	47	E9	-	-
	AN15	7	70	48	D11	-	-
Base Timer	TIOA0_0		27	5	J4	-	-
0	TIOA0_1	Base timer ch.0 TIOA pin	19	97	G3	14	10
	TIOA0_2	7	85	63	B7	-	-
	TIOB0_0		40	18	J6	30	22
	TIOB0_1	Base timer ch.0 TIOB pin	9	87	E1	9	5
	TIOB0_2	7	86	64	C7	-	-
Base Timer	TIOA1_0		28	6	L5	-	-
1	TIOA1_1	Base timer ch.1 TIOA pin	20	98	H1	15	11
	TIOA1_2	1	5	83	D1	5	-
	TIOB1_0		41	19	L7	31	23
	TIOB1_1	Base timer ch.1 TIOB pin	10	88	E2	10	6
	TIOB1_2	1	6	84	D2	6	-

					Pin No		
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
Base Timer	TIOA2_0		29	7	K5	-	-
2	TIOA2_1	Base timer ch.2 TIOA pin	21	99	H2	16	12
	TIOA2_2		96	74	C4	76	60
	TIOB2_0		42	20	K7	32	24
	TIOB2_1	Base timer ch.2 TIOB pin	11	89	E3	11	7
	TIOB2_2	1	95	73	B4	75	59
Base Timer	TIOA3_0		30	8	J5	-	-
3	TIOA3_1	Base timer ch.3 TIOA pin	22	100	G4	17	13
	TIOA3_2		90	68	C6	70	-
	TIOB3_0		43	21	H6	33	25
	TIOB3_1	Base timer ch.3 TIOB pin	12	90	E4	12	8
	TIOB3_2	7	91	69	A5	71	-
Base Timer	TIOA4_0		31	9	H5	21	-
4	TIOA4_1	Base timer ch.4 TIOA pin	23	1	Н3	18	14
	TIOA4_2		-	-	-	=	-
	TIOB4_0		44	22	J7	34	26
	TIOB4_1	Base timer ch.4 TIOB pin	13	91	F1	-	-
	TIOB4_2	7	-	-	-	-	-
Base Timer	TIOA5_0		32	10	L6	22	-
5	TIOA5_1	Base timer ch.5 TIOA pin	24	2	J2	19	15
	TIOA5_2	7	82	60	C8	=	-
	TIOB5_0		45	23	K8	35	27
	TIOB5_1	Base timer ch.5 TIOB pin	14	92	F2	-	-
	TIOB5_2		83	61	D9	-	-
Base Timer	TIOA6_1	Base timer ch.6 TIOA pin	89	67	B6	69	56
6	TIOB6_1	Base timer ch.6 TIOB pin	88	66	A6	68	55
Base Timer	TIOA7_0		-	-	-	=	-
7	TIOA7_1	Base timer ch.7 TIOA pin	71	49	D10	57	46
	TIOA7_2		-	-	-	-	-
	TIOB7_0		-	-	-	-	-
	TIOB7_1	Base timer ch.7 TIOB pin	72	50	E8	58	47
	TIOB7_2		-	-	-	-	-

					Pin No		
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
Debugger	SWCLK	Serial wire debug interface clock input	78	56	В9	62	50
	SWDIO	Serial wire debug interface data input / output	80	58	A8	64	52
	SWO	Serial wire viewer output	81	59	B8	65	53
	TCK	JTAG test clock input	78	56	B9	62	50
	TDI	JTAG test data input	79	57	B11	63	51
	TDO	JTAG debug data output	81	59	B8	65	53
	TMS	JTAG test mode state input/output	80	58	A8	64	52
	TRACECLK	Trace CLK output of ETM	86	64	C7	-	-
	TRACED0		82	60	C8	-	-
	TRACED1	Trace data cutout of CTM	83	61	D9	-	-
	TRACED2	Trace data output of ETM	84	62	A7	-	-
	TRACED3		85	63	B7	-	-
	TRSTX	JTAG test reset Input	77	55	A9	61	49
External	MAD00_1		31	9	H5	21	-
Bus	MAD01_1]	32	10	L6	22	-
	MAD02_1	7	39	17	K6	29	-
	MAD03_1	7	40	18	J6	30	-
	MAD04_1	7	41	19	L7	31	-
	MAD05_1	7	42	20	K7	32	-
	MAD06_1		43	21	H6	33	-
	MAD07_1		44	22	J7	34	-
	MAD08_1	7	45	23	K8	35	-
	MAD09_1	7	53	31	J10	43	-
	MAD10_1	7	54	32	J8	44	-
	MAD11_1	7	55	33	H10	45	-
	MAD12_1	External bus interface address bus	56	34	H9	46	-
	MAD13_1		57	35	H7	47	-
	MAD14_1		58	36	G10	48	-
	MAD15_1		59	37	G9	49	-
	MAD16_1	1	63	41	G8	53	-
	MAD17_1	1	64	42	F10	54	-
	MAD18_1	1	65	43	F9	55	-
	MAD19_1	1	66	44	E11	56	-
	MAD20_1	1	67	45	E10	-	-
	MAD21_1	1	68	46	F8	-	-
	MAD22_1	1	69	47	E9	-	-
	MAD23_1	1	70	48	D11	-	-
	MAD24_1	1	74	52	C10	60	-

					Pin No		
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
External	MCSX0_1		88	66	A6	68	-
Bus	MCSX1_1		87	65	D7	67	-
	MCSX2_1		86	64	C7	-	-
	MCSX3_1	External bus interface chip select	85	63	B7	-	-
	MCSX4_1	output pin	83	61	D9	-	-
	MCSX5_1		82	60	C8	-	-
MCSX	MCSX6_1		79	57	B11	63	-
	MCSX7_1		77	55	A9	61	-
MDQM0_1	External bus interface byte mask	90	68	C6	70	-	
	MDQM1_1	signal output	91	69	A5	71	-
	MOEX_1	External bus interface read enable signal for SRAM	94	72	C5	74	-
	MWEX_1	External bus interface write enable signal for SRAM	93	71	D6	73	-
	MADATA00_1		2	80	C1	2	-
	MADATA01_1		3	81	C2	3	-
	MADATA02_1		4	82	B3	4	-
	MADATA03_1		5	83	D1	5	-
	MADATA04_1		6	84	D2	6	-
	MADATA05_1		7	85	D3	7	-
	MADATA06_1		8	86	D5	8	-
	MADATA07_1	External bus interface data bus	9	87	E1	9	-
	MADATA08_1	External bus interface data bus	10	88	E2	10	-
	MADATA09_1		11	89	E3	11	-
	MADATA10_1		12	90	E4	12	-
	MADATA11_1		13	91	F1	-	-
	MADATA12_1		14	92	F2	-	-
	MADATA13_1		15	93	F3	-	-
	MADATA14_1		16	94	G1	-	-
	MADATA15_1		17	95	G2	-	-
	MALE_1	Address Latch enable signal for multiplex	89	67	В6	69	-
	MRDY_1	External RDY input signal	96	74	C4	76	-
	MCLKOUT_1	External bus clock output	84	62	A7	66	-

					Pin No		
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
External	INT00_0		2	80	C1	2	2
Interrupt	INT00_1	External interrupt request 00	82	60	C8	-	-
	INT00_2	input pin	87	65	D7	67	54
	INT01 0	External interrupt request 01	3	81	C2	3	3
	INT01_1	input pin	83	61	D9	-	-
	INT02_0	External interrupt request 02	4	82	В3	4	4
	INT02 1	input pin	53	31	J10	43	35
	INT03 0		93	71	D6	73	_
	INT03 1	External interrupt request 03	56	34	H9	46	38
	INT03_2	input pin	9	87	E1	9	5
	INT04_0		12	90	E4	12	8
	INT04_0	External interrupt request 04	59	37	G9	49	40
	INT04_1	input pin	10	88	E2	10	6
							-
	INT05_0	External interrupt request 05	74	52	C10	60	
	INT05_1	input pin	65	43	F9	55	-
	INT05_2		11	89	E3	11	7
	INT06_1	External interrupt request 06	73	51	C11	59	48
	INT06_2	input pin	45	23	K8	35	27
	INT07_2	External interrupt request 07 input pin	5	83	D1	5	-
	INT08_1	External interrupt request 08	14	92	F2	-	-
	INT08_2	input pin	8	86	D5	8	-
	INT09_1	External interrupt request 09 input pin	15	93	F3	-	-
	INT10_1	External interrupt request 10 input pin	16	94	G1	-	-
	INT11_1	External interrupt request 11 input pin	17	95	G2	-	-
	INT12_1	External interrupt request 12 input pin	27	5	J4	-	-
	INT13_1	External interrupt request 13 input pin	28	6	L5	-	-
	INT14_1	External interrupt request 14 input pin	39	17	K6	29	-
	INT15_1	External interrupt request 15 input pin	96	74	C4	76	60
	NMIX	Non-Maskable Interrupt input	92	70	B5	72	57

					Pin No		
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
GPIO	P00		77	55	A9	61	49
	P01		78	56	B9	62	50
	P02		79	57	B11	63	51
	P03		80	58	A8	64	52
	P04		81	59	B8	65	53
	P05		82	60	C8	=	-
	P06		83	61	D9	-	-
P07	P07	Conoral nurnosa I/O port 0	84	62	A7	66	-
	P08 P09 P0A P0B	General-purpose I/O port 0	85	63	B7	-	-
			86	64	C7	-	-
			87	65	D7	67	54
			88	66	A6	68	55
	P0C		89	67	B6	69	56
	P0D		90	68	C6	70	-
	P0E		91	69	A5	71	-
	P0F		92	70	B5	72	57
	P10		52	30	J11	42	34
	P11		53	31	J10	43	35
	P12		54	32	J8	44	36
	P13		55	33	H10	45	37
	P14		56	34	H9	46	38
	P15		57	35	H7	47	39
	P16		58	36	G10	48	-
	P17	Company I was a second of	59	37	G9	49	40
	P18	General-purpose I/O port 1	63	41	G8	53	44
	P19		64	42	F10	54	45
	P1A		65	43	F9	55	-
	P1B	7	66	44	E11	56	-
	P1C	7	67	45	E10	-	-
	P1D	7	68	46	F8	-	-
	P1E	7	69	47	E9	-	-
	P1F	<u> </u>	70	48	D11	-	-
	P20		74	52	C10	60	-
	P21	Compared marginary 1/O mort 2	73	51	C11	59	48
	P22	General-purpose I/O port 2	72	50	E8	58	47
	P23	7	71	49	D10	57	46

					Pin No		
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
GPIO	P30		9	87	E1	9	5
	P31		10	88	E2	10	6
	P32		11	89	E3	11	7
	P33		12	90	E4	12	8
	P34		13	91	F1	-	-
	P35		14	92	F2	-	-
	P36		15	93	F3	-	-
	P37		16	94	G1	-	-
	P38	General-purpose I/O port 3	17	95	G2	-	-
	P39		18	96	F4	13	9
	P3A		19	97	G3	14	10
	P3B		20	98	H1	15	11
	P3C	7	21	99	H2	16	12
	P3D		22	100	G4	17	13
	P3E		23	1	H3	18	14
	P3F		24	2	J2	19	15
	P40		27	5	J4	-	-
	P41		28	6	L5	-	-
	P42		29	7	K5	-	-
	P43		30	8	J5	-	-
	P44		31	9	H5	21	-
	P45		32	10	L6	22	-
	P46		36	14	L3	26	19
	P47	General-purpose I/O port 4	37	15	K3	27	20
	P48		39	17	K6	29	-
	P49		40	18	J6	30	22
	P4A		41	19	L7	31	23
	P4B		42	20	K7	32	24
	P4C		43	21	H6	33	25
	P4D		44	22	J7	34	26
	P4E		45	23	K8	35	27
	P50		2	80	C1	2	2
	P51	7	3	81	C2	3	3
	P52	7	4	82	B3	4	4
	P53	General-purpose I/O port 5	5	83	D1	5	-
	P54] ' ' ' ' '	6	84	D2	6	-
	P55	7	7	85	D3	7	-
	P56	7	8	86	D5	8	-
	P60		96	74	C4	76	60
	P61]	95	73	B4	75	59
	P62	General-purpose I/O port 6	94	72	C5	74	58
	P63	7	93	71	D6	73	-
	P80	0 1 110 10	98	76	A3	78	62
	P81	General-purpose I/O port 8	99	77	A2	79	63
	PE0		46	24	K9	36	28
	PE2	General-purpose I/O port E	48	26	L9	38	30
	PE3	1 ' ' '	49	27	L10	39	31

			Pin No					
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	
Multi Function Serial	SIN0_0	Multifunction serial interface ch.0	73	51	C11	59	48	
	SIN0_1	input pin	56	34	H9	46	-	
0	SOT0_0 (SDA0_0)	Multifunction serial interface ch.0 output pin This pin operates as SOT0 when it is	72	50	E8	58	47	
	SOT0_1 (SDA0_1)	used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA0 when it is used in an I ² C (operation mode 4).	57	35	H7	47	-	
	SCK0_0 (SCL0_0)	Multifunction serial interface ch.0 clock I/O pin This pin operates as SCK0 when it is	71	49	D10	57	46	
	SCK0_1 (SCL0_1)	used in a CSIO (operation modes 2) and as SCL0 when it is used in an I ² C (operation mode 4).	58	36	G10	48	-	
Multi Function	SIN1_1	Multifunction serial interface ch.1 input pin	53	31	J10	43	35	
Serial 1	SOT1_1 (SDA1_1)	Multifunction serial interface ch.1 output pin This pin operates as SOT1 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA1 when it is used in an I ² C (operation mode 4).	54	32	J8	44	36	
	SCK1_1 (SCL1_1)	Multifunction serial interface ch.1 clock I/O pin This pin operates as SCK1 when it is used in a CSIO (operation modes 2) and as SCL1 when it is used in an I ² C (operation mode 4).	55	33	H10	45	37	
Multi Function	SIN2_2	Multifunction serial interface ch.2 input pin	59	37	G9	49	40	
Serial 2	SOT2_2 (SDA2_2)	Multifunction serial interface ch.2 output pin This pin operates as SOT2 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA2 when it is used in an I ² C (operation mode 4).	63	41	G8	53	44	
	SCK2_2 (SCL2_2)	Multifunction serial interface ch.2 clock I/O pin This pin operates as SCK2 when it is used in a CSIO (operation modes 2) and as SCL2 when it is used in an I ² C (operation mode 4).	64	42	F10	54	45	
Multi	SIN3_1	Multifunction serial interface ch.3	2	80	C1	2	2	
Function	SIN3_2	input pin	39	17	K6	29	-	
Serial 3	SOT3_1 (SDA3_1)	Multifunction serial interface ch.3 output pin	3	81	C2	3	3	
	SOT3_2 (SDA3_2)	This pin operates as SOT3 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA3 when it is used in an I ² C (operation mode 4).	40	18	J6	30	-	
	SCK3_1 (SCL3_1)	Multifunction serial interface ch.3 clock I/O pin	4	82	В3	4	4	
	SCK3_2 (SCL3_2)	This pin operates as SCK3 when it is used in a CSIO (operation modes 2) and as SCL3 when it is used in an I ² C (operation mode 4).	41	19	L7	31	-	

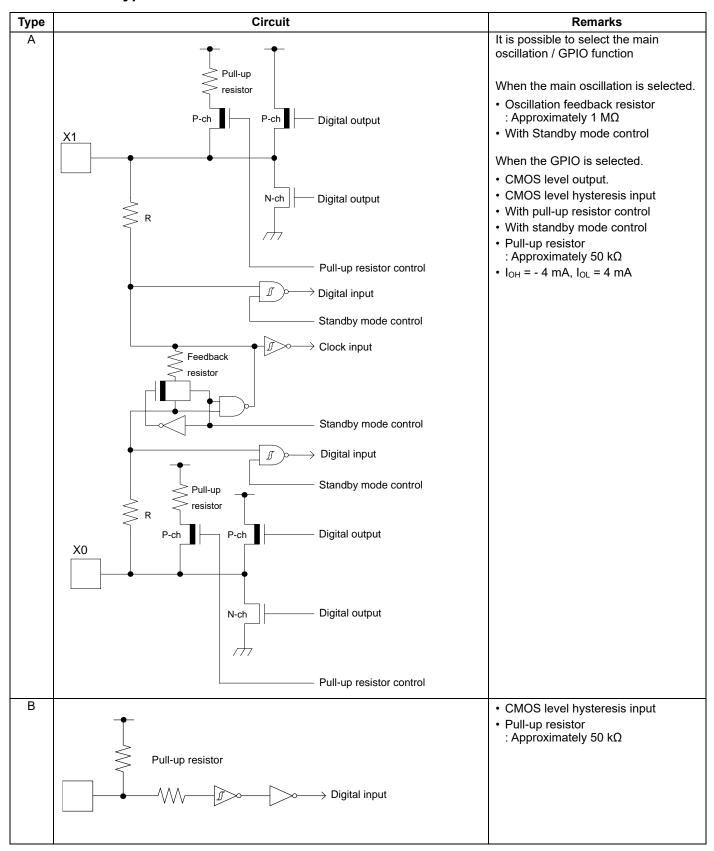
Module	Pin name	Function	Pin No					
			LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	
Multi Function Serial	SIN4_0	Multifunction serial interface ch.4 input pin	87	65	D7	67	54	
	SIN4_1		65	43	F9	55	-	
4	SIN4_2		82	60	C8	-	-	
	SOT4_0 (SDA4_0)	Multifunction serial interface ch.4 output pin This pin operates as SOT4 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA4 when it is used in an I ² C (operation mode 4).	88	66	A6	68	55	
	SOT4_1 (SDA4_1)		66	44	E11	56	-	
	SOT4_2 (SDA4_2)		83	61	D9	-	-	
	SCK4_0 (SCL4_0)	Multifunction serial interface ch.4 clock I/O pin This pin operates as SCK4 when it is used in a CSIO (operation modes 2) and as SCL4 when it is used in an I ² C (operation mode 4).	89	67	B6	69	56	
	SCK4_1 (SCL4_1)		67	45	E10	-	-	
	SCK4_2 (SCL4_2)		84	62	A7	-	-	
	RTS4_0	Multifunction serial interface ch.4 RTS output pin	90	68	C6	70	-	
	RTS4_1		69	47	E9	-	-	
	RTS4_2		86	64	C7	-	-	
	CTS4_0	Multifunction serial interface ch.4 CTS input pin	91	69	A5	71	-	
	CTS4_1		68	46	F8	-	-	
	CTS4_2		85	63	B7	-	-	
Multi	SIN5_0	Multifunction serial interface ch.5	96	74	C4	76	60	
Function Serial	SIN5_2	input pin	15	93	F3	-	-	
5	SOT5_0 (SDA5_0)	Multifunction serial interface ch.5 output pin This pin operates as SOT5 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA5 when it is used in an I ² C (operation mode 4).	95	73	B4	75	59	
	SOT5_2 (SDA5_2)		16	94	G1	-	-	
	SCK5_0 (SCL5_0)	Multifunction serial interface ch.5 clock I/O pin This pin operates as SCK5 when it is	94	72	C5	74	58	
	SCK5_2 (SCL5_2)	used in a CSIO (operation modes 2) and as SCL5 when it is used in an I ² C (operation mode 4).	17	95	G2	-	-	

Module	Pin name	Function	Pin No				
			LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
Multi Function Serial	SIN6_0	Multifunction serial interface ch.6 input pin	5	83	D1	5	-
	SIN6_1		12	90	E4	12	8
6	SOT6_0 (SDA6_0)	Multifunction serial interface ch.6 output pin This pin operates as SOT6 when it is	6	84	D2	6	-
	SOT6_1 (SDA6_1)	used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA6 when it is used in an I ² C (operation mode 4).	11	89	E3	11	7
	SCK6_0 (SCL6_0)	Multifunction serial interface ch.6 clock I/O pin This pin operates as SCK6 when it is	7	85	D3	7	-
	SCK6_1 (SCL6_1)	used in a CSIO (operation modes 2) and as SCL6 when it is used in an I ² C (operation mode 4).	10	88	E2	10	6
Multi Function	SIN7_1	Multifunction serial interface ch.7 input pin	45	23	K8	35	27
Serial 7	SOT7_1 (SDA7_1)	Multifunction serial interface ch.7 output pin This pin operates as SOT7 when it is used in a UART/CSIO/LIN (operation modes 0 to 3) and as SDA7 when it is used in an I ² C (operation mode 4).	44	22	J7	34	26
	SCK7_1 (SCL7_1)	Multifunction serial interface ch.7 clock I/O pin This pin operates as SCK7 when it is used in a CSIO (operation modes 2) and as SCL7 when it is used in an I ² C (operation mode 4).	43	21	H6	33	25

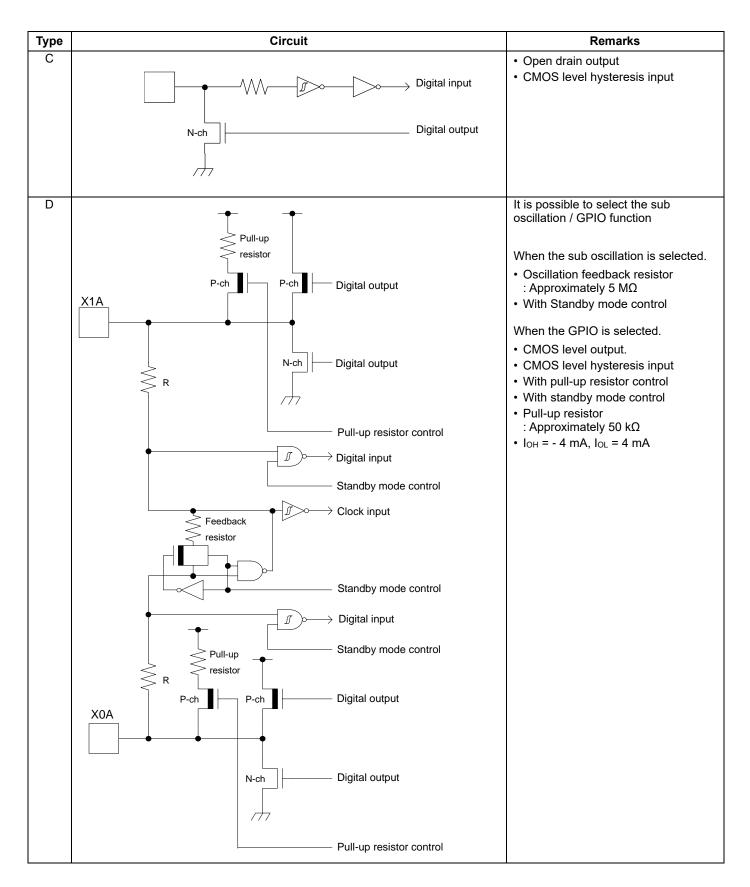
Module	Pin name				Pin No		
		Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64
Multi Function Timer 0	DTTI0X_0	Input signal of wave form generator to control outputs RTO00 to RTO05 of multi-function timer 0	18	96	F4	13	9
	DTTI0X_1		69	47	E9	-	-
	FRCK0_0	16-bit free-run timer ch.0 external clock input pin	13	91	F1	-	-
	FRCK0_1		70	48	D11	-	-
	FRCK0_2		53	31	J10	43	35
	IC00_0		17	95	G2	-	-
	IC00_1		65	43	F9	55	-
	IC00_2		54	32	J8	44	36
	IC01_0		16	94	G1	-	-
	IC01_1		66	44	E11	56	-
	IC01_2	16-bit input capture input pin of	55	33	H10	45	37
	IC02_0	multi-function timer 0 ICxx describes channel number.	15	93	F3	-	-
	IC02_1		67	45	E10	-	-
	IC02_2		56	34	H9	46	38
	IC03_0		14	92	F2	-	-
	IC03_1		68	46	F8	-	-
	IC03_2		57	35	H7	47	39
	RTO00_0 (PPG00_0)	Wave form generator output of multi-function timer 0 This pin operates as PPG00 when it is used in PPG 0 output modes.	19	97	G3	14	10
	RTO00_1 (PPG00_1)		71	49	D10	-	-
	RTO01_0 (PPG00_0)	Wave form generator output of multi-function timer 0 This pin operates as PPG00 when it is used in PPG 0 output modes.	20	98	H1	15	11
	RTO02_0 (PPG02_0)	Wave form generator output of multi-function timer 0 This pin operates as PPG02 when it is used in PPG 0 output modes.	21	99	H2	16	12
	RTO03_0 (PPG02_0)	Wave form generator output of multi-function timer 0 This pin operates as PPG02 when it is used in PPG 0 output modes.	22	100	G4	17	13
	RTO04_0 (PPG04_0)	Wave form generator output of multi-function timer 0 This pin operates as PPG04 when it is used in PPG 0 output modes.	23	1	H3	18	14
	RTO05_0 (PPG04_0)	Wave form generator output of multi-function timer 0 This pin operates as PPG04 when it is used in PPG 0 output modes.	24	2	J2	19	15

					Pin No			
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	
Multi	DTTI1X_0	Input signal of wave form generator to	8	86	D5	8	-	
Function Timer	DTTI1X_1	control outputs RTO10 to RTO15 of multi-function timer 1	39	17	K6	29	-	
1	FRCK1_0	16-bit free-run timer ch.1 external	87	65	D7	67	-	
	FRCK1_1	clock input pin	44	22	J7	34	-	
	IC10_0		88	66	A6	68	-	
	IC10_1		40	18	J6	30	-	
	IC11_0		89	67	B6	69	-	
	IC11_1	16-bit input capture input pin of	41	19	L7	31	-	
	IC12_0	multi-function timer 1 ICxx describes channel number.	90	68	C6	70	-	
	IC12_1		42	20	K7	32	-	
	IC13_0		91	69	A5	71	-	
	IC13_1		43	21	H6	33	-	
	RTO10_0 (PPG10_0)	Wave form generator output of multi-function timer 1	2	80	C1	2	-	
	RTO10_1 (PPG10_1)	This pin operates as PPG10 when it is used in PPG 1 output modes.	27	5	J4	-	-	
	RTO11_0 (PPG10_0)	Wave form generator output of multi-function timer 1	3	81	C2	3	-	
	RTO11_1 (PPG10_1)	This pin operates as PPG10 when it is used in PPG 1 output modes.	28	6	L5	-	-	
	RTO12_0 (PPG12_0)	Wave form generator output of multi-function timer 1	4	82	В3	4	-	
	RTO12_1 (PPG12_1)	This pin operates as PPG12 when it is used in PPG 1 output modes.	29	7	K5	-	-	
	RTO13_0 (PPG12_0)	Wave form generator output of multi-function timer 1	5	83	D1	5	-	
	RTO13_1 (PPG12_1)	This pin operates as PPG12 when it is used in PPG 1 output modes.	30	8	J5	-	-	
	RTO14_0 (PPG14_0)	Wave form generator output of multi-function timer 1	6	84	D2	6	-	
	RTO14_1 (PPG14_1)	This pin operates as PPG14 when it is used in PPG 1 output modes.	31	9	H5	21	-	
	RTO15_0 (PPG14_0)	Wave form generator output of multi-function timer 1	7	85	D3	7	-	
	RTO15_1 (PPG14_1)	This pin operates as PPG14 when it is used in PPG 1 output modes.	32	10	L6	22	-	

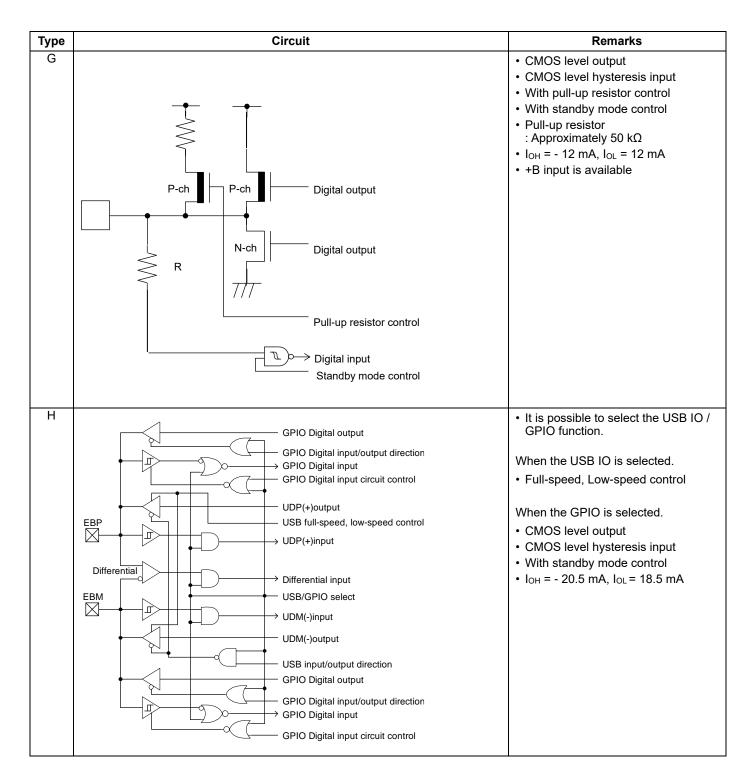
				Pin No					
Module	Pin name	Function	LQFP-100	FP-100 QFP-100		LQFP-80	LQFP-64 QFN-64		
Quadrature	AIN0_0		9	87	E1	9	5		
Position/ Revolution	AIN0_1	QPRC ch.0 AIN input pin	40	18	J6	30	22		
Counter 0	AIN0_2		2	80	C1	2	2		
	BIN0_0		10	88	E2	10	6		
	BIN0_1	QPRC ch.0 BIN input pin	41	19	L7	31	23		
	BIN0_2		3	81	C2	3	3		
	ZIN0_0		11	89	E3	11	7		
	ZIN0_1	QPRC ch.0 ZIN input pin	42	20	K7	32	24		
	ZIN0_2		4	82	В3	4	4		
Quadrature	AIN1_1	ODDO sk 4 Albi sasat si s	74	52	C10	60	-		
Position/ Revolution	AIN1_2	QPRC ch.1 AIN input pin	43	21	H6	33	25		
Counter	BIN1_1	ODDO sk 4 DIN i sast si s	73	51	C11	59	-		
1	BIN1_2	- QPRC ch.1 BIN input pin	44	22	J7	34	26		
	ZIN1_1	ODDO sk 4 7IN i sout si	72	50	E8	58	-		
	ZIN1_2	QPRC ch.1 ZIN input pin	45	23	K8	35	27		
USB	UDM0	USB Device / HOST D – pin	98	76	A3	78	62		
	UDP0	USB Device / HOST D + pin	99	77	A2	79	63		
	UHCONX	USB external pull-up control pin	95	73	B4	75	59		


			Pin No					
Module	Pin name	Function	LQFP-100	QFP-100	BGA-112	LQFP-80	LQFP-64 QFN-64	
Reset	INITX	External Reset Input. A reset is valid when INITX=L	38	16	K4	28	21	
Mode	MD0	Mode 0 pin During normal operation, MD0=L must be input. During serial programming to flash memory, MD0=H must be input.	47	25	L8	37	29	
	MD1	Mode 1 pin During serial programming to flash memory, MD1=L must be input.	46	24	K9	36	28	
Power	VCC	Power supply Pin	1	79	B1	1	1	
	VCC	Power supply Pin	26	4	J1	-	-	
	VCC	Power supply pin	35	13	K1	25	18	
	VCC	Power supply pin	51	29	K11	41	33	
	VCC	Power supply pin	76	54	A10	-	-	
	USBVCC	3.3V Power supply port for USB I/O	97	75	A4	77	61	
GND	VSS	GND Pin	-	-	B2	-	-	
	VSS	GND pin	25	3	L1	20	16	
	VSS	GND pin	-	-	K2	-	-	
	VSS	GND pin	-	-	J3	-	-	
	VSS	GND pin	-	-	H4	-	-	
	VSS	GND pin	34	12	L4	24	-	
	VSS	GND pin	50	28	L11	40	32	
	VSS	GND pin	-	-	K10	-	-	
	VSS	GND pin	-	-	J9	-	-	
	VSS	GND pin	-	-	H8	-	-	
	VSS	GND pin	-	-	B10	-	-	
	VSS	GND pin	-	-	C9	-	-	
	VSS	GND pin	75	53	A11	-	-	
	VSS	GND pin	-	-	D8	-	-	
	VSS	GND pin	-	-	D4	-	-	
	VSS	GND pin	-	-	C3	-	-	
	VSS	GND pin	100	78	A1	80	64	
Clock	X0	Main clock (oscillation) input pin	48	26	L9	38	30	
	X0A	Sub clock (oscillation) input pin	36	14	L3	26	19	
	X1	Main clock (oscillation) I/O pin	49	27	L10	39	31	
	X1A	Sub clock (oscillation) I/O pin	37	15	K3	27	20	
	CROUT_0	Built-in high-speed CR-osc clock	74	52	C10	60	-	
	CROUT_1	output port	92	70	B5	72	57	
Analog Power	AVCC	A/D converter analog power supply pin	60	38	H11	50	41	
	AVRH	A/D converter analog reference voltage input pin	61	39	F11	51	42	
Analog GND	AVSS	A/D converter GND pin	62	40	G11	52	43	
C pin	С	Power stabilization capacity pin	33	11	L2	23	17	

Note:


While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller.

5. I/O Circuit Type



Type	Circuit	Remarks
E	P-ch Digital output N-ch Digital output Pull-up resistor control Digital input Standby mode control	 CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor Approximately 50 kΩ I_{OH} = -4 mA, I_{OL} = 4 mA When this pin is used as an I²C pin, the digital output P-ch transistor is always off +B input is available
F	P-ch Digital output N-ch Digital output Pull-up resistor control Digital input Standby mode control Analog input	 CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor Approximately 50 kΩ I_{OH} = -4 mA, I_{OL} = 4 mA When this pin is used as an I²C pin, the digital output P-ch transistor is always off +B input is available

Туре	Circuit	Remarks
	P-ch Digital output N-ch Digital output Digital input Standby mode control	 CMOS level output CMOS level hysteresis input 5V tolerant With standby mode control I_{OH} = -4 mA, I_{OL} = 4 mA When this pin is used as an I²C pin, the digital output P-ch transistor is always off
J	Mode Input ✓───────────────────────────────────	CMOS level hysteresis input

6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- 1. Preventing Over-Voltage and Over-Current Conditions
 - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
- 2. Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
- 3. Handling of Unused Input Pins
 - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.
 - When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$).
 - Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

6.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

- 1. Humidity
 - Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
- 2. Discharge of Static Electricity
 - When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.
- 3. Corrosive Gases, Dust, or Oil
 - Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
- 4. Radiation, Including Cosmic Radiation
 - Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
- 5. Smoke, Flame
 - CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

7. Handling Devices

Power supply pins

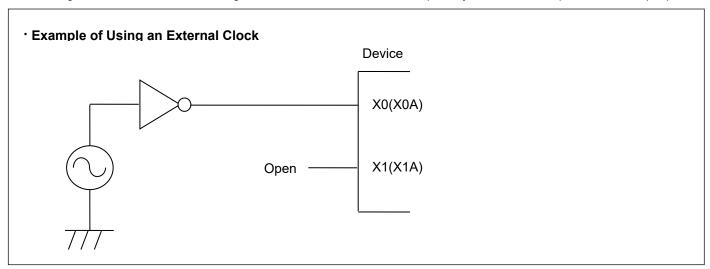
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately $0.1~\mu F$ be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device.

Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal oscillator circuit


Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Using an external clock

When using an external clock, the clock signal should be driven to the X0,X0A pin only and the X1,X1A pin should be kept open.

Handling when using Multi-function serial pin as I²C pin

If it is using the multi function serial pin as I^2C pins, P-ch transistor of digital output is always disabled. However, I^2C pins need to keep the electrical characteristic like other pins and not to connect to the external I^2C bus system with power OFF.



C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (C_s) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F

characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.

A smoothing capacitor of about 4.7 µF would be recommended for this series.

Mode pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistor stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

Notes on power-on

Turn power on/off in the following order or at the same time.

If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.

Turning on: VCC → USBVCC

 $\mathsf{VCC} \to \mathsf{AVCC} \to \mathsf{AVRH}$

Turning off: $AVRH \rightarrow AVCC \rightarrow VCC$

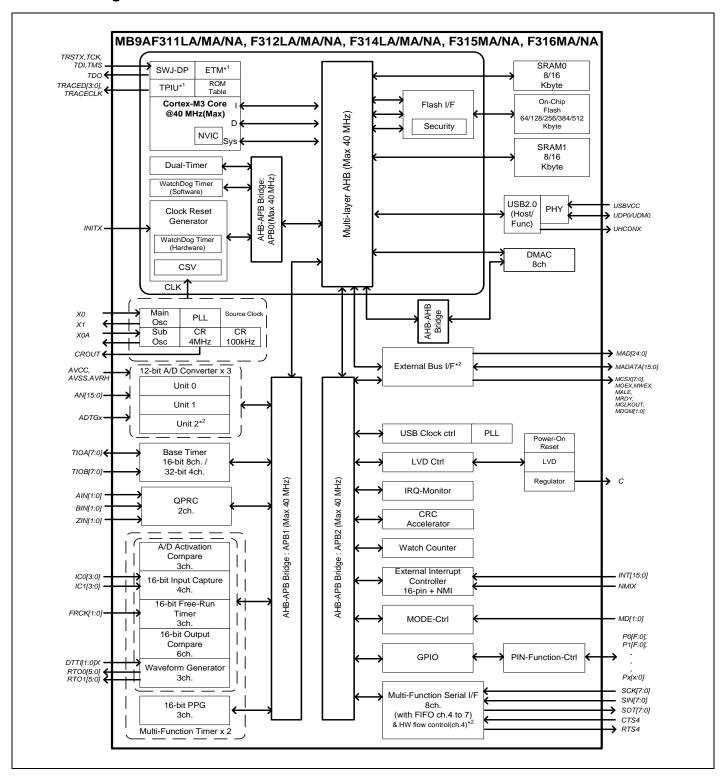
 $USBVCC \rightarrow VCC$

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.


Differences in features among the products with different memory sizes and between Flash products and MASK products

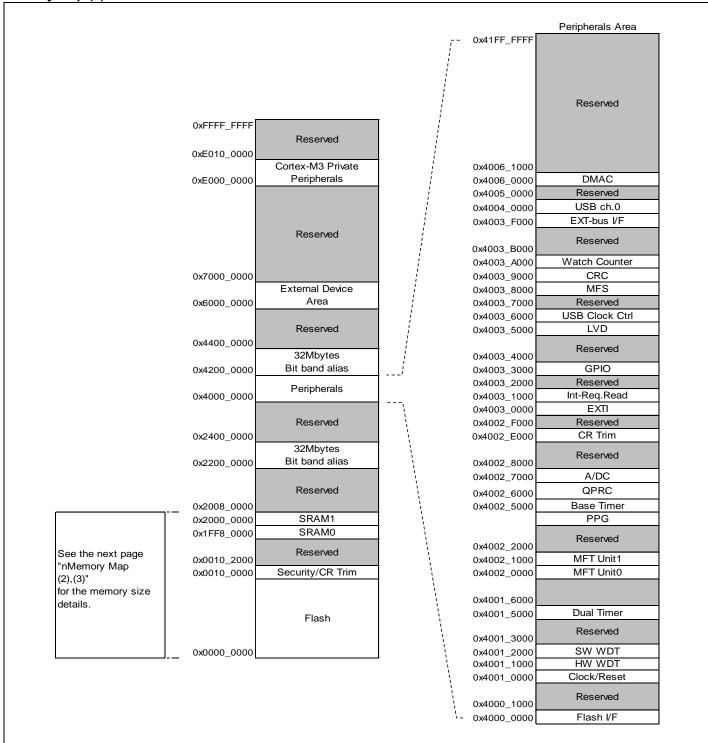
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

8. Block Diagram

^{*1:} For the MB9AF311LA/MA, F312LA/MA, MB9AF314LA/MA, MB9AF315MA and MB9AF316MA, ETM is not available.

^{*2:} For the MB9AF311LA, F312LA and MB9AF314LA, the External Bus Interface and 12-bit A/D Converter (unit 2) are not available. And the Multi-function Serial Interface does not support hardware flow control in these products.

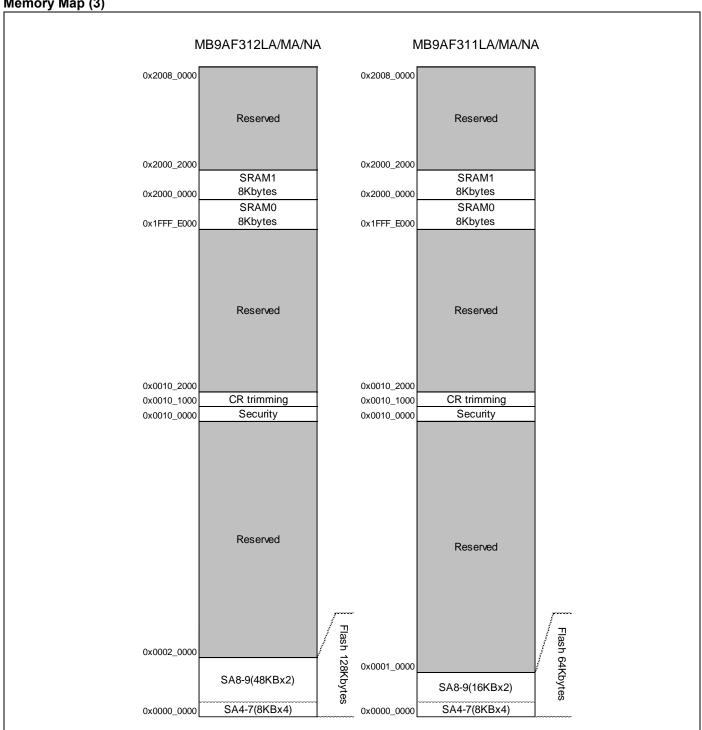


9. Memory Size

See "Memory size" in "1. Product Lineup" to confirm the memory size.

10. Memory Map

Memory Map (1)


Memory Map (2)

	MB9AF316MA/NA			MB9AF315MA/NA		N	/IB9AF314LA/MA/NA
0x2008_0000			0x2008_0000			0x2008_0000	
	Reserved			Reserved			Reserved
0x2000_4000			0x2000_4000			0x2000_4000	
0x2000_0000	SRAM1 16Kbytes		0x2000_0000	SRAM1 16Kbytes		0x2000_0000	SRAM1 16Kbytes
0x1FFF_C000	SRAM0 16Kbytes		0x1FFF_C000	SRAM0 16Kbytes		0x1FFF_C000	SRAM0 16Kbytes
0x0010_2000			0x0010_2000	Reserved		0x0010_2000	Reserved
0x0010_1000	CR trimming		0x0010_1000	CR trimming		0x0010_1000	CR trimming
0x0010_0000	Security		0x0010_0000	Security		0x0010_0000	Security
0x0008_0000	Reserved			Reserved			
			0x0006_0000				Reserved
	SA10-15(64KBx6)	Flash 512			_	0x0004_0000	
		512Kbytes		SA10-13(64KBx4)	Flash 384Kbytes		SA10-11(64KBx2)
	SA8-9(48KBx2)			SA8-9(48KBx2)	Ϋ́O		SA8-9(48KBx2)
	SA4-7(8KBx4)	1	0x0000_0000	SA4-7(8KBx4)	1	0x0000_0000	SA4-7(8KBx4)

See "MB9A310/110 Series Flash programming Manual" for sector structure of Flash.

Memory Map (3)

See "MB9A310A/110A Series Flash programming Manual" for sector structure of Flash.

Peripheral Address Map

Start address	End address	Bus	Peripherals
0х4000_0000н	0x4000_0FFF _н	ALID	Flash Memory I/F register
0x4000_1000 _H	0x4000_FFFF _H	AHB	Reserved
0x4001_0000 _H	0x4001_0FFF _н		Clock/Reset Control
0x4001_1000 _H	0x4001_1FFF _H		Hardware Watchdog timer
0x4001_2000 _H	0x4001_2FFF _н	ADDO	Software Watchdog timer
0x4001_3000 _H	0x4001_4FFF _H	APB0	Reserved
0x4001_5000 _H	0x4001_5FFF _н		Dual-Timer
0x4001_6000 _H	0x4001_FFFF _H		Reserved
0x4002_0000 _H	0x4002_0FFF _H		Multi-function timer unit0
0x4002_1000 _H	0x4002_1FFF _H		Multi-function timer unit1
0x4002_2000 _H	0x4002_3FFF _H		Reserved
0x4002_4000 _H	0x4002_4FFF _н		PPG
0x4002_5000 _H	0x4002_5FFF _н	ADD4	Base Timer
0x4002_6000 _H	0x4002_6FFF _н	APB1	Quadrature Position/Revolution Counter
0x4002_7000 _H	0x4002_7FFF _н		A/D Converter
0x4002_8000 _H	0x4002_DFFF _H		Reserved
0x4002_E000 _H	0x4002_EFFF _H		Built-in CR trimming
0x4002_F000 _H	0x4002_FFFF _H		Reserved
0x4003_0000 _H	0x4003_0FFF _H		External Interrupt Controller
0x4003_1000 _H	0x4003_1FFF _н		Interrupt Source Check Register
0x4003_2000 _H	0x4003_2FFF _H		Reserved
0x4003_3000 _H	0x4003_3FFF _н		GPIO
0x4003_4000 _H	0x4003_4FFF _H		Reserved
0x4003_5000 _H	0x4003_5FFF _н		Low-Voltage Detector
0x4003_6000 _H	0x4003_6FFF _н	APB2	USB clock generator
0x4003_7000 _H	0x4003_7FFF _н		Reserved
0x4003_8000 _H	0x4003_8FFF _н		Multi-function serial
0x4003_9000 _H	0x4003_9FFF _н		CRC
0x4003_A000 _H	0x4003_AFFF _H		Watch Counter
0x4003_B000 _H	0x4003_EFFF _H		Reserved
0x4003_F000 _H	0x4003_FFFF _H		External bus interface
0x4004_0000 _H	0x4004_FFFF _H		USB ch.0
0х4005_0000н	0x4005_FFFF _н		Reserved
0x4006_0000 _H	0x4006_0FFF _н		DMAC register
0x4006_1000 _H	0x4006_1FFF _н	AHB	Reserved
0x4006_2000 _H	0x4006_2FFF _H		Reserved
0х4006_3000н	0x4006_3FFF _н		Reserved
0x4006_4000 _H	0x41FF_FFFF _H		Reserved

11. Pin Status in Each CPU State

The terms used for pin status have the following meanings.

■INITX=0

This is the period when the INITX pin is the "L" level.

■INITX=1

This is the period when the INITX pin is the "H" level.

■SPL=0

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to "0".

■SPL=1

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to "1".

■Input enabled

Indicates that the input function can be used.

■Internal input fixed at "0"

This is the status that the input function cannot be used. Internal input is fixed at "L".

■Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

■Setting disabled

Indicates that the setting is disabled.

■ Maintain previous state

Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained.

■Analog input is enabled

Indicates that the analog input is enabled.

■Trace output

Indicates that the trace function can be used.

List of Pin Status

type		Power-on reset or low voltage detection state	INITX input state	Device internal reset state	Run mode or sleep mode state		Timer mode or STOP mode state	
Pin status type	Function group	Power supply unstable	Power su	upply stable	Power supply stable	Power su	oply stable	
P.		-	INITX=0 INITX=1		INITX=1	INITX=1		
		-	-	-	-	SPL=0	SPL=1	
A	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
	Main crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"	
В	Main crystal oscillator output pin	Hi-Z/ Internal input fixed at "0"/ or Input enabled	Hi-Z/ Internal input fixed at "0"	Hi-Z/ Internal input fixed at "0"	Maintain previous state	Maintain previous state/ Hi-Z at oscillation stop*1/ Internal input fixed at "0"	Maintain previous state/ Hi-Z at oscillation stop*1/ Internal input fixed at "0"	
С	INITX input pin	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	Pull-up/ Input enabled	
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	
	JTAG selected	Hi-Z	Pull-up/ Input enabled	Pull-up/ Input enabled	Maintain	Maintain	Maintain previous state	
E	GPIO selected	Setting disabled	Setting disabled	Setting disabled	previous state	previous state	Hi-Z/ Internal input fixed at "0"	
	Trace selected		Cattina	Continue.			Trace output	
F	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain	Maintain	Maintain previous state	
	GPIO selected, or resource other than above selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	previous state	previous state	Hi-Z/ Internal input fixed at "0"	
	Trace selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Trace output	
G	GPIO selected, or resource other than above selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled			Hi-Z/ Internal input fixed at "0"	

Pin status type		Power-on reset or low voltage detection state	t or low Itage ection tate INITX input state INITX input state INITX input state INITX internal reset state INITX internal reset mode state Power		Run mode or sleep mode state	Timer mode or STOP mode state	
in statu	Function group	Power supply unstable	Power su	upply stable	Power supply stable	Power su	oply stable
<u>a</u>		-	INITX=0	INITX=1	INITX=1	INI	TX=1
		-	-	-	-	SPL=0	SPL=1
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state
Н	GPIO selected, or resource other than above selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
ı	GPIO selected, resource selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
	NMIX selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state
J	GPIO selected, or resource other than above selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
K	Analog input selected	Hi-Z	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled
	GPIO selected, or resource other than above selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state
L	Analog input selected	Hi-Z	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled	Hi-Z/ Internal input fixed at "0"/ Analog input enabled
	GPIO selected, or resource other than above selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
М	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
IVI	Sub crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled

s type		Power-on reset or low voltage detection type	INITX input state	Device internal reset state	Run mode or sleep mode state	Timer mode o	
Pin status type	Function group	Power supply unstable	Power su	oply stable	Power supply stable	Power sup	pply stable
<u>=</u>		-	INITX=0	INITX=1	INITX=1	INIT	X=1
		-	-	-	-	SPL=0	SPL=1
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
N	Sub crystal oscillator output pin	Hi-Z/ Internal input fixed at "0"/ or Input enabled	Hi-Z/ Internal input fixed at "0"	Hi-Z/ Internal input fixed at "0"	Maintain previous state	Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0"	Maintain previous state/ Hi-Z at oscillation stop*2/ Internal input fixed at "0"
	GPIO selected	Hi-Z	Hi-Z/ Input enabled	Hi-Z/ Input enabled	Maintain previous state	Maintain previous state	Hi-Z/ Internal input fixed at "0"
0	USB I/O pin Setting disabled		Setting disabled	Setting disabled	Maintain previous state	Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception	Hi-Z at transmission/ Input enabled/ Internal input fixed at "0" at reception
D. D.	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
Р	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z/Input enabled

^{*1:} Oscillation is stopped at sub timer mode, low speed CR timer mode, and stop mode.

^{*2:} Oscillation is stopped at stop mode.

12. Electrical Characteristics

12.1 Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks	
r ai ailletei	Symbol	Min	Max	Oilit	Kemarks	
Power supply voltage*1, *2	Vcc	Vss - 0.5	Vss + 6.5	V		
Power supply voltage (for USB) *1, *3	USBVcc	Vss - 0.5	Vss + 6.5	V		
Analog power supply voltage*1, *4	AVcc	Vss - 0.5	Vss + 6.5	V		
Analog reference voltage* ^{1, *4}	AVRH	Vss - 0.5	Vss + 6.5	V		
		Vss - 0.5	Vcc + 0.5 (≤ 6.5V)	V	Except for USB pin	
Input voltage*1	Vı	Vss - 0.5	USBVcc + 0.5 (≤ 6.5 V)	V	USB pin	
		Vss - 0.5	Vss + 6.5	V	5V tolerant	
Analog pin input voltage*1	V _{IA}	Vss - 0.5	AVcc + 0.5 (≤ 6.5 V)	V		
Output voltage*1	Vo	Vss - 0.5	Vcc + 0.5 (≤ 6.5 V)	V		
Clamp maximum current	I _{CLAMP}	-2	+2	mA	*8	
Clamp total maximum current	$\Sigma[I_{CLAMP}]$		+20	mA	*8	
			10	mA	4mA type	
"L" level maximum output current*5	I _{OL}	-	20	mA	12mA type	
			39	mA	P80, P81	
			4	mA	4mA type	
"L" level average output current*6	I _{OLAV}	-	12	mA	12mA type	
			18.5	mA	P80, P81	
"L" level total maximum output current	ΣI _{OL}	-	100	mA		
"L" level total average output current* ⁷	$\sum I_{OLAV}$	-	50	mA		
			- 10	mA	4mA type	
"H" level maximum output current*5	I _{OH}	-	- 20	mA	12mA type	
			- 39	mA	P80, P81	
			- 4	mA	4mA type	
"H" level average output current* ⁶	I _{OHAV}	-	- 12	mA	12mA type	
			- 20.5	mA	P80, P81	
"H" level total maximum output current	ΣI _{OH}	-	- 100	mA		
"H" level total average output current* ⁷	∑I _{OHAV}	-	- 50	mA		
Power consumption	P _D	-	300	mW		
Storage temperature	T _{STG}	- 55	+ 150	°C		

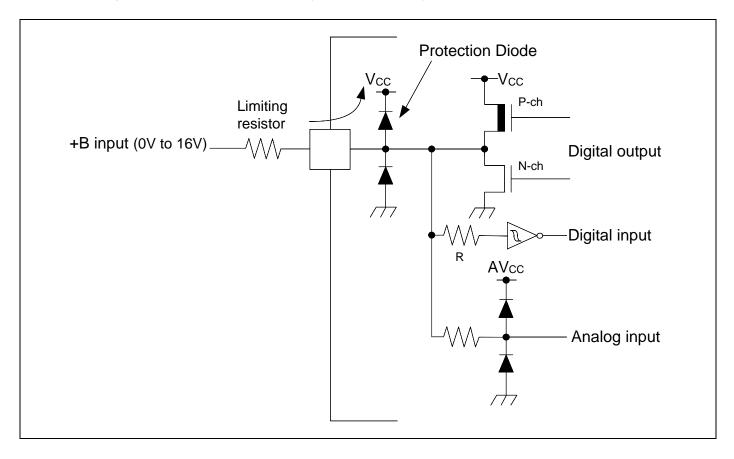
^{*1:} These parameters are based on the condition that Vss = AVss = 0.0 V.

^{*2:} Vcc must not drop below Vss - 0.5 V.

^{*3:} USBVcc must not drop below Vss - 0.5 V.

^{*4:} Be careful not to exceed Vcc + 0.5 V, for example, when the power is turned on.

^{*5:} The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.


^{*6:} The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period.

^{*7:} The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.

*8

- See "4. List of Pin Functions" and "5. I/O Circuit Type" about +B input available pin.
- · Use within recommended operating conditions.
- · Use at DC voltage (current) the +B input.
- The +B signal should always be applied a limiting resistance placed between the +B signal and the device.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the device pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the device drive current is low, such as in the low-power consumption modes, the +B input potential may pass through the protective diode and increase the potential at the VCC and AVCC pin, and this may affect other devices.
- Note that if a +B signal is input when the device power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- The following is a recommended circuit example (I/O equivalent circuit).

WARNING:

 Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

12.2 Recommended Operating Conditions

 $(V_{SS} = AV_{SS} = 0.0V)$

Da	rameter	Symbol	Conditions	V	'alue	Unit	Remarks
Fa	irannetei	Syllibol	Conditions	Min	Max	Ullit	Remarks
Power supply volta	Power supply voltage		-	2.7*4	5.5	V	
Power supply volta	Power supply voltage (3V power supply) for USB			3.0	3.6 (≤ Vcc)	V	*1
for USB				2.7	5.5 (≤ Vcc)	V	*2
Analog power sup	ply voltage	AVcc	=	2.7	5.5	V	AVcc = Vcc
Analog reference	Analog reference voltage		-	2.7	AVcc	V	
Smoothing capaci	tor	Cs	-	1	10	μF	For built-in regulator*3
Operating	LQI100 LQH080 LQD064 LQG064 VNC064 LBC112	T _A	-	- 40	+ 105	°C	
temperature	PQH100	T _A	When mounted on four-layer PCB	- 40	+ 105	°C	
		I A	When mounted	- 40	+ 105	°C	Icc ≤ 35mA
			on double-sided single-layer PCB	- 40	+ 85	°C	Icc > 35mA

^{*1:} When P81/UDP0 and P80/UDM0 pin are used as USB (UDP0, UDM0).

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

^{*2:} When P81/UDP0 and P80/UDM0 pin are used as GPIO (P81, P80).

^{*3:} See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor.

^{*4:} In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only.

12.3 DC Characteristics

12.3.1 Current rating

 $(Vcc = AVcc = 2.7V to 5.5V, USBVcc = 3.0V to 3.6V, Vss = AVss = 0V, T_A = -40°C to + 105°C)$

D	0	Pin		0	Va	lue	Unit	Bomorko
Parameter	Symbol	name		Conditions	Typ*3	Max*4	Unit	Remarks
			PLL	CPU: 40 MHz, Peripheral: 40 MHz, Flash 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000 *5	32	41	mA	*1
RUN			RUN mode	CPU: 40 MHz, Peripheral: 40 MHz, Flash 3 Wait FRWTR.RWT = 00 FSYNDN.SD = 011 *5	21	28	mA	*1
mode current	Icc		High-speed CR RUN mode	CPU/ Peripheral: 4 MHz*2 Flash 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	3.9	7.7	mA	*1
			Sub RUN mode	CPU/ Peripheral: 32 kHz Flash 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000 *6	0.15	3.2	mA	*1
			Low-speed CR RUN mode	CPU/ Peripheral: 100 kHz Flash 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	0.2	3.3	mA	*1
			PLL SLEEP mode	Peripheral: 40 MHz *5	10	15	mA	*1
SLEEP mode	Iccs		High-speed CR SLEEP mode	Peripheral: 4 MHz*2	1.2	4.4	mA	*1
current	1005		Sub SLEEP mode	Peripheral: 32 kHz *6	0.1	3.1	mA	*1
			Low-speed CR SLEEP mode	Peripheral: 100 kHz	0.1	3.1	mA	*1

^{*1:} When all ports are fixed.

^{*2:} When setting it to 4 MHz by trimming.

^{*3:} $T_A = +25$ °C, $V_{CC} = 5.5 \text{ V}$

^{*4:} T_A =+105°C, V_{CC}=5.5 V

^{*5:} When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)

^{*6:} When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)

(Vcc = AVcc = 2.7V to 5.5V, USBVcc = 3.0V to 3.6V, Vss = AVss = 0V, TA = -40°C to + 105°C)

Parameter	Symbol	Pin		Conditions		lue	Unit	Remarks
Parameter	Syllibol	name		Conditions	Typ*2	Max*2	Ullit	Remarks
			Main	T _A = + 25°C, When LVD is off *3	2.5	3	mA	*1
TIMER			TIMER mode	T _A = + 105°C, When LVD is off *3	-	6	mA	*1
mode current	Ісст	VCC	Sub	T _A = + 25°C, When LVD is off *4	60	230	μA	*1
			TIMER mode	T _A = + 105°C, When LVD is off *4	-	3.1	mA	*1
STOP mode			STOP mode	$T_A = + 25$ °C, When LVD is off	35	200	μΑ	*1
current	Іссн		310F III0de	$T_A = + 105$ °C, When LVD is off	-	3	mA	*1

^{*1:} When all ports are fixed.

Low-Voltage Detection Current

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Doromotor	Cumbal	Pin	Conditions	Value		Unit	Remarks	
Parameter	Symbol	name	Conditions	Тур	Тур Мах		Remarks	
Low-voltage detection circuit (LVD) power supply current	I _{CCLVD}	VCC	At operation for interrupt Vcc = 5.5 V	4	7	μА	At not detect	

Flash Memory Current

 $(V_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Pin	Conditions	Val	lue	Unit	Remarks
Parameter	Symbol	name	Conditions	Тур	Max	Ullit	Remarks
Flash memory write/erase current	I _{CCFLASH}	VCC	At Write/Erase	11.4	13.1	mA	

A/D Converter Current

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = AV_{RL} = 0V, T_{A} = -40^{\circ}\text{C to } + 105^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
Parameter	Symbol	name	Conditions	Тур	Max	Offic	Remarks
Davies aventu avenus st		AV/00	At 1unit operation	0.57	0.72	mA	
Power supply current	ICCAD	AVCC	At stop	0.06	20	μΑ	
Reference power		A) (D) I	At 1unit operation AVRH=5.5 V	1.1	1.96	mA	
supply current	I _{CCAVRH}	AVRH	At stop	0.06	4	μΑ	

^{*2:} V_{CC}=5.5 V

^{*3:} When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)

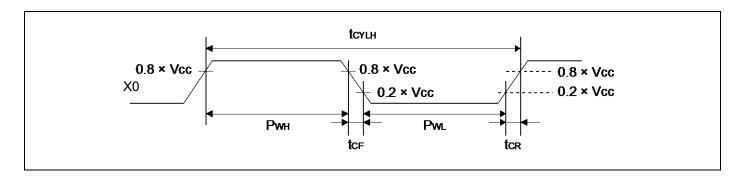
^{*4:} When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)

12.3.2 Pin Characteristics

 $(Vcc = AVcc = 2.7V \text{ to } 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Pin name	Conditions		Value		Unit	Remarks
i didilietei	Cymbol	i iii iiaiie	Conditions	Min	Тур	Max		Remarks
"H" level input voltage (hysteresis input)	V _{IHS}	CMOS hysteresis input pin, MD0,1 5V tolerant I/O pin		Vcc × 0.8	-	Vcc + 0.3 Vss + 5.5	V	
"L" level input voltage (hysteresis input)	V _{ILS}	CMOS hysteresis input pin, MD0,1	-	Vss - 0.3	-	Vcc × 0.2	V	
		4mA type	$Vcc \ge 4.5 \text{ V}$ $I_{OH} = -4 \text{ mA}$ $Vcc < 4.5 \text{ V}$ $I_{OH} = -2 \text{ mA}$	_ Vcc - 0.5	-	Vcc	V	
"H" level output voltage	V _{OH}	12mA type	$Vcc ≥ 4.5 V$ $I_{OH} = -12 \text{ mA}$ $Vcc < 4.5 V$ $I_{OH} = -8 \text{ mA}$	Vcc - 0.5	-	Vcc	V	
		P80, P81	Vcc ≥ 4.5 V I_{OH} = - 20.5 mA Vcc < 4.5 V I_{OH} = - 13.0 mA	- Vcc - 0.4	-	Vcc	V	
		4mA type	$Vcc \ge 4.5 \text{ V}$ $I_{OL} = 4 \text{ mA}$ $Vcc < 4.5 \text{ V}$ $I_{OL} = 2 \text{ mA}$	_ Vss	-	0.4	V	
"L" level output voltage	V _{OL}	12mA type	$Vcc ≥ 4.5 V$ $I_{OL} = 12 \text{ mA}$ $Vcc < 4.5 V$ $I_{OL} = 8 \text{ mA}$	- Vss	-	0.4	V	
		P80, P81	Vcc ≥ 4.5 V I_{OL} = 18.5 mA Vcc < 4.5 V I_{OL} = 10.5 mA	- Vss	-	0.4	V	
Input leak current	I _{IL}	-	-	- 5	-	+ 5	μΑ	
Pull-up resistor value	R _{PU}	Pull-up pin	Vcc ≥ 4.5 V Vcc < 4.5 V	25 30	50 80	100	kΩ	
Input capacitance	C _{IN}	Other than Vcc, Vss, AVcc, AVss, AVRH	-	-	5	15	pF	

12.4 AC Characteristics

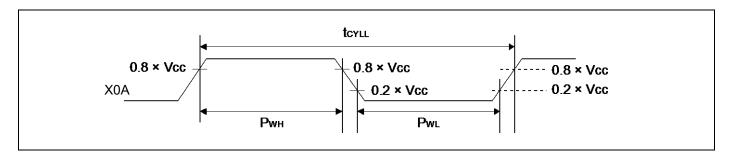

12.4.1 Main Clock Input Characteristics

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Cumbal	Pin	Conditions	V	alue	Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
			Vcc ≥ 4.5 V	4	48	MHz	When crystal oscillator is
Input frequency	F _{CH}		Vcc < 4.5 V	4	20	IVITIZ	connected
input irequency	CH		Vcc ≥ 4.5 V	4	48	MHz	When using external
			Vcc < 4.5 V	4	20	IVITIZ	Clock
Input alaak ayala	1.	X0	Vcc ≥ 4.5 V	20.83	250	no	When using external
Input clock cycle	t _{CYLH}	X1	Vcc < 4.5 V	50	250	ns	Clock
Input clock pulse width	-		P _{WH} /t _{CYLH} P _{WL} /t _{CYLH}	45	55	%	When using external Clock
Input clock rising time and falling time	t _{CF}		-	-	5	ns	When using external Clock
	F _{CM}	-	-	-	40	MHz	Master clock
Internal operating	Fcc	-	-	-	40	MHz	Base clock (HCLK/FCLK)
clock *1	F _{CP0}	-	-	-	40	MHz	APB0 bus clock*2
frequency	F _{CP1}	-	-	-	40	MHz	APB1 bus clock*2
	F _{CP2}	-	-	-	40	MHz	APB2 bus clock*2
Internal operating	t _{cycc}	-	-	25	-	ns	Base clock (HCLK/FCLK)
clock *1	t _{CYCP0}	-	-	25	-	ns	APB0 bus clock*2
cycle time	t _{CYCP1}	-	-	25	-	ns	APB1 bus clock*2
	t _{CYCP2}	-	-	25	-	ns	APB2 bus clock*2

^{*1:} For more information about each internal operating clock, see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".

^{*2:} For about each APB bus which each peripheral is connected to, see "8. Block Diagram" in this datasheet.



12.4.2 Sub Clock Input Characteristics

(Vcc = 2.7V to 5.5V, Vss = 0V, $T_A = -40$ °C to + 105°C)

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
Parameter	Зупівої	name	Conditions	Min	Тур	Max	Unit	Nemarks	
Input frequency	F _{CL}		-	-	32.768	-	kHz	When crystal oscillator is connected	
, ,		X0A	-	32	-	100	kHz	When using external clock	
Input clock cycle	t _{CYLL}	X1A	-	10	-	31.25	μs	When using external clock	
Input clock pulse width	-		P _{WH} /t _{CYLL} P _{WL} /t _{CYLL}	45	-	55	%	When using external clock	

12.4.3 Built-in CR Oscillation Characteristics

Built-in High-speed CR

$$(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$$

Parameter	Symbol	Conditions		Value		Unit	Remarks
Farameter	Symbol	Conditions	Min	Тур	Max	Offic	Remarks
		T _A = + 25°C	3.96	4	4.04		
Clock frequency	F _{CRH}	$T_A = 0$ °C to + 70°C	3.84	4	4.16	MHz	When trimming *1
		T _A = - 40°C to + 105°C	3.8	4 4.2		1	
		T _A = - 40°C to + 105°C	3	4	5		When not trimming
Frequency stability time	t _{CRWT}	-	-	-	90	μs	*2

^{*1:} In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.

Built-in Low-speed CR

$$(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$$

Parameter	Symbol	Conditions		Value		Unit	Remarks
Parameter	Symbol	Conditions	Min	Тур	Max	Ullit	Remarks
Clock frequency	F _{CRL}	-	50	100	150	kHz	

Document Number: 002-04674 Rev. *D

^{*2:} Frequency stable time is time to stable of the frequency of the High-speed CR clock after the trim value is set. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.

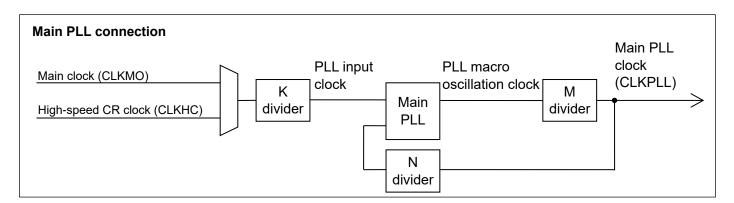
12.4.4 Operating Conditions of Main PLL and USB PLL (In the case of using main clock for input clock of PLL)

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Symbol	Value			Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Oilit	Remarks
PLL oscillation stabilization wait time (LOCK UP time) *1	t _{LOCK}	100	-	-	μs	
PLL input clock frequency	f _{PLLI}	4	-	16	MHz	
PLL multiple rate	-	13	-	75	multiple	
PLL macro oscillation clock frequency	f_{PLLO}	200	-	300	MHz	
Main PLL clock frequency *2	F _{CLKPLL}	-	-	40	MHz	
USB clock frequency *3	F _{CLKSPLL}	-	-	48	MHz	After the M frequency division

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

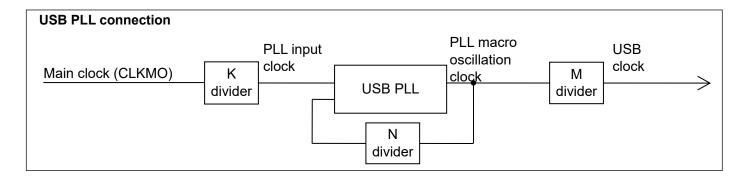
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in high speed CR for the input clock of the main PLL)


 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Symbol		Value		Unit	Remarks
raiametei	Symbol	Min	Тур	Max	Oilit	Kemarks
PLL oscillation stabilization wait time (LOCK UP time) *1	t _{LOCK}	100	-	-	μs	
PLL input clock frequency	f _{PLLI}	3.8	4	4.2	MHz	
PLL multiple rate	-	50	-	71	multiple	
PLL macro oscillation clock frequency	f _{PLLO}	190	-	300	MHz	
Main PLL clock frequency *2	F _{CLKPLL}	-	-	40	MHz	

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

^{*2:} For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".


When setting PLL multiple rate, please take the accuracy of the built-in high-speed CR clock into account and prevent the master clock from exceeding the maximum frequency.

^{*2:} For more information about Main PLL clock (CLKPLL), see "Chapter 2-1: Clock" in "FM3 Family Peripheral Manual".

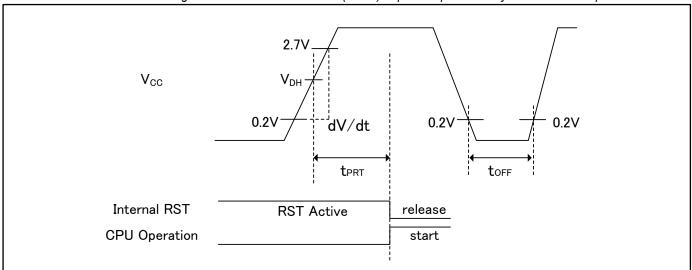
^{*3:} For more information about USB clock, see "Chapter 2-2: USB Clock Generation" in "FM3 Family Peripheral Manual Communication Macro Part".

12.4.6 Reset Input Characteristics

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
i didilictor	Gy20 1			Min	Max		Komurko
Reset input time	t _{INITX}	INITX	-	500	-	Ns	

12.4.7 Power-on Reset Timing


(Vss = 0V, $T_A = -40^{\circ}C$ to + 105°C)

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
Farameter			Conditions	Min	Тур	Max	Oilit	Remarks
Power supply shut down time	toff		-	50	-	-	ms	*1
Power ramp rate	dV/dt	VCC	Vcc:0.2 V to 2.70 V	0.9	-	1000	mV/us	*2
Time until releasing Power-on reset	tprt		-	0.446	-	0.744	ms	

^{*1:} Vcc must be held below 0.2 V for minimum period of toff. Improper initialization may occur if this condition is not met.

Note:

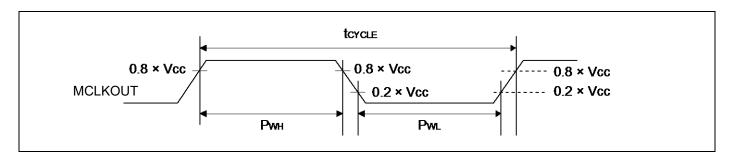
If toff cannot be satisfied designs must assert external reset(INITX) at power-up and at any brownout event per 12. 4. 6.

Glossary

VDH: detection voltage of Low Voltage detection reset. See "0. Low-voltage Detection Characteristics"

^{*2:} This dV/dt characteristic is applied at the power-on of cold start (toff>50 ms).

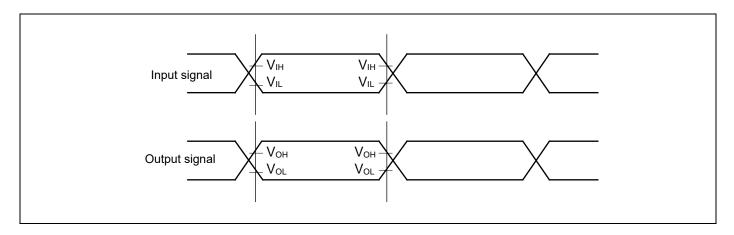
12.4.8 External Bus Timing


External bus clock output characteristics

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
			Conditions	Min	Max	Oilit
Output frequency	tcycle	- MCLKOUT	Vcc ≥ 4.5 V	-	40	MHz
			Vcc < 4.5 V	-	32	MHz
Minimum clock cycle time	-		Vcc ≥ 4.5 V	25	-	ns
			Vcc < 4.5 V	31.25	-	ns

Note:

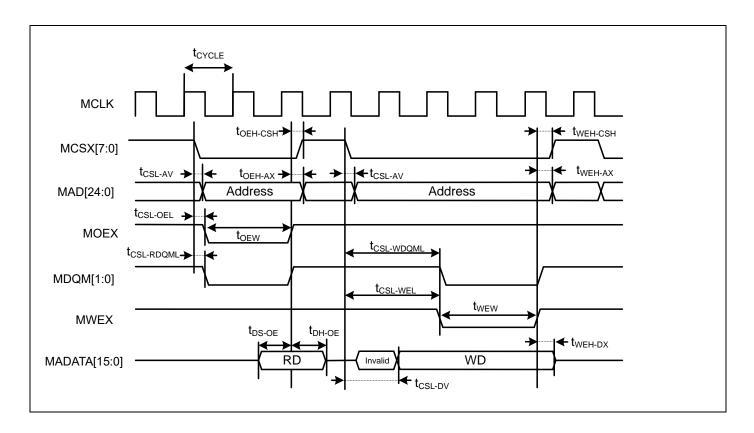

The external bus clock output is a divided clock of HCLK. For more information about setting of clock divider, see "Chapter 12: External Bus Interface" in "FM3 Family Peripheral Manual" When external bus clock is not output, this characteristic does not give any effect on external bus operation.

External bus signal input/output characteristics

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Symbol	Conditions	Value	Unit	Remarks
Signal input characteristics	V _{IH}	-	0.8 × V _{CC}	V	
	V _{IL}		0.2 × V _{CC}	V	
Signal output characteristics	V _{OH}		0.8 × V _{CC}	٧	
	V _{OL}		0.2 × V _{CC}	٧	

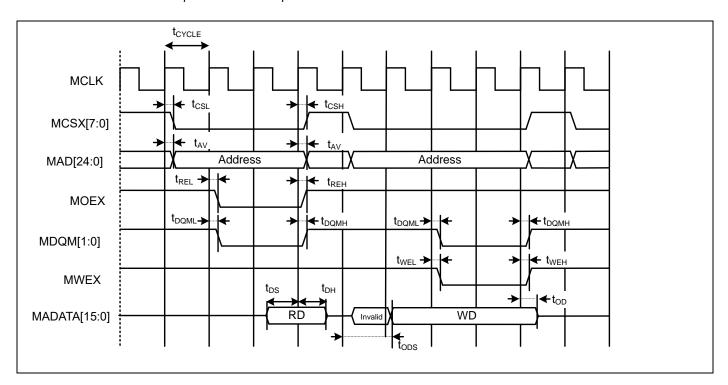
Separate Bus Access Asynchronous SRAM Mode


 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Complete	Din name	Conditions		Value		
Parameter	Symbol	Pin name	Conditions	Min	Max	Unit	
MOEX		MOEY	Vcc ≥ 4.5 V	MOLICUT O			
Min pulse width	t _{OEW}	MOEX	Vcc < 4.5 V	MCLK×n-3	-	ns	
MCSX ↓→ Address output	4	MCSX[7:0]	Vcc ≥ 4.5 V	-9	+ 9		
delay time	t _{CSL - AV}	MAD[24:0]	Vcc < 4.5 V	-12	+ 12	ns	
$MOEX \uparrow \rightarrow$	4	MOEX	Vcc ≥ 4.5 V	0	MCLK×m+9		
Address hold time	t _{OEH - AX}	MAD[24:0]	Vcc < 4.5 V	0	MCLK×m+12	ns	
$MCSX \downarrow \rightarrow$	4		Vcc ≥ 4.5 V	MCLK×m-9	MCLK×m+9		
MOEX ↓ delay time	t _{CSL - OEL}	MOEX	Vcc < 4.5 V	MCLK×m-12	MCLK×m+12	ns	
$MOEX \uparrow \rightarrow$	4	MCSX[7:0]	Vcc ≥ 4.5 V	0	MCLK×m+9		
MCSX ↑ time	t _{OEH - CSH}		Vcc < 4.5 V	0	MCLK×m+12	ns	
$MCSX \downarrow \rightarrow$	4	MCSX	Vcc ≥ 4.5 V	MCLK×m-9	MCLK×m+9	ns	
MDQM ↓ delay time	t _{CSL - RDQML}	MDQM[1:0]	Vcc < 4.5 V	MCLK×m-12	MCLK×m+12	115	
Data set up →	+	MOEX	Vcc ≥ 4.5 V	20	-	— ns	
MOEX ↑ time	t _{DS - OE}	MADATA[15:0]	Vcc < 4.5 V	38	-	115	
$MOEX \uparrow \rightarrow$	+	MOEX	Vcc ≥ 4.5 V	0	-	ns	
Data hold time	t _{DH - OE}	MADATA[15:0]	Vcc < 4.5 V			115	
MWEX	4	MWEX	Vcc ≥ 4.5 V	MCLK×n-3		ns	
Min pulse width	t _{WEW}	IVIVVEX	Vcc < 4.5 V	WICER^II-3		115	
MWEX ↑ → Address output	+	MWEX	Vcc ≥ 4.5 V	0	MCLK×m+9	n	
delay time	t _{WEH - AX}	MAD[24:0]	Vcc < 4.5 V	U	MCLK×m+12	ns	
$MCSX \downarrow \rightarrow$	+		Vcc ≥ 4.5 V	MCLK×n-9	MCLK×n+9	— ns	
MWEX ↓ delay time	t _{CSL - WEL}	MWEX	Vcc < 4.5 V	MCLK×n-12	MCLK×n+12	115	
$MWEX \uparrow \rightarrow$	+	MCSX[7:0]	Vcc ≥ 4.5 V	0	MCLK×m+9	ns	
MCSX ↑ delay time	t _{weh - CSH}		Vcc < 4.5 V	U	MCLK×m+12	115	
$MCSX \downarrow \rightarrow$	+	MCSX	Vcc ≥ 4.5 V	MCLK×n-9	MCLK×n+9	— ns	
MDQM ↓ delay time	t _{CSL-WDQML}	MDQM[1:0]	Vcc < 4.5 V	MCLK×n-12	MCLK×n+12	115	
$MCSX \downarrow \rightarrow$	t	MCSX	Vcc ≥ 4.5 V	MCLK-9	MCLK+9	— ns	
Data output time	t _{CSL - DV}	MADATA[15:0]	Vcc < 4.5 V	MCLK-12	MCLK+12	110	
$MWEX \uparrow \rightarrow$		MWEX	Vcc ≥ 4.5 V	0	MCLK×m+9	— ns	
Data hold time	t _{WEH - DX}	MADATA[15:0]	Vcc < 4.5 V	U	MCLK×m+12	1115	

Note:

- When the external load capacitance $C_L = 30$ pF (m = 0 to 15, n = 1 to 16).

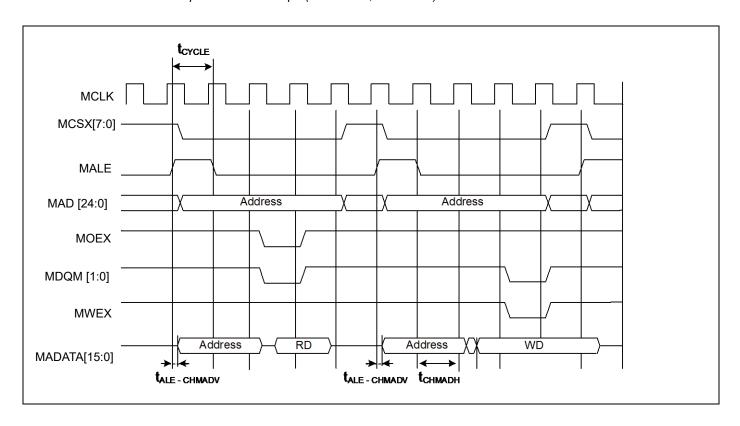

Separate Bus Access Synchronous SRAM Mode

(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40°C to + 105°C)

Parameter	Cumbal	Pin name	Conditions		Value	Unit
	Symbol		Conditions	Min	Max	Unit
Address delay time	4	MCLK MAD[24:0]	Vcc ≥ 4.5 V	4	9	
Address delay time	t _{AV}		Vcc < 4.5 V	71	12	ns
	4		Vcc ≥ 4.5 V	1	9	
MCSX delay time	t _{CSL}	MCLK	Vcc < 4.5 V	1	12	ns
Wics delay time		MCSX[7:0]	Vcc ≥ 4.5 V		9	ns
	t _{CSH}		Vcc < 4.5 V	ļ	12	115
			Vcc ≥ 4.5 V		9	ns
MOEX delay time	t _{REL}	MCLK	Vcc < 4.5 V	ļ	12	115
INIOEX delay time		MOEX	Vcc ≥ 4.5 V		9	ns
	t _{REH}		Vcc < 4.5 V	ļ	12	115
Data set up →		MCLK	Vcc ≥ 4.5 V	19		ns
MCLK ↑ time	t _{DS}	MADATA[15:0]	Vcc < 4.5 V	37	-	115
MCLK ↑→		MCLK	Vcc ≥ 4.5 V	0		no
Data hold time	t _{DH}	MADATA[15:0]	Vcc < 4.5 V		=	ns
		MCLK MWEX	Vcc ≥ 4.5 V		9	ns
MWEX delay time	t _{WEL}		Vcc < 4.5 V	Ī	12	
INVVEX delay time	4		Vcc ≥ 4.5 V		9	ns
	t _{WEH}		Vcc < 4.5 V	ļ	12	
		MCLK MDQM[1:0]	Vcc ≥ 4.5 V		9	
MDQM[1:0]	t _{DQML}		Vcc < 4.5 V	1	12	ns
delay time			Vcc ≥ 4.5 V	1	9	
	t _{DQMH}		Vcc < 4.5 V	ļ	12	ns
MCLK ↑ →		MCLK,	V _{CC} ≥ 4.5 V	MCLK+1	MCLK+18	
Data output time	t _{ods}	MADATA[15:0]	V_{CC} < 4.5 V	IVICENT I	MCLK+24	ns
MCLK ↑ →		MCLK	Vcc ≥ 4.5 V	1	18	
Data output time	t _{OD}	MADATA[15:0]	Vcc < 4.5 V	1	24	ns

Note:

- When the external load capacitance C_L = 30 pF.

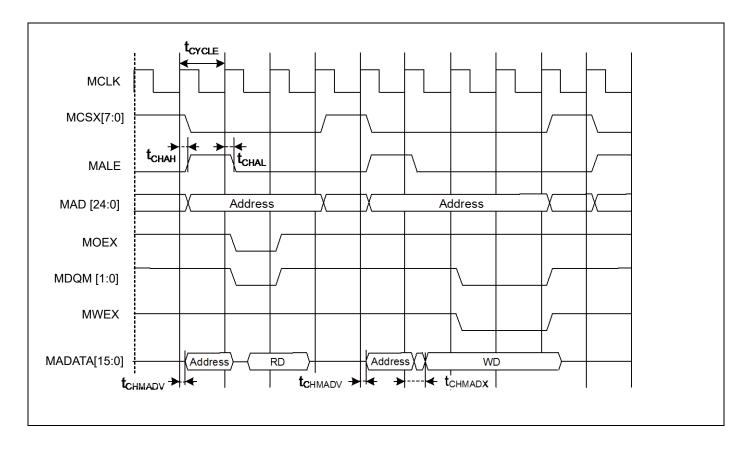

Multiplexed Bus Access Asynchronous SRAM Mode

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Cymbal	Din name	Pin name Conditions	V	Unit	
Parameter	Symbol	Pin name	Conditions	Min	Max	Ullit
Multiplexed	t _{ALE-CHMADV}		Vcc ≥ 4.5 V	0	10	ns
Address delay time	CALE-CHIMADV	MALE	Vcc < 4.5 V		20	110
Multiplexed Address hold time	t _{CHMADH}	MADATA[15:0]	Vcc ≥ 4.5 V	MCLK×n+0	MCLK×n+10	ns
Address hold liftle			Vcc < 4.5 V	MCLK×n+0	MCLK×n+20	

Note:

When the external load capacitance $C_L = 30 \text{ pF}$ (m = 0 to 15, n = 1 to 16).

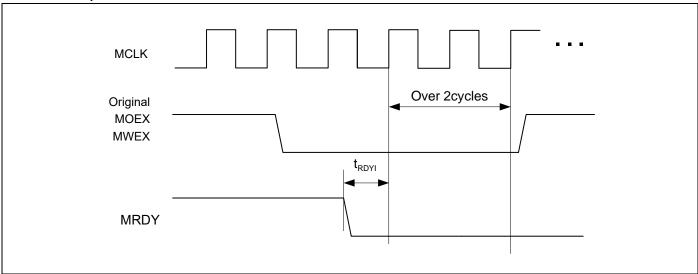

Multiplexed Bus Access Synchronous SRAM Mode

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

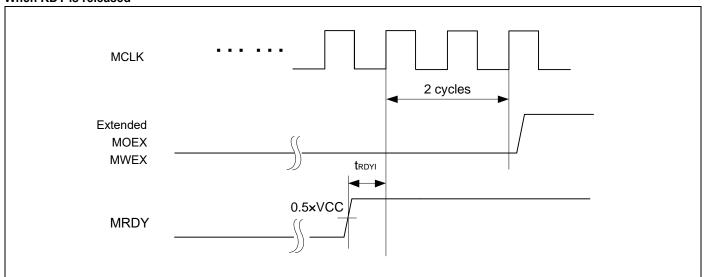
Parameter	Symbol	Pin name	Conditions	V	alue	Unit	Remarks
Parameter	Symbol	Pili lialile	Conditions	Min	Max	Ullit	Remarks
	+		Vcc ≥ 4.5 V	1	9	ns	
MALE delevitime	t _{CHAL}	MCLK	Vcc < 4.5 V	1	12	ns	
MALE delay time	t _{CHAH}	ALE	Vcc ≥ 4.5 V		9	ns	
			Vcc < 4.5 V] '	12	ns	
MCLK ↑ → Multiplexed	t _{CHMADV}		Vcc ≥ 4.5 V	1	t _{OD}	ns	
Address delay time		MCLK	Vcc < 4.5 V				
MCLK ↑ → Multiplexed	t _{CHMADX}	MADATA[15:0]	Vcc ≥ 4.5 V	1	t _{OD}	ns	
Data output time			Vcc < 4.5 V				

Note:

- When the external load capacitance $C_L = 30 \text{ pF}$.



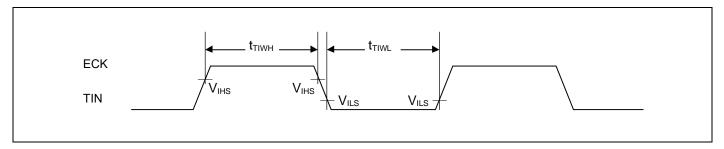
External Ready Input Timing


 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Doromotor	Symbol	Pin name	Conditions	Value		Unit	Remarks
Parameter	Symbol	Pili lialile	Conditions	Min	Max	Ullit	Remarks
MCLK ↑		MCLK	Vcc ≥ 4.5 V	19			
MRDY input setup time	1.5.1	MRDY	Vcc < 4.5 V	37] -	Ns	

When RDY is input

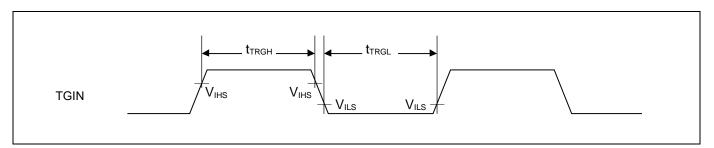
When RDY is released



12.4.9 Base Timer Input Timing

Timer input timing

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$


Parameter	Symbol	Pin name	Conditions	Val	ue	Unit	Remarks
Parameter	Symbol	Fili liallie	Conditions	Min	Max	Ullit	Remarks
Input pulse width	t _{TIWH} t _{TIWL}	TIOAn/TIOBn (when using as ECK,TIN)	-	2t _{CYCP}	-	ns	

Trigger input timing

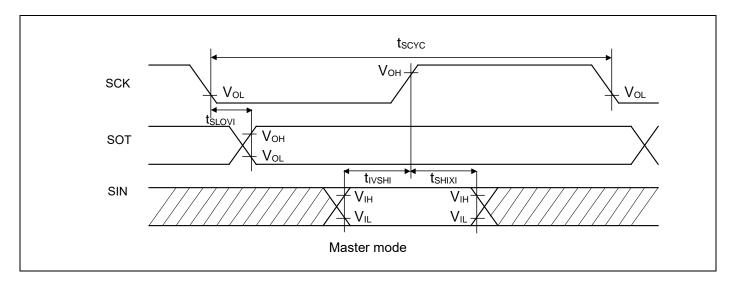
 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

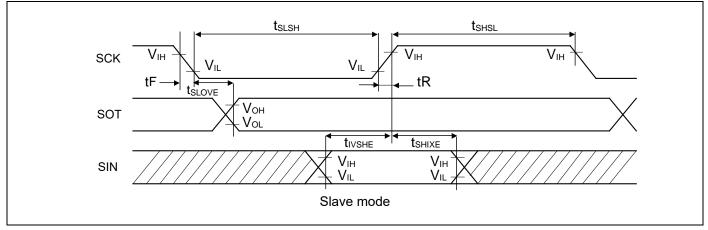
Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
Farameter	Symbol	Fill Hallie	Conditions	Min	Max	Oilit	Remarks
Input pulse width	t _{TRGH} , t _{TRGL}	TIOAn/TIOBn (when using as TGIN)	-	2t _{CYCP}	-	Ns	

Note:

tcycp indicates the APB bus clock cycle time.
 About the APB bus number which the Base Timer is connected to, see "8. Block Diagram" in this datasheet.

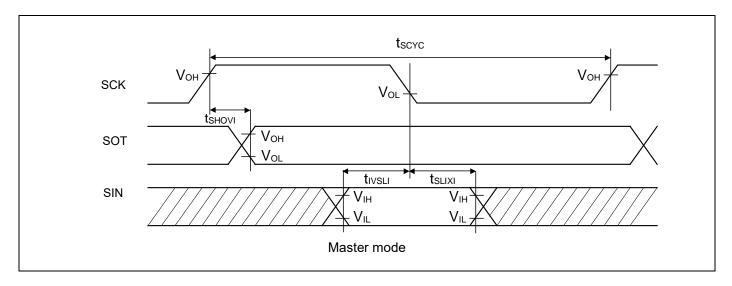
12.4.10 CSIO/UART Timing

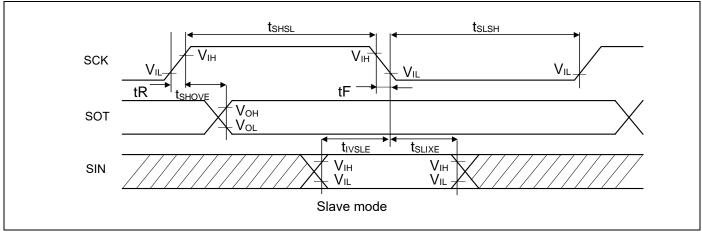

CSIO (SPI = 0, SCINV = 0)


 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Cumbal	Pin	Conditions	Vcc <	4.5V	Vcc ≥	: 4.5V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	t _{scyc}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{sLovi}	SCKx SOTx		- 30	+ 30	- 20	+ 20	ns
SIN → SCK ↑ setup time	t _{IVSHI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK \uparrow \rightarrow SIN$ hold time	t _{shixi}	SCKx SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK\downarrow\toSOTdelaytime$	t _{SLOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \uparrow setup \ time$	t _{IVSHE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \; hold \; time$	t _{SHIXE}	SCKx SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

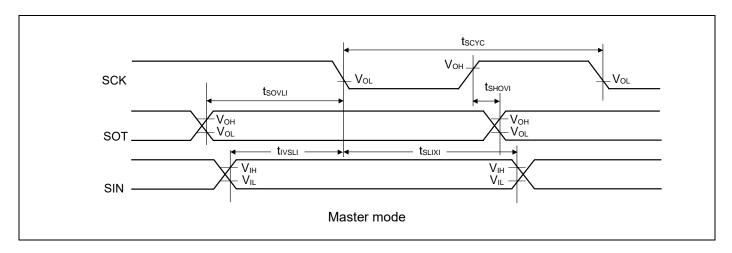
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 \text{ pF}$.

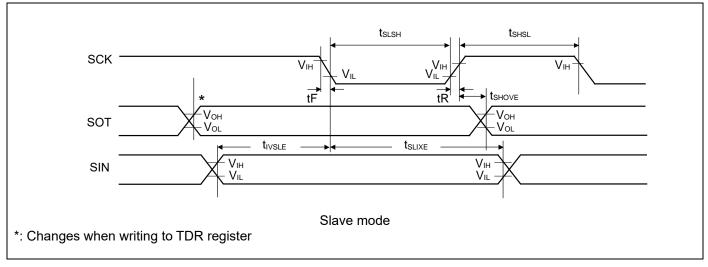

CSIO (SPI = 0, SCINV = 1)


 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Devemeter	Cumbal	Pin	Conditions	Vcc <	4.5 V	Vcc ≥	≥ 4.5 V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	t _{scyc}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK ↑ → SOT delay time	t _{shovi}	SCKx SOTx	Mantananada	- 30	+ 30	- 20	+ 20	ns
$SIN \rightarrow SCK \downarrow setup time$	t _{IVSLI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK\downarrow\toSIN\;hold\;time$	t _{SLIXI}	SCKx SINx		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT \ delay \ time$	t _{SHOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \downarrow setup\ time$	t _{IVSLE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK\downarrow\toSIN\;hold\;time$	t _{SLIXE}	SCKx SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

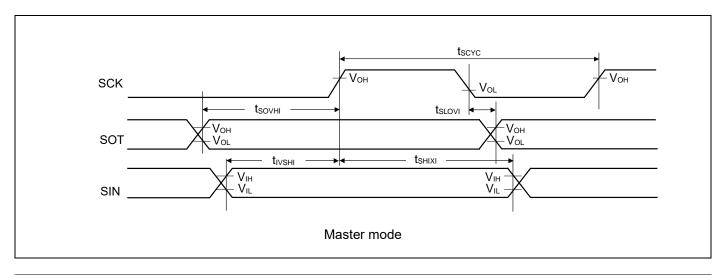
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function Serial is connected to, see "Block Diagram" in this datasheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 \text{ pF}$.

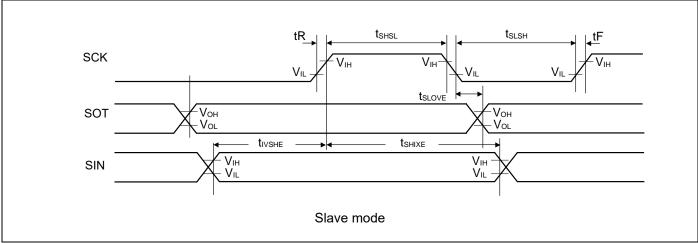

CSIO (SPI = 1, SCINV = 0)


 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Doromotor	Cumbal	Pin name	Conditions	Vcc <	< 4.5 V	Vcc ≥	4.5 V	Unit
Parameter	Symbol	Pin name	Conditions	Min	Max	Min	Max	Unit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
SCK ↑→ SOT delay time	t _{shovi}	SCKx SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup \ time$	t _{IVSLI}	SCKx SINx	Master mode	50	-	30	-	ns
$SCK\downarrow\toSIN\;hold\;time$	t _{SLIXI}	SCKx SINx		0	-	0	-	ns
$SOT \to SCK \downarrow delay time$	t _{sovLI}	SCKx SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	=	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{shsl}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK \uparrow \to SOT \ delay \ time$	t _{SHOVE}	SCKx SOTx		-	50	-	30	ns
$SIN \to SCK \downarrow setup \ time$	t _{IVSLE}	SCKx SINx	Slave mode	10	-	10	=	ns
$SCK\downarrow \to SIN \; hold \; time$	t _{SLIXE}	SCKx SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

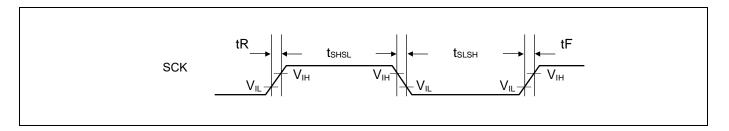
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 pF$.


CSIO(SPI = 1, SCINV = 1)


 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Davamatar	Cymhol	Pin	Conditions	Vcc <	4.5 V	Vcc≥	4.5 V	Unit
Parameter	Symbol	name	Conditions	Min	Max	Min	Max	Unit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	t _{scyc}	SCKx		4t _{CYCP}	-	4t _{CYCP}	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVI}	SCKx SOTx		- 30	+ 30	- 20	+ 20	ns
SIN → SCK ↑ setup time	t _{IVSHI}	SCKx SINx	Master mode	50	-	30	-	ns
SCK ↑ →SIN hold time	t _{shixi}	SCKx SINx		0	-	0	-	ns
SOT → SCK ↑ delay time	t _{sovнi}	SCKx SOTx		2t _{CYCP} - 30	=	2t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	t _{CYCP} + 10	-	ns
$SCK\downarrow \to SOT$ delay time	t _{SLOVE}	SCKx SOTx		-	50	-	30	ns
SIN → SCK ↑ setup time	t _{IVSHE}	SCKx SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \to SIN \; hold \; time$	t _{SHIXE}	SCKx SINx		20	=	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

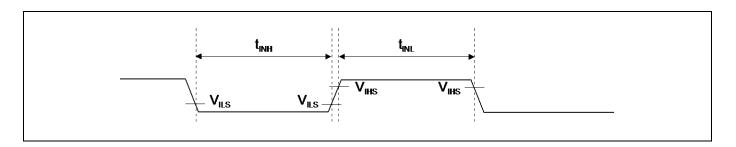
- The above characteristics apply to CLK synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram" in this datasheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 30 \text{ pF}$.



UART external clock input (EXT = 1)

(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40°C to + 105°C)

Parameter	Symbol	Conditions	Min	Max	Unit	Remarks
Serial clock "L" pulse width	t _{SLSH}		t _{CYCP} + 10	-	ns	
Serial clock "H" pulse width	t _{SHSL}	C = 20 pF	t _{CYCP} + 10	=	ns	
SCK falling time	tF	$C_L = 30 \text{ pF}$	-	5	ns	
SCK rising time	tR		-	5	ns	

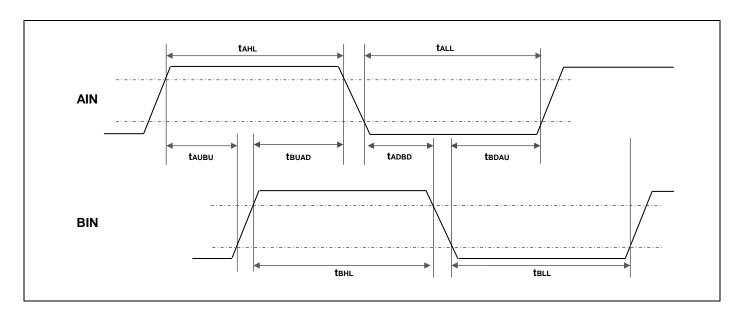

12.4.11 External Input Timing

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

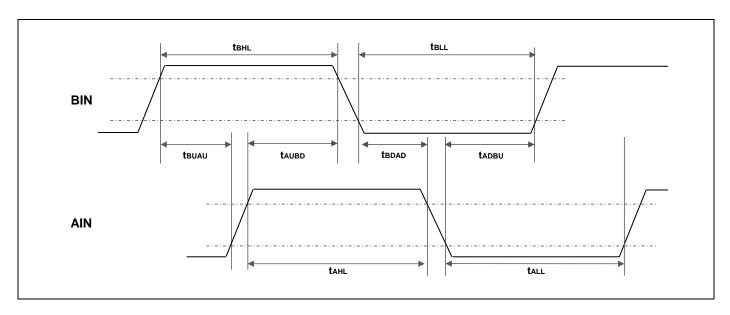
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks	
Parameter	Symbol	Pili lialile	Conditions	Min	Max	Offic	Remarks	
		ADTG		2+ *			A/D converter trigger input	
		FRCKx] -	2t _{CYCP} *	-	ns	Free-run timer input clock	
		ICxx					Input capture	
Input pulse width	t _{INH}	DTTIxX	=	2t _{CYCP} *	-	ns	Wave form generator	
t _{iNL}	t _{INL}	INTxx,	Except Timer mode, Stop mode	2t _{CYCP} + 100*	-	ns	External interrupt	
	N	NMIX	Timer mode, Stop mode	500	-	ns	NMI	

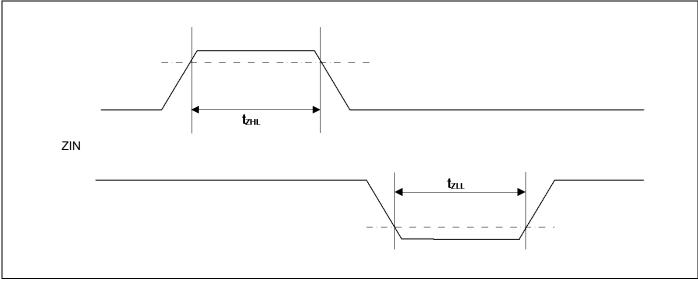
^{*1:} tcycp indicates the APB bus clock cycle time.

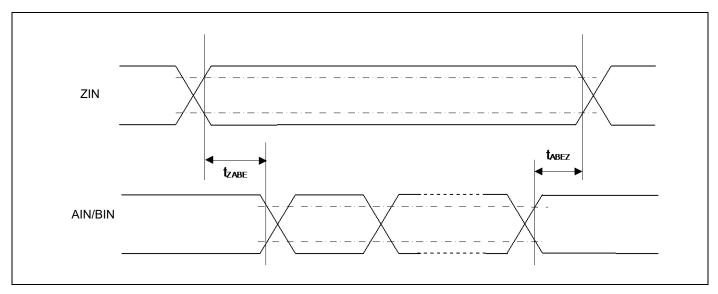
About the APB bus number which the A/D converter, Multi-function Timer, External interrupt are connected to, see "8. Block Diagram" in this datasheet.


12.4.12 Quadrature Position/Revolution Counter timing

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

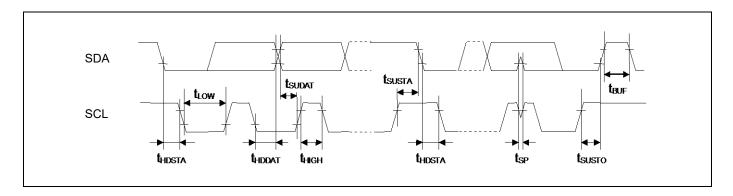

Dawamatan	Courselle ed	Canditions	Va	lue	I Imi4
Parameter	Symbol	Conditions	Min	Max	Unit
AIN pin "H" width	t _{AHL}	-			
AIN pin "L" width	t _{ALL}	-			
BIN pin "H" width	t _{BHL}	-			
BIN pin "L" width	t _{BLL}	-			
BIN rise time from AIN pin "H" level	t _{AUBU}	PC_Mode2 or PC_Mode3			
AIN fall time from BIN pin "H" level	t _{BUAD}	PC_Mode2 or PC_Mode3			
BIN fall time from AIN pin "L" level	t _{ADBD}	PC_Mode2 or PC_Mode3			
AIN rise time from BIN pin "L" level	t _{BDAU}	PC_Mode2 or PC_Mode3			
AIN rise time from BIN pin "H" level	t _{BUAU}	PC_Mode2 or PC_Mode3	2t _{CYCP} *	-	ns
BIN fall time from AIN pin "H" level	t _{AUBD}	PC_Mode2 or PC_Mode3			
AIN fall time from BIN pin "L" level	t _{BDAD}	PC_Mode2 or PC_Mode3			
BIN rise time from AIN pin "L" level	t _{ADBU}	PC_Mode2 or PC_Mode3			
ZIN pin "H" width	t _{zhL}	QCR:CGSC = "0"			
ZIN pin "L" width	t_{ZLL}	QCR:CGSC = "0"			
AIN/BIN rise and fall time from determined ZIN level	t _{ZABE}	QCR:CGSC = "1"			
Determined ZIN level from AIN/BIN rise and fall time	t _{ABEZ}	QCR:CGSC = "1"			


^{*:} tcycp indicates the APB bus clock cycle time.


About the APB bus number which Quadrature Position/Revolution Counter is connected to, see "8. Block Diagram" in this datasheet.

12.4.13 I2C Timing

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

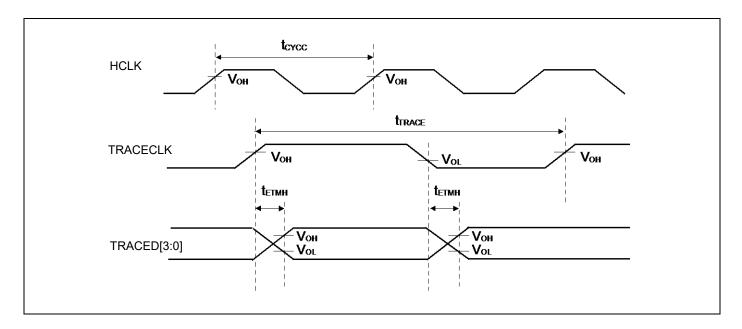

Parameter	Cumbal	Conditions	Standard	l-mode	Fast-r	node	Unit	Remarks
Parameter	Symbol	Conditions	Min	Max	Min	Max	Unit	Remarks
SCL clock frequency	F _{SCL}		0	100	0	400	kHz	
(Repeated) START condition hold time SDA ↓→ SCL ↓	t _{HDSTA}		4.0	-	0.6	-	μs	
SCLclock "L" width	t _{LOW}		4.7	-	1.3	-	μs	
SCLclock "H" width	t _{HIGH}		4.0	-	0.6	-	μs	
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{susta}		4.7	-	0.6	-	μs	
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}	$C_L = 30 \text{ pF},$ $R = (Vp/I_{OL})^{*1}$	0	3.45*2	0	0.9*3	μs	
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t _{SUDAT}		250	-	100	-	ns	
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	t _{susto}		4.0	-	0.6	-	μs	
Bus free time between "STOP condition" and "START condition"	t _{BUF}		4.7	-	1.3	-	μs	
Noise filter	t _{SP}	-	2t _{CYCP} *4	=	2t _{CYCP} *4	-	ns	

- *1; R and C represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.
- *2: The maximum thddat must satisfy that it doesn't extend at least "L" period (tLow) of device's SCL signal.
- *3: Fast-mode I²C bus device can be used on Standard-mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250 ns".
- *4: t_{CYCP} is the APB bus clock cycle time.

About the APB bus number that I²C is connected to, see "8. Block Diagram" in this datasheet.

To use Standard-mode, set the APB bus clock at 2 MHz or more.

To use Fast-mode, set the APB bus clock at 8 MHz or more.

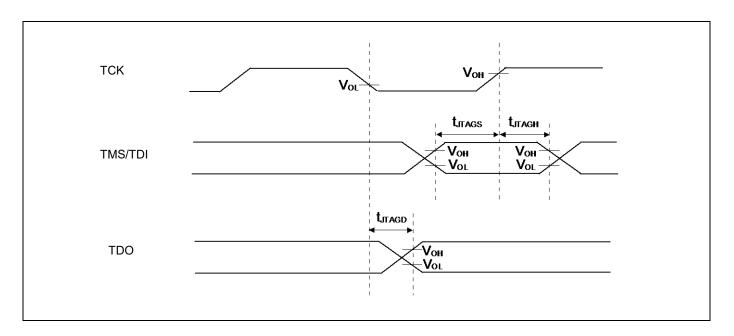

12.4.14 ETM timing

(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40°C to + 105°C)

Parameter	Cumbal	Pin name	Conditions	Valu	16	Unit	Remarks
Parameter	Symbol	Fili liallie	Conditions	Min	Max	Unit	Remarks
		TDAGEGLIA	Vcc ≥ 4.5 V	2	9		
Data hold	t _{ETMH}	TRACECLK TRACED[3:0]	Vcc < 4.5 V	2	15	ns	
TRACECLK	44	<u> </u>	Vcc ≥ 4.5 V	-	40	MHz	
frequency	1/t _{TRACE}		Vcc < 4.5 V	-	32	MHz	
TRACECLK		TRACECLK	Vcc ≥ 4.5 V	25	-	ns	
Clock cycle time	T== =		Vcc < 4.5 V	31.25	-	ns	

Note:

- When the external load capacitance $C_L = 30 \text{ pF}$.


12.4.15 JTAG Timing

 $(Vcc = 2.7V to 5.5V, Vss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Symbol	Pin name	ame Conditions		lue	Unit	Remarks
Farameter	Symbol	Fill flaffie	Conditions	Min	Max	Ollit	Kelliaiks
TMC TDI patrus time		TCK	Vcc ≥ 4.5 V	15		Ns	
TMS, TDI setup time	t _{JTAGS}	TMS,TDI	Vcc < 4.5 V		-		
TMS, TDI hold time	4	TCK TMS,TDI	Vcc ≥ 4.5 V	15	-	Ns	
TWO, TEI HOIG TIME	JIAGH		Vcc < 4.5 V	13			
		TOK	Vcc ≥ 4.5 V	-	25		
TDO delay time	t_{JTAGD}	TCK TDO	Vcc < 4.5 V	-	45	Ns	

Note:

− When the external load capacitance C_L = 30 pF.

12.5 12-bit A/D Converter

Electrical characteristics for the A/D converter

 $(Vcc = AVcc = 2.7V to 5.5V, Vss = AVss = 0V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Parameter	Cumbal	Pin		Value		Unit	Remarks	
Parameter	Symbol	name	Min	Тур	Max	Ullit	Remarks	
Resolution	-	-	-	-	12	bit		
Integral Nonlinearity	-	-	-	± 1.7	± 4.5	LSB		
Differential Nonlinearity	-	-	-	± 1.7	± 2.5	LSB	AVRH = 2.7 V to 5.5 V	
Zero transition voltage	V_{ZT}	ANxx	-	± 8	± 15	mV	AVKH = 2.7 V to 5.5 V	
Full-scale transition voltage	V_{FST}	ANxx	-	AVRH±8	AVRH±15	mV		
Conversion time	_	_	1.0*1	-	-		AVcc ≥ 4.5 V	
Conversion unie	_	-	1.2* ¹			μs	AVcc < 4.5 V	
Campling time	Ts		*2	-	-		AVcc ≥ 4.5 V	
Sampling time	18	-	*2	-	-	ns	AVcc < 4.5 V	
Compare clock cycle*3	Tcck	-	50	-	2000	ns		
State transition time to operation permission	Tstt	-	-	-	1.0	μs		
Analog input capacity	C _{AIN}	-	-	-	12.9	pF		
Amalan innut naciatan	_				2	1.0	AVcc ≥ 4.5 V	
Analog input resistor	R _{AIN}	-	-	-	3.8	kΩ	AVcc < 4.5 V	
Interchannel disparity	-	-	-	-	4	LSB		
Analog port input leak current	-	ANxx	-	-	5	μA		
Analog input voltage	-	ANxx	AVSS	-	AVRH	V		
Reference voltage	-	AVRH	2.7	-	AVCC	V		

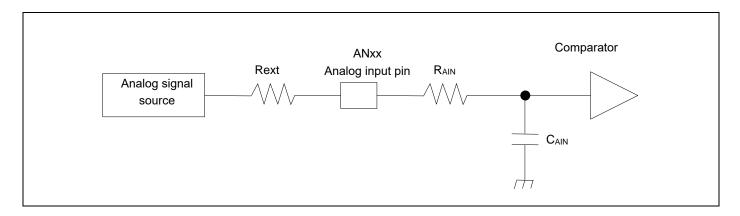
^{*1:} The conversion time is the value of sampling time (Ts) + compare time (Tc).

The condition of the minimum conversion time is the following.

AVcc ≥ 4.5 V, HCLK=40 MHz sampling time: 300 ns, compare time: 700 ns AVcc < 4.5 V, HCLK=40 MHz sampling time: 500 ns, compare time: 700 ns

Ensure that it satisfies the value of the sampling time (Ts) and compare clock cycle (Tcck).

For setting of the sampling time and compare clock cycle, see "Chapter 1-1: A/D Converter" in "FM3 Family Peripheral Manual Analog Macro Part".


The A/D Converter register is set at APB bus clock timing. The sampling clock and compare clock are set at Base clock (HCLK). About the APB bus number which the A/D Converter is connected to, see "8. Block Diagram" in this datasheet.

Ensure that it set the sampling time to satisfy (Equation 1)

^{*2:} A necessary sampling time changes by external impedance.

^{*3:} The compare time (Tc) is the value of (Equation 2)

(Equation 1) Ts \geq (R_{AIN} + Rext) × C_{AIN} × 9

Ts: Sampling time

R_{AIN}: Input resistor of A/D = $2 \text{ k}\Omega$ $4.5 \text{ V} \leq \text{AV}_{CC} \leq 5.5 \text{ V}$

Input resistor of A/D = $3.8 \text{ k}\Omega$ $2.7 \text{ V} \leq \text{AV}_{\text{CC}} < 4.5 \text{ V}$ Input capacity of A/D = 12.9 pF $2.7 \text{ V} \leq \text{AV}_{\text{CC}} \leq 5.5 \text{ V}$

Rext: Output impedance of external circuit

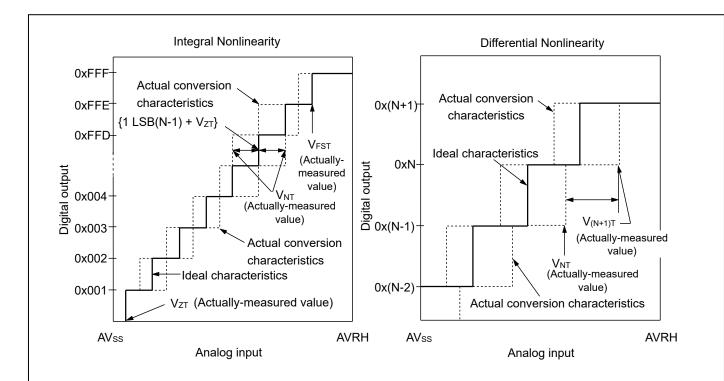
(Equation 2) Tc = Tcck × 14

C_{AIN}:

Tc: Compare time

Tcck: Compare clock cycle

Definition of 12-bit A/D Converter Terms


■ Resolution: Analog variation that is recognized by an A/D converter.

■ Integral Nonlinearity: Deviation of the line between the zero-transition point

(0b000000000000←→0b000000000001) and the full-scale transition point (0b11111111110←→0b11111111111) from the actual conversion characteristics.

■ Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change

the output code by 1 LSB.

Integral Nonlinearity of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{ZT}\}}{1LSB}$$
 [LSB]

Differential Nonlinearity of digital output N = $\frac{V_{(N+1)T} - V_{NT}}{1LSB}$ - 1 [LSB]

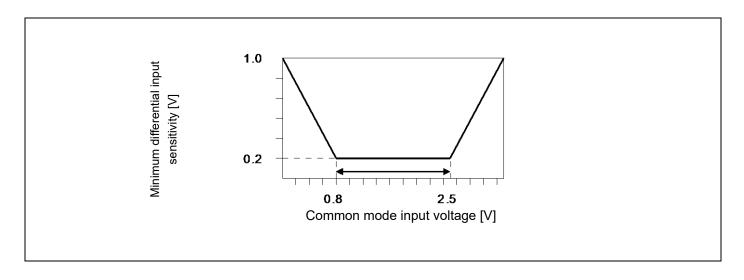
$$1LSB = \frac{V_{FST} - V_{ZT}}{4094}$$

N: A/D converter digital output value.

 V_{ZT} : Voltage at which the digital output changes from 0x000 to 0x001. V_{FST}: Voltage at which the digital output changes from 0xFFE to 0xFFF. V_{NT}: Voltage at which the digital output changes from 0x(N - 1) to 0xN.

12.6 USB characteristics

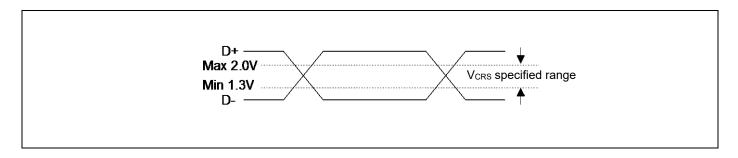
 $(Vcc = 2.7V to 5.5V, USBVcc = 3.0V to 3.6V, Vss = 0V, T_A = -40°C to + 105°C)$

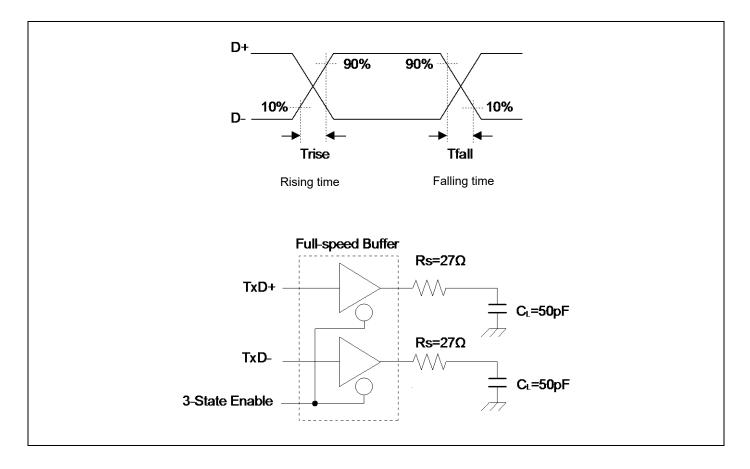

	Parameter	Cymbol	Pin	Conditions		Value	Unit	Remarks
	Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
	Input High level voltage	V _{IH}		-	2.0	USBVcc + 0.3	V	*1
Input	Input Low level voltage	V _{IL}		-	Vss - 0.3	0.8	V	*1
charact- eristics	Differential input sensitivity	V _{DI}	1	-	0.2	-	V	*2
	Different common mode range	V _{CM}	1	-	0.8	2.5	V	*2
	Output High level voltage	V _{OH}		External pull-down resistance = 15 kΩ	2.8	3.6	V	*3
Output	Output Low level voltage	V _{OL}	UDP0, UDM0	External pull-up resistance = 1.5 kΩ	0.0	0.3	V	*3
charact-	Crossover voltage	V_{CRS}		-	1.3	2.0	V	*4
eristics	Rising time	t_{FR}		Full Speed	4	20	ns	*5
	Falling time	t_{FF}		Full Speed	4	20	ns	*5
	Rise/fall time matching	t _{FRFM}		Full Speed	90	111.11	%	*5
	Output impedance	Z_{DRV}	<u> </u>	Full Speed	28	44	Ω	*6
	Rising time	t _{LR}		Low Speed	75	300	ns	*7
	Falling time	t_{LF}		Low Speed	75	300	ns	*7
	Rise/fall time matching	t _{LRFM}		Low Speed	80	125	%	*7

^{*1:} The switching threshold voltage of Single-End-Receiver of USB I/O buffer is set as within V_{IL} (Max) = 0.8 V, V_{IH} (Min) = 2.0 V (TTL input standard).

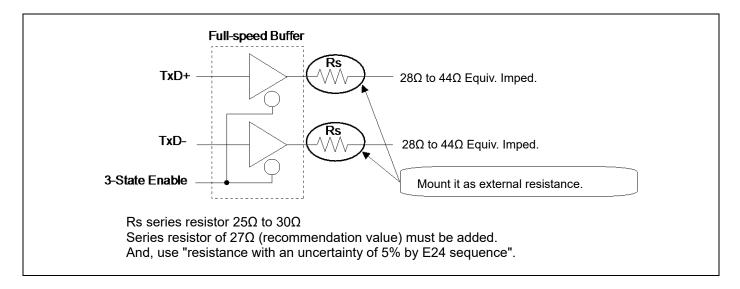
There are some hystereses to lower noise sensitivity.

Differential-Receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level.

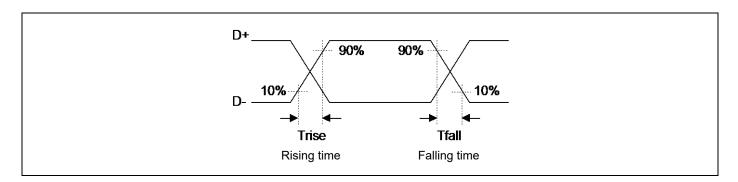

Above voltage range is the common mode input voltage range.


^{*2:} Use differential-Receiver to receive USB differential data signal.

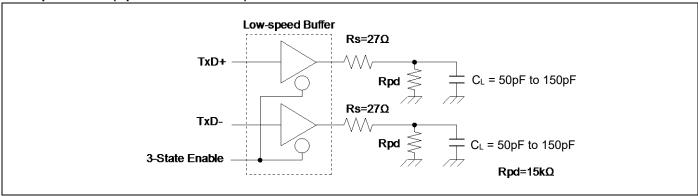
- *3: The output drive capability of the driver is below 0.3 V at Low-State (V_{OL}) (to 3.6 V and 1.5 k Ω load), and 2.8 V or above (to the ground and 1.5 k Ω load) at High-State (V_{OH}).
- *4: The cross voltage of the external differential output signal (D + /D −) of USB I/O buffer is within 1.3 V to 2.0 V.

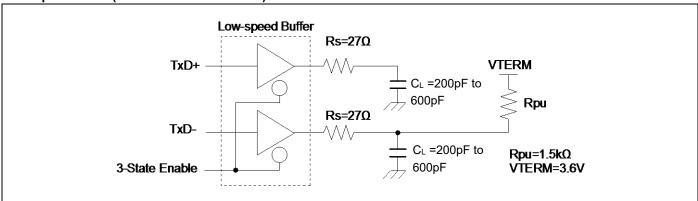


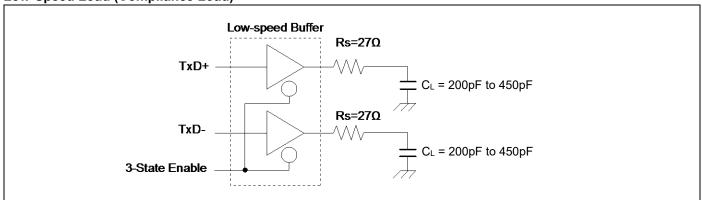
*5: They indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ± 10% to minimize RFI emission.



*6: USB Full-speed connection is performed via twist pair cable shield with $90\Omega \pm 15\%$ characteristic impedance(Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω . So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25Ω to 30Ω (recommendation value 27Ω) series resistor Rs.


*7: They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage.


See "Low-Speed Load (Compliance Load)" for conditions of external load.


Low-Speed Load (Upstream Port Load) - Reference 1

Low-Speed Load (Downstream Port Load) - Reference 2

Low-Speed Load (Compliance Load)

12.7 Low-voltage Detection Characteristics

Low-voltage detection reset

 $(T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks	
Parameter	Syllibol	Conditions	Min	Тур	Max	Oilit		
Detected voltage	VDL	-	2.25	2.45	2.65	V	When voltage drops	
Released voltage	VDH	-	2.30	2.50	2.70	V	When voltage rises	

Interrupt of low-voltage detection

 $(T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Conditions		Valu	ıe	Unit	Remarks
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	VDL	SVHI = 0000	2.58	2.8	3.02	V	When voltage drops
Released voltage	VDH	3VHI = 0000	2.67	2.9	3.13	V	When voltage rises
Detected voltage	VDL	SVHI = 0001	2.76	3.0	3.24	V	When voltage drops
Released voltage	VDH	30111 - 0001	2.85	3.1	3.34	V	When voltage rises
Detected voltage	VDL	SVHI = 0010	2.94	3.2	3.45	V	When voltage drops
Released voltage	VDH	SVHI = 0010	3.04	3.3	3.56	V	When voltage rises
Detected voltage	VDL	SVHI = 0011	3.31	3.6	3.88	V	When voltage drops
Released voltage	VDH	3VHI = 0011	3.40	3.7	3.99	V	When voltage rises
Detected voltage	VDL	SVHI = 0100	3.40	3.7	3.99	V	When voltage drops
Released voltage	VDH	3VHI = 0100	3.50	3.8	4.10	V	When voltage rises
Detected voltage	VDL	SVHI = 0111	3.68	4.0	4.32	V	When voltage drops
Released voltage	VDH	20HI - UIII	3.77	4.1	4.42	V	When voltage rises
Detected voltage	VDL	SVHI = 1000	3.77	4.1	4.42	V	When voltage drops
Released voltage	VDH	SVHI - 1000	3.86	4.2	4.53	V	When voltage rises
Detected voltage	VDL	SVHI = 1001	3.86	4.2	4.53	V	When voltage drops
Released voltage	VDH	SVHI = 1001	3.96	4.3	4.64	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	2240 × t _{CYCP} *	μs	

 $[\]ensuremath{^{*:}}\xspace$ $\ensuremath{\text{t}_{\text{CYCP}}}\xspace$ indicates the APB2 bus clock cycle time.

12.8 Flash Memory Write/Erase Characteristics

12.8.1 Write / Erase time

 $(Vcc = 2.7V to 5.5V, T_A = -40^{\circ}C to + 105^{\circ}C)$

Dar	ameter	Val	lue	Unit	Remarks			
Fai	ameter	Тур*	Max*	Offic	iveniai və			
Sector erase	Large Sector	rge Sector 0.7 3.7		Includes write time prior to internal erase				
time	Small Sector	0.3	1.1	5	modues while time phor to internal erase			
Half word (16-bit) write time		12	384	μs	Not including system-level overhead time			
Chip erase time	64K/128K/256KByte	5.2	23.6	s	Includes write time prior to internal erase			
Chip erase time	384K/512KByte	8	38.4	s	includes write time prior to internal erase			

^{*:} The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write.

12.8.2 Erase/Write cycles and data hold time

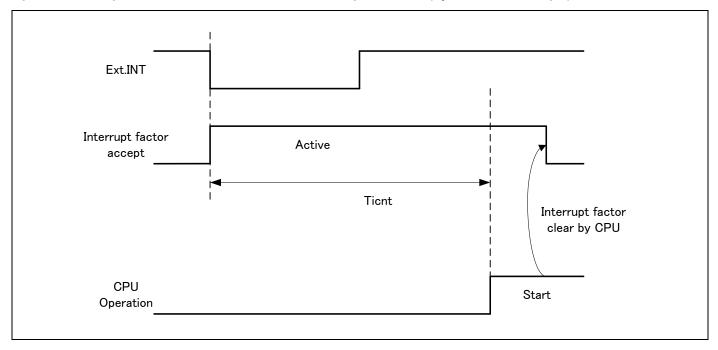
Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20*	
10,000	10*	
100,000	5*	

^{*:} At average + 85°C

12.9 Return Time from Low-Power Consumption Mode

12.9.1 Return Factor: Interrupt

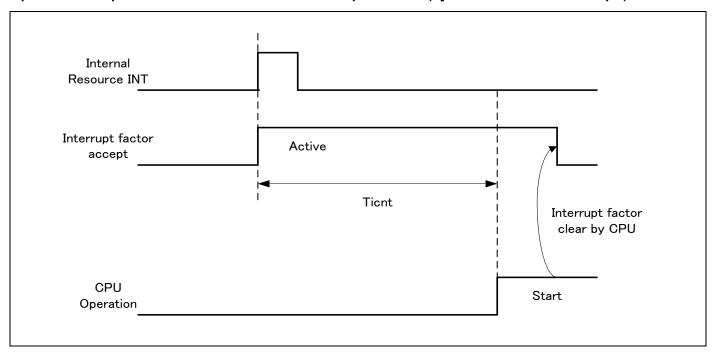
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.


Return Count Time

 $(V_{CC} = 2.7V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Va	lue	Unit	Remarks
Farameter		Тур	Max*	Offic	Remarks
SLEEP mode		t _{cycc}		ns	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode		40	80	μs	
Low-speed CR TIMER mode	Ticnt	453	737	μs	
Sub TIMER mode		453	737	μs	
STOP mode		453	737	μs	

^{*:} The maximum value depends on the accuracy of built-in CR.


Operation example of return from Low-Power consumption mode (by external interrupt*)

^{*:} External interrupt is set to detecting fall edge.

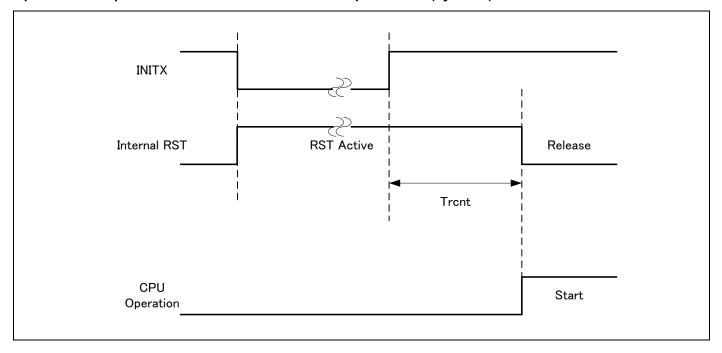
Operation example of return from Low-Power consumption mode (by internal resource interrupt*)

^{*:} Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

- The return factor is different in each Low-Power consumption modes.
 See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual about the return factor from Low-Power consumption mode.
- When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral Manual".

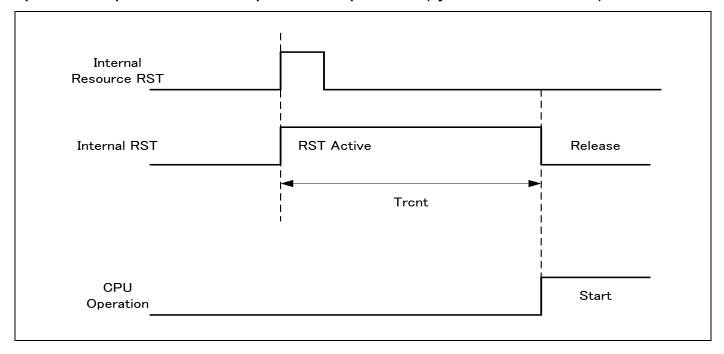
12.9.2 Return Factor: Reset

The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.


Return Count Time

 $(V_{CC} = 2.7V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$

Parameter	Symbol	Va	lue	Unit	Remarks
Faiailletei		Тур	Max*	Oilit	Remarks
SLEEP mode		308	444	μs	
High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode		308	444	μs	
Low-speed CR TIMER mode	Trcnt	428	684	μs	
Sub TIMER mode		428	684	μs	
STOP mode		428	684	μs	

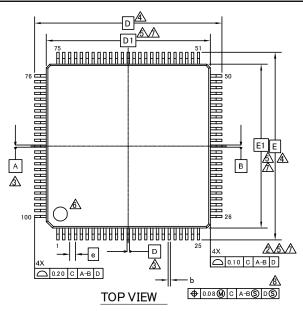

^{*:} The maximum value depends on the accuracy of built-in CR.

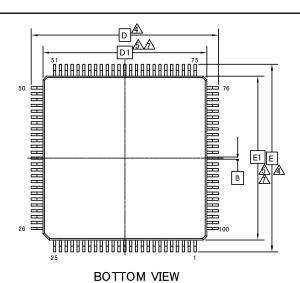
Operation example of return from Low-Power consumption mode (by INITX)

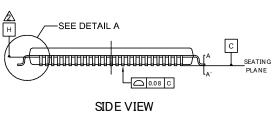
Operation example of return from low power consumption mode (by internal resource reset*)

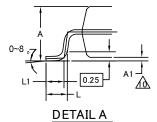
^{*:} Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.

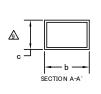
- The return factor is different in each Low-Power consumption modes.
 See "Chapter 6: Low Power Consumption Mode" and "Operations of Standby Modes" in FM3 Family Peripheral Manual.
- When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter 6: Low Power Consumption Mode" in "FM3 Family Peripheral Manual".
- The time during the power-on reset/low-voltage detection reset is excluded. See "12.4.7. Power-on Reset Timing in 12.4. AC Characteristics in 12Electrical Characteristics. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset.
- When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.


13. Ordering Information


Part number	On-chip Flash memory	On-chip SRAM	Package	Packing			
MB9AF311LAPMC1-G-JNE2	64 Kbyte	16 Kbyte					
MB9AF312LAPMC1-G-JNE2	128 Kbyte	16 Kbyte	Plastic, LQFP (0.5 mm pitch), 64-pin (LQD064)				
MB9AF314LAPMC1-G-JNE2	256 Kbyte	32 Kbyte	(20004)				
MB9AF311LAPMC-G-JNE2	64 Kbyte	16 Kbyte					
MB9AF312LAPMC-G-JNE2	128 Kbyte	16 Kbyte	Plastic, LQFP (0.65 mm pitch), 64-pin (LQG064)				
MB9AF314LAPMC-G-JNE2	256 Kbyte	32 Kbyte	(EQG004)	Tray			
MB9AF311MAPMC-G-JNE2	64 Kbyte	16 Kbyte					
MB9AF312MAPMC-G-JNE2	128 Kbyte	16 Kbyte					
MB9AF314MAPMC-G-JNE2	256 Kbyte	32 Kbyte	Plastic, LQFP (0.5 mm pitch), 80-pin (LQH080)				
MB9AF315MAPMC-G-JNE2	384 Kbyte	32 Kbyte	(EQ11000)				
MB9AF316MAPMC-G-JNE2	512 Kbyte	32 Kbyte					
MB9AF311NAPMC-G-JNE2	64 Kbyte	16 Kbyte					
MB9AF312NAPMC-G-JNE2	128 Kbyte	16 Kbyte					
MB9AF314NAPMC-G-JNE2	256 Kbyte	32 Kbyte	Plastic, LQFP (0.5 mm pitch), 100-pin (LQI100)				
MB9AF315NAPMC-G-JNE2	384 Kbyte	32 Kbyte					
MB9AF316NAPMC-G-JNE2	512 Kbyte	32 Kbyte					




14. Package Dimensions

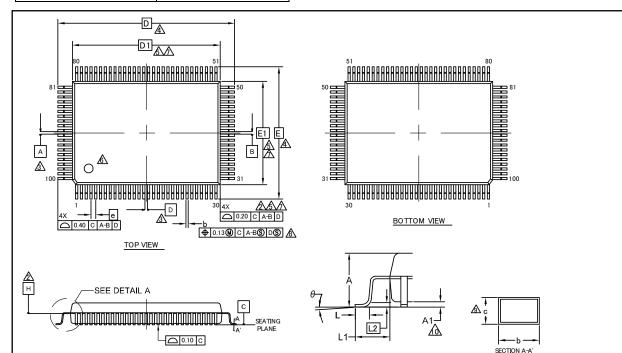

Package Type	Package Code
LQFP 100	LQI100

CVMPOL	SYMBOL DIMENSIONS		NS
STWIBOL	MIN.	NOM.	MAX.
Α	_	_	1.70
A1	0.05		0.15
b	0.15		0.27
С	0.09		0.20
D	16.00 BSC		
D1	14	4.00 BS0	
е	0	.50 BSC	;
E	16.00 BSC		2
E1	14.00 BSC		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ADATUM SA-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.

 ALLOW ABLE PROTRUSION IS 0.25mm PRE SIDE.


 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANEH.
- © DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETW EEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 6 MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- HESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 10. At is defined as the distance from the seating plane to the Lowest Point of the Package Body.

PACKAGE OUTLINE, 100 LEAD LQFP 14.0X14.0X1.7 MM LQI100 REV*A

002-11500 *A

Package Type	Package Code
QFP 100	PQH100

SYMBOL	DIMENSIONS		
STWIBUL	MIN.	NOM.	MAX.
Α	_		3.35
A1	0.05	-	0.45
b	0.27	0.32	0.37
С	0.11	_	0.23
D	23.90 BSC		
D1	20.00 BSC		
е	0.65 BSC		
E	17.90 BSC		
E1	14.00 BSC)
θ	0°	_	8°
L	0.73	0.88	1.03
L1	1.95 REF		
L2	0	.25 BSC	

SID E VIEW

<u>NOTES</u>

1. ALL DIMENSIONS ARE IN MILLIMETERS.

⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

DETAIL A

⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.

⚠ TO BE DETERMINED AT SEATING PLANE C.

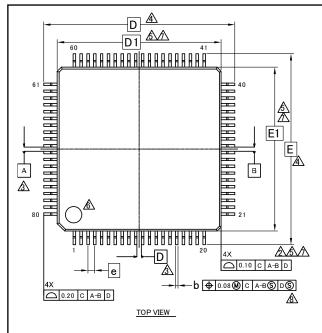
⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

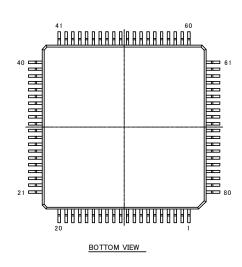
⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.

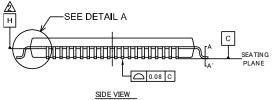
REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS, DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.

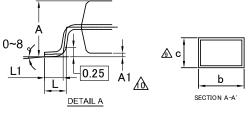
⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.

⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.


A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.


PACKAGE OUTLINE, 100 LEAD QFP 20.00X14.00X3.35 MM PQH100 REV**

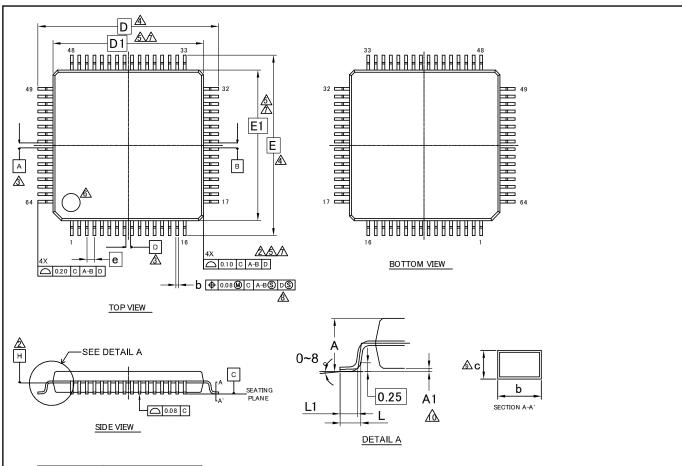

002-15156 **



Package Type	Package Code
LQFP 80	LQH080

SYMBOL	DIM	1 ENSIO1	NS
	MIN.	NOM.	MAX.
А	_	_	1.70
A1	0.05	_	0.15
b	0.15	_	0.27
С	0.09	_	0.20
D	14.00 BSC.		
D1	12.00 BSC.).
е	0	.50 BSC	;
E	14.00 BSC.		
E1	12.00 BSC.		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70

NOTES


- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm)
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- A TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION. (§) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 10 A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

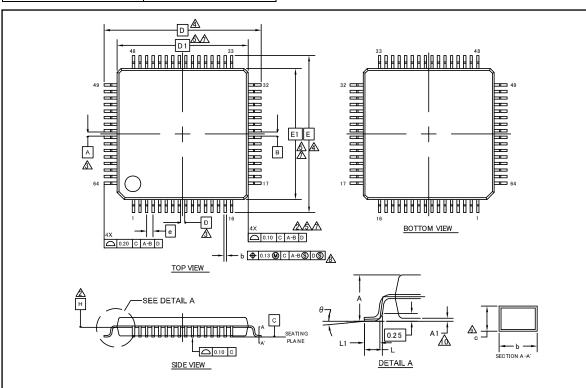
PACKAGE OUTLINE, 80 LEAD LQFP 12.0X12.0X1.7 MM LQH080 Rev **

002-11501 **

Package Type	Package Code
LQFP 64	LQD064

SYMBOL	DIMENSIONS		
SYMBOL	MIN.	NOM.	MAX.
Α			1.70
A 1	0.00	_	0.20
b	0.15	_	0.2 7
С	0.09	_	0.20
D	12.00 BSC.		
D1	10.00 BSC.		
е	0.50 BSC		
E	12.00 BSC.		
E1	10.00 BSC.		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70

NOTES


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- DATUM PLANE HIS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- riangleDATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠DIMENSION 5 DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION. (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 5 MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

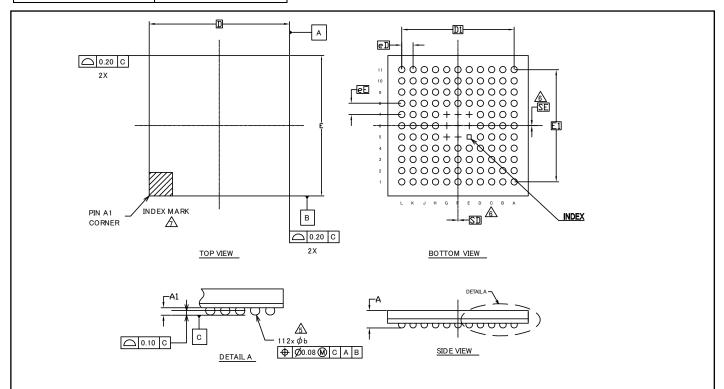
PACKAGE OUTLINE, 64 LEAD LQFP 10.0X10.0X1.7 MM LQD064 Rev**

002-11499 **

Package Type	Package Code
LQFP 64	LQG064

SYMBOL	DIMENSION		
STWIBOL	MIN.	NOM.	MAX.
Α			1.70
A1	0.00		0.20
b	0.27	0.32	0.37
С	0.09		0.20
D	14.00 BSC		
D1	12.00 BSC		
е	0.65 BSC		;
E	14.00 BSC		
E1	12.00 BSC		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70
θ	0°	_	8°

NOTES


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ADATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 10 A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

PACKAGE OUTLINE, 64 LEAD LQFP

002-13881 **

Package Type	Package Code
PFBGA 112	LBC112

DIMENSIONS			
MIN.	NOM.	MAX.	:
-	-	1.45	;

0.35

0.00

0.45

D	10.00 BSC		
Е	10.00 BSC		
D1	8.00 BSC		
E1	8.00 BSC		
MD	11		
ME	11		
N	112		
Øь	0.35	0.45	0.55
eD	0.80 BSC		
еE	0.80 BSC		
SD	0.00		

0.25

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. SOLDER BALL POSITION DESIGNATIO N PER JEP95, SECTION 3, SPP-020.
- 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION.

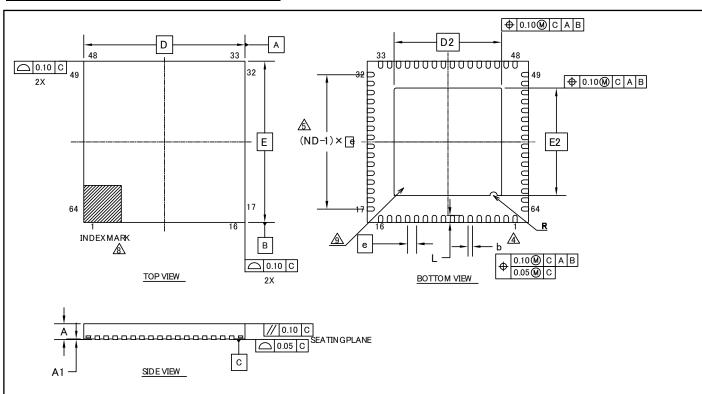
 SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

 N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- DIMENSION '5" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- - WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.
- 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS.

PACKAGE OUTLINE, 112 BALL FBGA 10.00X10.00X1.45 MM LBC112 REV**

002-13225 **

SYMBOL


Α

Α1

SF

Package Type	Package Code
QFN 64	VNC064

SYMBOL	DIMENSIONS		
STWIBOL	MIN.	NOM.	MAX.
Α	_	_	0.90
A1	0.00	_	0.05
D	9.00 BSC		
E	9.00 BSC		
b	0.20	0.25	0.30
D2	6	.00 BS0	
E2	6	.00 BSC	
е	0	.50 BSC	
R	0	.20 REF	=
L	0.35	0.40	0.45
N	64		
ND		16	

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5M-1994.
- N IS THE TOTAL NUMBER OF TERMINALS.

DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

 $\sqrt{5}$ ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE OR E SIDE.

6. MAX. PACKAGE WARPAGE IS 0.05 mm.

MAXIMUM ALLOWABLE BURR IS 0.076mm IN ALL DIRECTIONS. PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.

BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

> PACKAGE OUTLINE, 64 LEAD QFN 9.0X9.0X0.9 MM VNC064 6.0X6.0 MM EPAD (SAWN) Rev**

> > 002-13234 **

15. Errata

This chapter describes the errata for MB9A310 product family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

15.1 Part Numbers Affected

Part Number
Initial Revision
MB9AF311LPMC1-G-JNE2, MB9AF312LPMC1-G-JNE2, MB9AF314LPMC1-G-JNE2, MB9AF311LPMC-G-JNE2, MB9AF311LPMC-G-JNE2, MB9AF312LPMC-G-JNE2, MB9AF314LPMC-G-JNE2, MB9AF311LQN-G-AVE2, MB9AF311LQN-G-AVE2, MB9AF311MPMC-G-JNE2, MB9AF312MPMC-G-JNE2, MB9AF315MPMC-G-JNE2, MB9AF315MPMC-G-JNE2, MB9AF316MPMC-G-JNE2, MB9AF311NPMC-G-JNE2, MB9AF312NPMC-G-JNE2, MB9AF315NPMC-G-JNE2, MB9AF316NPMC-G-JNE2, MB9AF315NPMC-G-JNE1, MB9AF316NPMC-G-JNE1, MB9AF311NPF-G-JNE1, MB9AF315NPF-G-JNE1, MB9AF315NPF-G-JNE1, MB9AF315NPF-G-JNE1, MB9AF315NPF-G-JNE1, MB9AF316NPF-G-JNE1, MB9AF311NBGL-GE1, MB9AF312NBGL-GE1, MB9AF314NBGL-GE1

15.2 Qualification Status

Product Status: In Production - Qual.

15.3 Errata Summary

This table defines the errata applicability to available devices.

Items	Part Number	Silicon Revision	Fix Status
Watch Counter issue	Refer to 15.1	Rev. initial rev.	Fixed in Rev. A

Watch Counter issue

■PROBLEM DEFINITION

The underflow interruption does not occur.

■PARAMETERS AFFECTED

N/A

■TRIGGER CONDITION(S)

The condition is when underflow interruption occurs.

■SCOPE OF IMPACT

The underflow interruption does not occur as specified.

■WORKAROUND

This error cannot be avoided by any software, except not using Watch Counter interrupt.

■FIX STATUS

This issue was fixed in Rev. A.

16. Major Changes

Spansion Publication Number: DS706-00012

Page	Section	Change Results
Revision 1.	0	
-	-	Initial release
Revision 2.	0	
_	-	Revised series name and part number: MB9A310 Series → MB9A310A Series MB9AF311L → MB9AF311LA MB9AF312L → MB9AF312LA MB9AF314L → MB9AF314LA MB9AF311M → MB9AF311MA MB9AF312M → MB9AF312MA MB9AF314M → MB9AF314MA MB9AF315M → MB9AF315MA
		MB9AF316M → MB9AF316MA MB9AF311N → MB9AF311NA MB9AF312N → MB9AF312NA MB9AF314N → MB9AF314NA MB9AF315N → MB9AF315NA MB9AF316N → MB9AF316NA Added the following package. LCC-64P-M24
7	PRODUCT LINEUP Function Multi-function Serial	Added the following description. ch.4 to ch.7: FIFO (16steps × 9-bit) ch.0 to ch.3: No FIFO
	External Interrupts	Corrected the following description. 7pins (Max) → 8pins (Max)
34 to 37	SIGNAL DESCRIPTION Multi-function Serial (ch.0 to ch.7)	Corrected the description for function. Added "LIN pin" Deleted "UART pin"
42, 43	I/O CIRCUIT TYPE	Corrected the following schematic for "TypeB". CMOS level hysteresis input → Digital input Corrected the following schematic for "TypeC". Control Pin → Digital output
51	HANDLING DEVICE Power supply pins	Corrected the description.
54	MEMORY SIZE	Added "MEMORY SIZE".
69	ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1)Main Clock input Characteristics	Added the items F _{CM} to the Internal operating clock frequency.
71	(4-2) Operating Conditions of Main PLL	Added the description.
72	(7) External Bus Timing External bus clock output Characteristics	
79	(8) Base Timer Input Timing Trigger input timing	Added the Note.
88	(10) External input timing	Corrected the footnote.
94	5. 12-bit A/D Converter (1) Electrical characteristics for the A/D converter	Corrected the value of "Full-scale transition voltage". Min: -20 → AVRH-20 Max: +20 → AVRH+20 Corrected the value of "Compare clock cycle". Max: 10000 → 2000 Corrected the value of "Reference voltage".
		Min: AVSS → 2.7
Revision 2.	1	
<u>-</u>	<u> - </u>	Company name and layout design change
Revision 3.	U	

Page	Section	Change Results
3	FEATURES	Added the description of Maximum area size
9	External Bus Interface PACKAGES	Deleted FDT 64D M24 FDT 64D M22 FDT 90D M24 FDT 400D M20
9 44, 46	I/O CIRCUIT TYPE	Deleted FPT-64P-M24, FPT-64P-M23, FPT-80P-M21, FPT-100P-M20 Added the description of I ² C to the type of E, F and I
44, 45	I/O CIRCUIT TYPE	Added about +B input
51		
31	HANDLING DEVICES HANDLING DEVICES	Added "Stabilizing power supply voltage" Added the following description
51		"Evaluate oscillation of your using crystal oscillator by your mount board."
	Crystal oscillator circuit HANDLING DEVICES	Evaluate oscillation of your using crystal oscillator by your mount board.
52	C Pin	Changed the description
53	BLOCK DIAGRAM	Modified the block diagram
		Changed to the following description
54	MEMORY SIZE	See "Memory size" in "PRODUCT LINEUP" to confirm the memory size.
	MEMORY MAP	
55	Memory map(1)	Modified the area of "External Device Area"
	MEMORY MAP	
56, 57	Memory map(2)(3)	Added the summary of Flash memory sector and the note
	7 17 77	Added the Clamp maximum current
64, 65	ELECTRICAL CHARACTERISTICS	Added the output current of P80 and P81
.,	Absolute Maximum Ratings	Added about +B input
		Modified the minimum value of Analog reference voltage
66	ELECTRICAL CHARACTERISTICS 2. Recommended Operation Conditions	Added Smoothing capacitor
		Added the note about less than the minimum power supply voltage
	ELECTRICAL CLIARACTERISTICS	Changed the table format
07.00	ELECTRICAL CHARACTERISTICS	Added Main TIMER mode current
67, 68	3. DC Characteristics	Added Flash Memory Current
	(1) Current rating	Moved A/D Converter Current
	ELECTRICAL CHARACTERISTICS	
71	4. AC Characteristics	Added Frequency stability time at Built-in high-speed CR
	(3) Built-in CR Oscillation Characteristics	
	ELECTRICAL CHARACTERISTICS	
	4. AC Characteristics	Added Main PLL clock frequency
72	(4-1) Operating Conditions of Main and USB	Added USB clock frequency
	PLL	Added the figure of Main PLL connection and USB PLL connection
	(4-2) Operating Conditions of Main PLL	
	ELECTRICAL CHARACTERISTICS	Added Time until releasing Power-on reset
73	4. AC Characteristics	Changed the figure of timing
	(6) Power-on Reset Timing	
75 77	ELECTRICAL CHARACTERISTICS	Marife at Data and at firm
75-77	4. AC Characteristics	Modified Data output time
	(7) External Bus Timing	Madified from UADT Timing to COLO/UADT Timing
82-89	ELECTRICAL CHARACTERISTICS	Modified from UART Timing to CSIO/UART Timing Changed from Internal shift clock operation to Master made
02-09	4. AC Characteristics	Changed from Internal shift clock operation to Master mode
	(8) CSIO/UART Timing	Changed from External shift clock operation to Slave mode Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero
	ELECTRICAL CHARACTERISTICS	transition voltage and Full-scale transition voltage
96	5. 12bit A/D Converter	Modified Stage transition time to operation permission
	o. IZBILA/D CONVENTOR	Modified the minimum value of Reference voltage
	ELECTRICAL CHARACTERISTICS	Modified the millimidity value of relicionate voltage
105-108	Return Time from Low-Power	Added Return Time from Low-Power Consumption Mode
100-100	Consumption Mode	Added Notaliti fillio from Low Fower Consumption Wode
100	ORDERING INFORMATION	Change to full part number
109		1 Sharras to fall part Hallipol

Note: Please see "Document History" about later revised information.

Document History

Document Title: MB9A310A Series, 32-bit ARM® Cortex®-M3 FM3 Microcontroller

Document Number: 002-04674

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	AKIH	12/16/2014	Migrated to Cypress and assigned document number 002-04674. No change to document contents.
*A	5198894	AKIH	04/06/2016	Updated to Cypress template.
*B	5490454	YSKA	03/09/2017	Changed package codes as follows FTP-64P-M38 -> LQD064, FTP-64P-M39 -> LQG064 LCC-64P-M24 -> VNC064, FPT-80P-M37 ->LQH080 FPT-100P-M23 ->LQI100, FTP-100P-M06 -> PQH100 BGA-112P-M04 -> LBC112 <related pages=""> "2 Packages" (page 8), "3 Pin Assignment" (page 9 to 14), "12.2 Recommended Operating Conditions" (page 61), "13 Ordering Information" (page 104), "14 Package Dimensions" (page 105-111) Changed "J-TAG" to" JTAG" in "4 List of Pin Functions" (page 28). Added note in "4 List of Pin Functions" (page 39). Updated "12.4.7 Power-on Reset Timing" (page 68) Added 15. Errata (page 112) Change the name from "USB Function" to "USB Device" (Page 1, 7, 38) Corrected the following statement Analog port input current → Analog port input leak current in chapter 12.5. 12-bit A/D Converter (Page 91) Added the Baud rate spec in "12.4.10 CSIO/UART Timing" (Page 77, 79, 81, 83)</related>
*C	5768636	YSAT	06/12/2017	Updated Cypress Logo and Copyright.
*D	6616654	XITO	07/08/2019	Updated Ordering Information: Updated part numbers. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic **Touch Sensing** cypress.com/touch **USB Controllers** cypress.com/usb Wireless/RF cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.

© Cypress Semiconductor Corporation, 2011-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component o

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-04674 Rev. *D July 8, 2019 Page 116 of 116