■ FEATURES

Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 6 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 24 MHz).
- Operation by sub-clock (up to 50 kHz: 100 kHz oscillation clock divided by two) is allowed. (devices without S-suffix only)
- Minimum execution time of instruction: 42 ns (when operating with 4-MHz oscillation clock, and 6-time multiplied PLL clock).

• 16 Mbyte CPU memory space

· 24-bit internal addressing

• Instruction system best suited to controller

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

• Instruction system compatible with high-level language (C language) and multitask

- Employing system stack pointer
- Enhanced various pointer indirect instructions
- · Barrel shift instructions

Increased processing speed

4-byte instruction queue

Powerful interrupt function

- Powerful 8-level, 34-condition interrupt feature
- Up to 16 external interrupts are supported

Automatic data transfer function independent of CPU

- Extended intelligent I/O service function (EI2OS): up to 16 channels
- DMA: up to 16 channels

• Low power consumption (standby) mode

- Sleep mode (a mode that halts CPU operating clock)
- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and clock timer only)
- Watch mode (a mode that operates sub clock and clock timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- · CPU blocking operation mode

Process

CMOS technology

• I/O port

- General-purpose input/output port (CMOS output)
 - 80 ports (devices without S-suffix)
 - 82 ports (devices with S-suffix)

(Continued)

Timer

- Time-base timer, clock timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit X 16 channels, or 16-bit X 8 channels
- 16-bit reload timer: 4 channels
- 16- bit input/output timer
 - 16-bit free run timer: 2 channel (FRT0: ICU 0/1/2/3, OCU 0/1/2/3, FRT1: ICU 4/5/6/7, OCU 4/5/6/7)
 - 16- bit input capture: (ICU): 8 channels
 - 16-bit output compare : (OCU) : 8 channels

• UART (LIN/SCI): 4 channels

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available

• I2C interface* : 2 channels

• Up to 400 kbit/s transfer rate

• DTP/External interrupt: 16 channels, CAN wakeup: 2 channels

• Module for activation of extended intelligent I/O service (El2OS), DMA, and generation of external interrupt.

• Delay interrupt generator module

· Generates interrupt request for task switching.

• 8/10-bit A/D converter : 24 channels

- Resolution is selectable between 8-bit and 10-bit.
- Activation by external trigger input is allowed.
- Conversion time: 3 μs (at 24-MHz machine clock, including sampling time)

• Program patch function

· Address matching detection for 6 address pointers.

• Internal voltage regulator

• Supports 3 V MCU core, offering low EMI and low power consumption figures

• Programmable input levels

- Automotive/CMOS-Schmitt (initial level is Automotive in Single chip mode)
- TTL level (initial level for External bus mode)

ROM security function

• Protects the content of ROM (MASK ROM device only)

Flash security function

Protects the content of Flash (Flash device only)

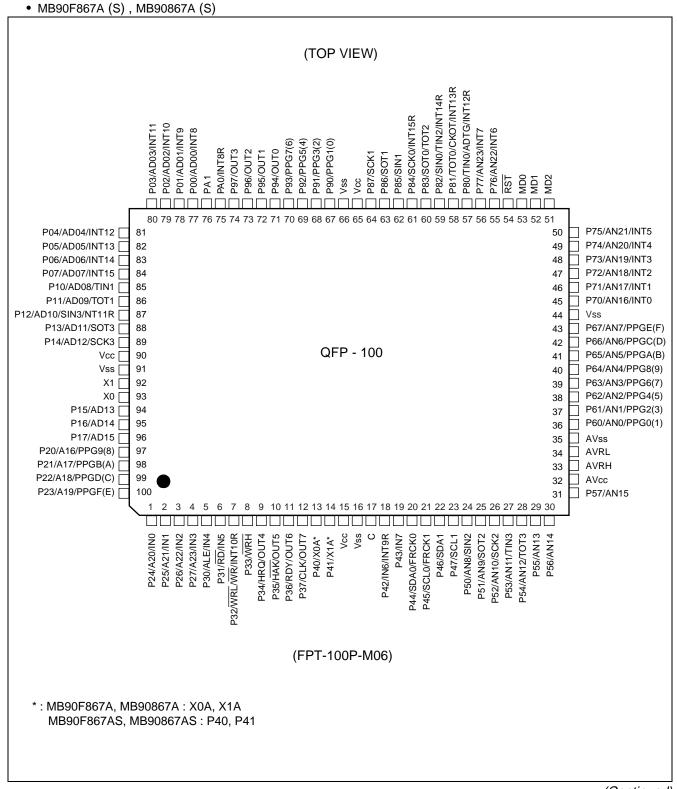
• External bus interface

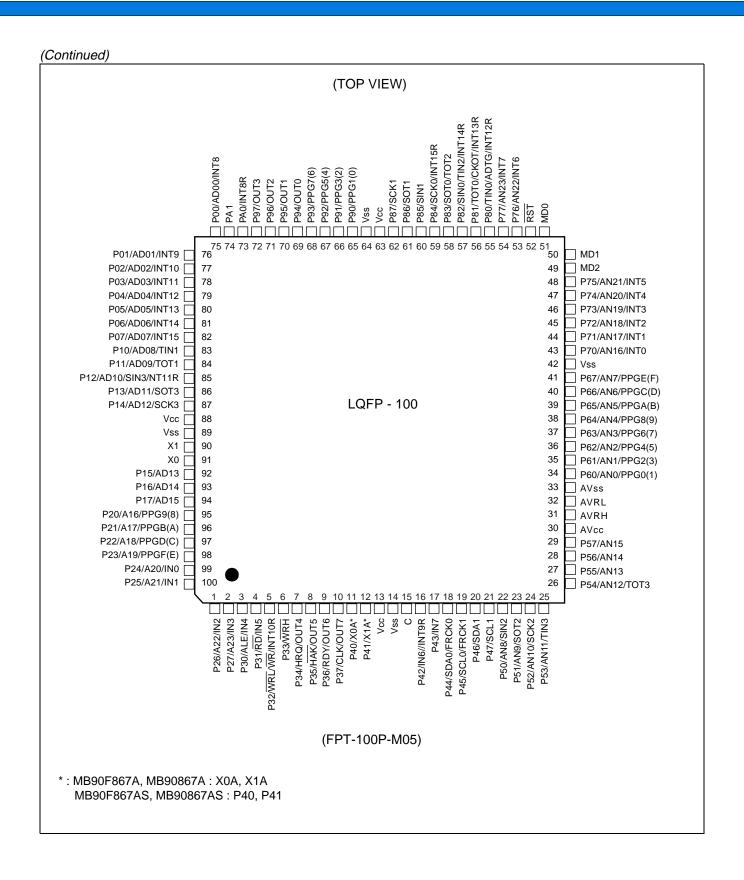
Clock monitor function

*: I2C license:

Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C standard Specification as defined by Philips.

■ PRODUCT LINEUP


Part Number					
Parameter	MB90F867A (S) , MB90867A (S)	MB90V340(S)			
CPU	F ² MC-16LX CPU				
System clock	On-chip PLL clock multiplier (\times 1, \times 2, \times 3, \times 4, \times 6, 1/2 when PLL Minimum instruction execution time : 42 ns (4 MHz osc. PLL \times				
ROM	Boot-block,Flash memory 128 Kbytes	External			
RAM	6 Kbytes	30 Kbytes			
Emulator-specific power supply*1	_	Yes			
Technology	0.35 µm CMOS with on-chip voltage regulator for internal power supply + Flash memory with On-chip charge pump for programming voltage	0.35 μm CMOS with on-chip voltage regulator for internal power supply			
Operating voltage range	3.5 V to 5.5 V : at normal operating (not using A/D converter) 4.0 V to 5.5 V : at using A/D converter/Flash programming 4.5 V to 5.5 V : at using external bus	5 V ± 10%			
Temperature range	−40 °C to +105 °C	_			
Package	QFP-100, LQFP-100	PGA-299			
	4 channels	5 channels			
UART	Wide range of baud rate settings using a dedicated reload timer Special synchronous options for adapting to different synchronous serial protocols LIN functionality working either as master or slave LIN device				
I ² C (400 Kbit/s)	2 channel				
A/D	24 input channels				
Converter	10-bit or 8-bit resolution Conversion time : Min 3 μs include sample time (per one char	nnel)			
16-bit Reload Timer (4 channels)	Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = Ma Supports External Event Count function	achine clock frequency)			
16-bit I/O Timer (2 channels)	Signals an interrupt when overflowing Supports Timer Clear when a match with Output Compare (Channel 0, 4) Operation clock freq.: fsys, fsys/2¹, fsys/2², fsys/2³, fsys/2⁴, fsys/2⁵, fsys/2⁶, fsys/2⁶ (fsys = Machine clock freq.) I/O Timer 0 (clock input FRCK0) corresponds to ICU 0/1/2/3, OCU 0/1/2/3 I/O Timer 1 (clock input FRCK1) corresponds to ICU 4/5/6/7, OCU 4/5/6/7				
16-bit Output Compare (8 channels (16-bit) / 16 channels (8-bit))	Signals an interrupt when 16-bit I/O Timer match output compare registers. A pair of compare registers can be used to generate an output signal.				
16-bit Input Capture (8 channels)	Rising edge, falling edge or rising & falling edge sensitive Signals an interrupt upon external event				


Part Number Parameter	MB90F867A (S) , MB90867A (S)	MB90V340(S)				
8/16-bit Programmable Pulse Generator (8 channels)	Supports 8-bit and 16-bit operation modes Sixteen 8-bit reload counters Sixteen 8-bit reload registers for L pulse width Sixteen 8-bit reload registers for H pulse width A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as 8-bit prescaler plus 8-bit reload counter Operation clock freq.: fsys, fsys/2¹, fsys/2², fsys/2³, fsys/2⁴ or 128 µs@fosc = 4 MHz (fsys = Machine clock frequency, fosc = Oscillation clock frequency)					
CAN Interface	_	3 channels				
External Interrupt (16 channels)	Can be used rising edge, falling edge, starting up by H/L level input, ext expanded inteligent I/O services (EI ² OS) and DMA	ernal interrupt,				
D/A converter	_	2 channels				
Up to100 kHz Subclock for low power operation	devices with 'S'-suffix : without subclock devices without 'S'-suffix : with subclock					
I/O Ports	Virtually all external pins can be used as general purpose I/O port All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable in pin-wise of 8 as CMOS schmitt trigger/ automotive inputs (d TTL input level settable for external bus (32-pin only for external bus)	efault)				
Flash Memory	Supports automatic programming, Embedded Algorithm ^{TM*2} Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles: 10,000 times Data retention time: 20 years Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash	_				

^{*1:} It is setting of Jumper switch (TOOL VCC) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.

^{*2:} Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

■ PIN ASSIGNMENTS

■ PIN DESCRIPTION

Pin No.		Circuit		t	
LQFP100*2	QFP100*1	Pin name	type	Function	
90	92	X1	Δ.	Oscillation output	
91	93	X0	Α	Oscillation input	
52	54	RST	Е	Reset input	
75.45.00	77 1- 04	P00 to P07	0	General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.	
75 to 82	77 to 84	AD00 to AD07	G	I/O pins for 8 lower bits of the external address/data bus. This function is enabled when the external bus is enabled.	
		INT8 to INT15		External interrupt request input pins for INT8 to INT15.	
92	0.E	P10	0	General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.	
83	85	AD08	G	I/O pin for bit 8 of the external address/data bus. This function is enabled when the external bus is enabled.	
		TIN1		Event input pin for the reload timer 1	
		P11	G	General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.	
84	86	AD09		I/O pin for bit 9 of the external address/data bus. This function is enabled when the external bus is enabled.	
		TOT1		Output pin for the reload timer 1	
		P12		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.	
85	87	AD10	N	I/O pin for bit 10 of the external address/data bus. This function is enabled when the external bus is enabled.	
		SIN3		Serial data input pin for UART3	
		INT11R		Sub external interrupt request input pin for INT11	
00	00	P13	0	General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.	
86	88	AD11	G	I/O pin for bit 11 of the external address/data bus. This function is enabled when the external bus is enabled.	
		SOT3		Serial data output pin for UART3	
67	00	P14	•	General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.	
87	89	AD12	G	I/O pin for bit 12 of the external address/data bus. This function is enabled when the external bus is enabled.	
		SCK3		Clock I/O pin for UART3	

Pin	No.	D'	Circuit	-
LQFP100*2	QFP100*1	Pin name	type	Function
		P15	_	General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
92	94	AD13	G	I/O pin for bit 13 of the external address/data bus. This function is enabled when the external bus is enabled.
		SIN4		Serial data input pin for UART4 (MB90V340 only)
00	05	P16		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
93	95	AD14	G	I/O pin for bit 14 of the external address/data bus. This function is enabled when the external bus is enabled.
		SOT4		Serial data output pin for UART4 (MB90V340 only)
0.4	00	P17		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
94	96	AD15	G	I/O pin for bit 15 of the external address/data bus. This function is enabled when the external bus is enabled.
		SCK4		Clock I/O pin for UART4 (MB90V340 only)
		P20 to P23		General purpose I/O. The register can be set to select whether to use a pull-up resistor. In external bus mode, the pin is enabled as a general-purpose I/O port when the corresponding bit in the external address output control register (HACR) is 1.
95 to 98	97 to 100	A16 to A19	G	Output pins for A16 to A19 of the external address bus. When the corresponding bit in the external address output control register (HACR) is 0, the pins are enabled as high address output pins (A16 to A19).
		PPG9,PPGB, PPGD,PPGF		Output pins for PPGs
		P24 to P27		General purpose I/O. The register can be set to select whether to use a pull-up resistor.In external bus mode, the pin is enabled as a general-purpose I/O port when the corresponding bit in the external address output control register (HACR) is 1.
99 to 2	1 to 4	A20 to A23	G	Output pins for A20 to A23 of the external address bus. When the corresponding bit in the external address output control register (HACR) is 0, the pins are enabled as high address output pins (A20 to A23).
		IN0 to IN3		Data sample input pins for input captures ICU0 to ICU3
		P30		General purpose I/O.The register can be set to select whether to use a pull-up resistor.This function is enabled in single-chip mode.
3	5	ALE	G	Address latch enable output pin. This function is enabled when the external bus is enabled.
		IN4		Data sample input pin for input capture ICU4

Pin	No.		Circuit		
LQFP100*2	QFP100*1	Pin name	type	Function	
4		P31		General purpose I/O.The register can be set to select whether to use a pull-up resistor.This function is enabled in single-chip mode.	
4	6	RD	G	Read strobe output pin for the data bus. This function is enabled when the external bus is enabled.	
		IN5		Data sample input pin for input capture ICU5	
		P32		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the $\overline{\text{WR}/\text{WRL}}$ pin output disabled.	
5	7	WRL / WR	G	Write strobe output pin for the data bus. This function is enabled when both the external bus and the $\overline{WR/WRL}$ pin output are enabled. \overline{WRL} is used to write-strobe 8 lower bits of the data bus in 16-bit access while \overline{WR} is used to write-strobe 8 bits of the data bus in 8-bit access.	
		RX2		RX input pin for CAN2 Interface (MB90V340 only)	
		INT10R		Sub external interrupt request input pin for INT10	
		P33		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the $\overline{\text{WRH}}$ pin output disabled.	
6	8	WRH	G	Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16-bit mode is selected, and when the WRH output pin is enabled.	
		TX2		TX Output pin for CAN2 (MB90V340 only)	
_		P34		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled.	
7	9	HRQ	G	Hold request input pin. This function is enabled when both the external bus and the hold function are enabled.	
		OUT4		Waveform output pin for output compare OCU4	
		P35		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled.	
8	8 10	HAK	G	Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled.	
		OUT5		Waveform output pin for output compare OCU5	
	11	P36		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the external ready function disabled.	
9		RDY	G	Ready input pin. This function is enabled when both the external bus and the external ready function are enabled.	
		OUT6		Waveform output pin for output compare OCU6	

Pin	No.	D:	Circuit	-
LQFP100*2	QFP100*1	Pin name	type	Function
10	40	P37		General purpose I/O. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the CLK output disabled.
10	12	CLK	- G	CLK output pin. This function is enabled when both the external bus and CLK output are enabled.
		OUT7	1	Waveform output pin for output compare OCU7
11 to 12	13 to 14	P40 , P41	F	General purpose I/O (devices with S-suffix)
111012	13 10 14	X0A, X1A	В	Oscillator input pins for sub-clock (devices without S-suffix)
		P42		General purpose I/O
16	18	IN6	F	Data sample input pin for input capture ICU6
10	10	RX1	F	RX input pin for CAN1 (MB90V340 (S) only)
		INT9R		Sub external interrupt request input pin for INT10
		P43		General purpose I/O
17	19	IN7	F	Data sample input pin for input capture ICU7
		TX1		TX Output pin for CAN1 (MB90V340 (S) only)
		P44		General purpose I/O
18	20	SDA0	Н	Serial data I/O pin for I ² C 0
		FRCK0		Input for the 16-bit I/O Timer 0
		P45		General purpose I/O
19	21	SCL0	Н	Serial clock I/O pin for I ² C 0
		FRCK1		Input for the 16-bit I/O Timer 1
20	22	P46	Н	General purpose I/O
20	22	SDA1	- -	Serial data I/O pin for I ² C 1
24	22	P47		General purpose I/O
21	23	SCL1	H	Serial clock I/O pin for I ² C 1
		P50		General purpose I/O
22	24	AN8	0	Analog input pin for the A/D converter
		SIN2	1	Serial data input pin for UART2
		P51		General purpose I/O
23	25	AN9	ı	Analog input pin for the A/D converter
		SOT2		Serial data output pin for UART2
		P52		General purpose I/O
24	26	AN10	ı	Analog input pin for the A/D converter
		SCK2	1	Clock I/O pin for UART2
		P53		General purpose I/O
25	27	AN11	ı	Analog input pin for the A/D converter
		TIN3	1	Event input pin for the reload timer 3

Pin No.			Circuit	F	
LQFP100*2	QFP100*1	Pin name	type	Function	
		P54		General purpose I/O	
26	28	AN12	1	Analog input pin for the A/D converter	
		TOT3		Output pin for the reload timer 3	
07	20	P55		General purpose I/O	
27	29	AN13	I	Analog input pin for the A/D converter	
		P56 to P57		General purpose I/O	
28, 29	30, 31	AN14 to AN15	J	Analog input pin for the A/D converter	
		DA00 to DA01		D/A converter analog output pins (MB90V340 only)	
		P60 to P67		General purpose I/O	
34 to 41	36 to 43	AN0 to AN7	1	Analog input pins for the A/D converter	
041041	30 10 43	PPG0, 2, 4, 6, 8, A, C, E	,	Output pins for PPGs	
10.1.10	4= 4 = 0	P70 to P77		General purpose I/O	
43 to 48, 53, 54	45 to 50, 55, 56	AN16 to AN23	1	Analog input pins for the A/D converter (devices with C-suffix)	
00, 04	00, 00	INT0 to INT7		External interrupt request input pins for INT0 to INT7	
		P80		General purpose I/O	
55	57	TIN0	F	Event input pin for the reload timers 0	
55		ADTG		Trigger input pin for the A/D converter	
		INT12R		Sub external interrupt request input pin for INT12	
		P81		General purpose I/O	
56	58	TOT0	F	Output pin for the reload timer 0	
30	30	СКОТ	•	Output pin for the clock monitor	
		INT13R		Sub external interrupt request input pin for INT13	
		P82		General purpose I/O	
57	59	SIN0	М	Serial data input pin for UART0	
37	39	TIN2	IVI	Event input pin for the reload timers 2	
		INT14R		Sub external interrupt request input pin for INT14	
		P83		General purpose I/O	
58	60	SOT0	F	Serial data output pin for UART0	
		TOT2		Output pin for the reload timer 2	
		P84		General purpose I/O	
59	61	SCK0	F	Clock I/O pin for UART0	
		INT15R		Sub external interrupt request input pin for INT15	
60	62	P85	М	General purpose I/O	
00	UZ	SIN1	IVI	Serial data input pin for UART1	
61	63	P86	F	General purpose I/O	
01	03	SOT1		Serial data output pin for UART1	

(Continued)

Pin	No.	D'	Circuit	Function	
LQFP100*2	QFP100*1	Pin name	type	Function	
60	C4	P87	F	General purpose I/O	
62	64	SCK1	Г	Clock I/O pin for UART1	
65 to 60	67 to 70	P90 to P93	F	General purpose I/O	
65 to 68	67 10 70	PPG1, 3, 5, 7	Г	Output pins for PPGs	
		P94 to P97		General purpose I/O	
69 to 72	71 to 74	OUT0 to OUT3	F	Waveform output pins for output compares OCU0 to OCU3. This function is enabled when the OCU enables waveform output.	
		PA0		General purpose I/O	
73	75	RX0	F	RX input pin for CAN0 (MB90V340 (s) only)	
		INT8R		Sub external interrupt request input pin for INT8	
74	76	PA1	F	General purpose I/O	
74	70	TX0	Г	TX Output pin for CAN0 (MB90V340 (s) only)	
30	32	AVcc	K	Vcc power input pin for analog circuits	
31	33	AVRH	L	Reference voltage input for the A/D Converter. This power supply must be turned on or off while a voltage higher than or equal to AVRH is applied to AVcc.	
32	34	AVRL	K	Lower reference voltage input for the A/D Converter	
33	35	AVss	K	Vss power input pin for analog circuits	
50, 51	52, 53	MD1, MD0	С	Input pins for specifying the operating mode. The pins must be directly connected to Vcc or Vss	
49	51	MD2	D	Input pin for specifying the operating mode. The pins must be directly connected to Vcc or Vss.	
13 63 88	15 65 90	Vcc	_	Power (3.5 V to 5.5 V) input pins	
14 42 64 89	16 44 66 91	Vss		Power (0V) input pins	
15	17	С	К	This is the power supply stabilization capacitor pin. It should be connected to a higher than or equal to 0.1 μF ceramic capacitor.	

*1: FPT-100P-M06

*2 : FPT-100P-M05

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
А	X1 Xout Xout Standby control signal	Oscillation circuit • High-speed oscillation feedback resistor = approx. 1 MΩ
В	X1A Xout X0A Standby control signal	Oscillation circuit • Low-speed oscillation feedback resistor = approx. 10 MΩ
С	R Hysteresis inputs	Mask ROM and EVA device: • CMOS Hysteresis input pin Flash device: • CMOS input pin
D	Pull-down Resistor	Mask ROM and EVA device: • CMOS Hysteresis input pin • Pull-down resistor valule: approx. 50 kΩ Flash device: • CMOS input pin • No Pull-down
Е	Pull-up Resistor Hysteresis inputs	CMOS Hysteresis input pin • Pull-up resistor valule: approx. 50 kΩ

Туре	Circuit	Remarks
F	Pout Nout R Hysteresis inputs Automotive inputs Standby control for input shutdown	 CMOS level output(IoL = 4 mA, IoH = -4 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function)
G	Pout Nout R Hysteresis inputs Automotive inputs TTL input Standby control for input shutdown	 CMOS level output(IoL = 4 mA, IoH = -4 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function) TTL input (With the standby-time input shutdown function) Programmalble pullup resistor: 50 kΩ approx.
Н	Pout Nout Hysteresis inputs Automotive inputs Standby control for input shutdown	 CMOS level output(IoL = 3 mA, IoH = -3 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function)

Туре	Circuit	Remarks
I	Pout Nout Hysteresis inputs Automotive inputs Standby control for input shutdown Analog input	 CMOS level output(IoL = 4 mA, IoH = -4 mA) CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function) A/D analog input
J	Nout Nout Hysteresis inputs Automotive inputs Standby control for input shutdown Analog input Analog output	 CMOS level output(IoL = 4 mA, IoH = -4 mA) D/A analg output CMOS hysteresis inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function) A/D analog input
К		Power supply input protection circuit
L	ANE AVR ANE	A/D converter reference voltage power supply input pin, with the protection circuit Flash devices do not have a protection circuit against Vcc for pin AVRH (Continued)

(Continu	Circuit	Remarks
М	Pout Nout R CMOS inputs Automotive inputs Standby control for input shutdown	 CMOS level output(IoL = 4 mA, IoH = -4 mA) CMOS inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function)
N	Pout Nout R CMOS inputs Automotive inputs TTL input Standby control for input shutdown	 CMOS level output(IoL = 4 mA, IoH = -4 mA) CMOS inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function) TTL input (With the standby-time input shutdown function) Programmable pullup registor:50 kΩ approx.
Ο	Pout Nout R CMOS inputs Automotive inputs Standby control for input shutdown Analog input	 CMOS level output(IoL = 4 mA, IoH = -4 mA) CMOS inputs (With the standby-time input shutdown function) Automotive input (With the standby-time input shutdown function) A/D analog input

■ HANDLING DEVICES

Special care is required for the following when handling the device :

- Preventing latch-up
- Treatment of unused pins
- Using external clock
- · Precautions for when not using a sub clock signal
- · Notes on during operation of PLL clock mode
- Power supply pins (Vcc/Vss)
- Pull-up/down resistors
- · Crystal Oscillator Circuit
- Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs
- Connection of Unused Pins of A/D Converter
- · Notes on Energization
- Stabilization of power supply voltage
- Initialization
- Port0 to port3 output during Power-on(External-bus mode)
- Flash security Function

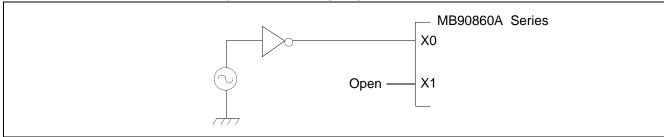
1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVRH) exceed the digital power-supply voltage.


2. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \text{ k}\Omega$.

Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.

4. Precautions for when not using a sub clock signal

If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin, and leave the X1A pin open.

5. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Power supply pins (Vcc/Vss)

- If there are multiple Vcc and Vss pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent such malfunctioning as latch up.
 - To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the Vcc and Vss pins to the power supply and ground externally.
- Connect Vcc and Vss to the device from the current supply source at a low impedance.
- As a measure against power supply noise, connect a capacitor of about 0.1 μF as a bypass capacitor between Vcc and Vss in the vicinity of Vcc and Vss pins of the device

7. Pull-up/down resistors

The MB90860A Series does not support internal pull-up/down resistors (Port 0 to Port 3: built-in pull-up resistors). Use external components where needed.

8. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with a ground area for stabilizing the operation.

9. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN23) after turning-on the digital power supply (Vcc) .

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

Connection of Unused Pins of A/D Converter if A/D Converter is used

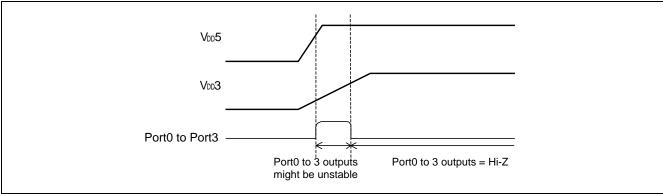
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = AVRL = Vss.

11. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu s$ or more (0.2 V to 2.7 V)

12. Stabilization of power supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.


For reference, the supply voltage should be controlled so that $V_{\rm CC}$ ripple variations (peak-to-peak value) at commercial frequencies (50 Hz to 60 Hz) fall below 10% of the standard $V_{\rm CC}$ supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

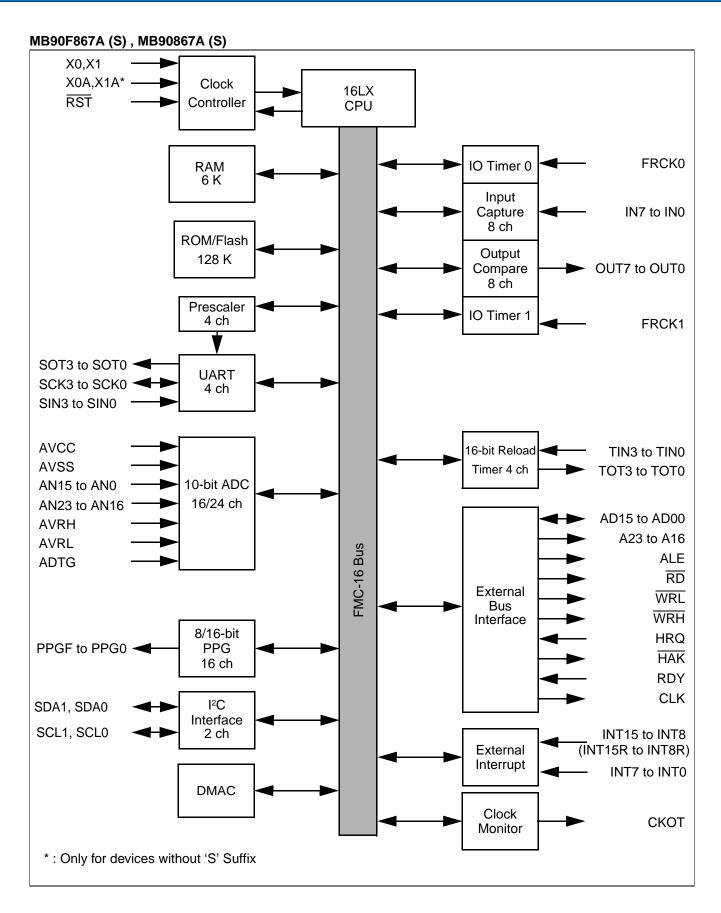
13. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, turn on the power again.

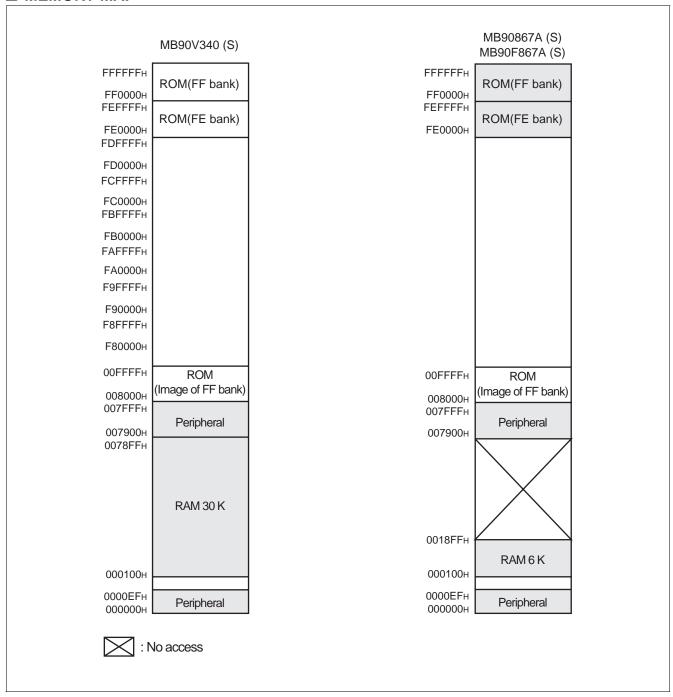
14. Port 0 to port 3 output during Power-on (External-bus mode)

As shown below, when power is turned on in External-Bus mode, there is a possibility that output signal of Port 0 to Port 3 might be unstable.

15. Flash security Function


The security byte is located in the area of the flash memory.

If protection code 01_H is written in the security byte, the flash memory is in the protected state by security. Therefore please do not write 01_H in this address if you do not use the security function.


Please refer to following table for the address of the security byte.

	Flash memory size	Address for security byte
MB90F867A (S)	Embedded 1 Mbit Flash Memory	FE0001н

■ BLOCK DIAGRAMS MB90V340(S) X0,X1 X0A,X1A* Clock 16LX RST Controller **CPU** FRCK0 IO Timer 0 RAM 30 K Input Capture IN7 to IN0 8 ch Output Compare OUT7 to OUT0 8 ch Prescaler IO Timer 1 5 ch FRCK1 SOT4 to SOT0 ◀ CAN **UART** RX2 to RX0 SCK4 to SCK0 ◀ Controller 5 ch TX2 to TX0 3 ch SIN4 to SIN0 **AVCC** 16-bit Reload TIN3 to TIN0 **AVSS** Timer 4 ch TOT3 to TOT0 10-bit ADC AN23 to AN0 24 ch **AVRH** AD15 to AD00 **AVRL** A23 to A16 **ADTG** FMC-16 Bus ALE $\overline{\mathsf{RD}}$ 10-bit External WRL DA01, DA00 DAC Bus 2 ch WRH Interface **HRQ** HAK 8/16-bit PPGF to PPG0 -**PPG RDY** 16 ch CLK I²C SDA1, SDA0 INT15 to INT8 Interface External (INT15R to INT8R) SCL1, SCL0 2 ch Interrupt INT7 to INT0 **DMAC** Clock **CKOT** Monitor *: Only for MB90V340 (without 'S' Suffix)

■ MEMORY MAP

Note: The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.

For example, an attempt to access 00C000H accesses the value at FFC000H in ROM.

The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.

The image between FF8000H and FFFFFFH is visible in bank 00, while the image between FF0000H and FF7FFFH is visible only in bank FF.

■ I/O MAP

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXX
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXX
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXX
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXX
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXX
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXX
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXX
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXX
ОАн	Port A Data Register	PDRA	R/W	Port A	XXXXXXX
0Вн	Port 5 Analog Input Enable Register	ADER5	R/W	Port 5, A/D	11111111
0Сн	Port 6 Analog Input Enable Register	ADER6	R/W	Port 6, A/D	11111111
0Дн	Port 7 Analog Input Enable Register	ADER7	R/W	Port 7, A/D	11111111
0Ен	Input Level Select Register 0	ILSR0	R/W	Ports	00000000
0Гн	Input Level Select Register 1	ILSR1	R/W	Ports	00000000
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19н	Port 9 Direction Register	DDR9	R/W	Port 9	00000000
1Ан	Port A Direction Register	DDRA	R/W	Port A	00000100
1Вн		Reserve	ed		
1Сн	Port 0 Pullup Control Register	PUCR0	R/W	Port 0	00000000
1Dн	Port 1 Pullup Control Register	PUCR1	R/W	Port 1	00000000
1Ен	Port 2 Pullup Control Register	PUCR2	R/W	Port 2	00000000
1 Fн	Port 3 Pullup Control Register	PUCR3	R/W	Port 3	00000000

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
20н	Serial Mode Register 0	SMR0	W, R/W		00000000
21н	Serial Control Register 0	SCR0	W, R/W		00000000
22н	Reception/Transmission Data Register 0	RDR0/ TDR0	R/W		00000000
23н	Serial Status Register 0	SSR0	R, R/W	UART0	00001000
24н	Extended Communication Control Reg. 0	ECCR0	R, W, R/W	UARTU	000000XX
25н	Extended Status/Control Register 0	ESCR0	R/W		00000100
26н	Baud Rate Generator Register 00	BGR00	R/W		00000000
27н	Baud Rate Generator Register 01	BGR01	R/W		00000000
28н	Serial Mode Register 1	SMR1	W, R/W		00000000
29н	Serial Control Register 1	SCR1	W, R/W		00000000
2Ан	Reception/Transmission Data Register 1	RDR1/ TDR1	R/W		00000000
2Вн	Serial Status Register 1	SSR1	R, R/W	LIADT4	00001000
2Сн	Extended Communication Control Reg. 1	ECCR1	R, W, R/W	UART1	000000XX
2Dн	Extended Status Control Register 1	ESCR1	R/W		00000100
2Ен	Baud Rate Generator Register 10	BGR10	R/W		00000000
2Fн	Baud Rate Generator Register 11	BGR11	R/W		00000000
30н	PPG 0 Operation Mode Control Register	PPGC0	W, R/W		0X000XX1
31н	PPG 1 Operation Mode Control Register	PPGC1	W, R/W	16-bit PPG 0/1	0X000001
32н	PPG 01 Clock Select Register	PPG01	R/W		000000X0
33н		Reserve	d		
34н	PPG 2 Operation Mode Control Register	PPGC2	W, R/W		0X000XX1
35н	PPG 3 Operation Mode Control Register	PPGC3	W, R/W	16-bit PPG 2/3	0X000001
36н	PPG 23 Clock Select Register	PPG23	R/W		000000X0
37н		Reserve	d		
38н	PPG 4 Operation Mode Control Register	PPGC4	W, R/W		0X000XX1
39н	PPG 5 Operation Mode Control Register	PPGC5	W, R/W	16-bit PPG 4/5	0X000001
ЗАн	PPG 4 and PPG 5 Clock Select Register	PPG45	R/W		000000X0
3Вн	Program Address Detection Control Status Register 1	PACSR1	R/W	Address Match Detection 1	00000000
3Сн	PPG 6 Operation Mode Control Register	PPGC6	W, R/W		0X000XX1
3Dн	PPG 7 Operation Mode Control Register	PPGC7	W, R/W	16-bit PPG 6/7	0X000001
3Ен	PPG 67 Clock Select Register	PPG67	R/W		000000X0
3Fн		Reserve	ed		•

Address	Register	Abbrevi- ation	Access	Resource name	Initial value
40н	PPG 8 Operation Mode Control Register	PPGC8	W, R/W	16-bit PPG 8/9	0X000XX1
41н	PPG 9 Operation Mode Control Register	PPGC9	W, R/W		0X000001
42н	PPG 89 Clock Select Register	PPG89	R/W		000000X0
43н		Reserve	d		
44н	PPG A Operation Mode Control Register	PPGCA	W, R/W		0X000XX1
45н	PPG B Operation Mode Control Register	PPGCB	W, R/W	16-bit PPG A/B	0X000001
46н	PPG AB Clock Select Register	PPGAB	R/W		000000X0
47н		Reserve	d		
48н	PPG C Operation Mode Control Register	PPGCC	W, R/W		0X000XX1
49н	PPG D Operation Mode Control Register	PPGCD	W, R/W	16-bit PPG C/D	0X000001
4Ан	PPG CD Clock Select Register	PPGCD	R/W		000000X0
4Вн		Reserve	d		
4Сн	PPG E Operation Mode Control Register	PPGCE	W, R/W		0X000XX1
4Dн	PPG F Operation Mode Control Register	PPGCF	W, R/W	16-bit PPG E/F	0X000001
4Ен	PPG EF Clock Select Register	PPGEF	R/W		000000X0
4 F _H		Reserve	d		
50н	Input Capture Control Status Register 0/1	ICS01	R/W	Innut Conturo 0/4	00000000
51н	Input Capture Edge Register 0/1	ICE01	R/W, R	Input Capture 0/1	XXX0X0XX
52н	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	00000000
53н	Input Capture Edge Register 2/3	ICE23	R	input Capture 2/3	XXXXXXX
54н	Input Capture Control Status Register 4/5	ICS45	R/W	Input Capture 4/5	00000000
55н	Input Capture Edge Register 4/5	ICE45	R	input Capture 4/5	XXXXXXX
56н	Input Capture Control Status Register 6/7	ICS67	R/W	Input Capture 6/7	00000000
57н	Input Capture Edge Register 6/7	ICE67	R/W, R	input Capture 0/1	XXX000XX
58н	Output Compare Control Status Register 0	OCS0	R/W	Output Compare 0/1	0000XX00
59н	Output Compare Control Status Register 1	OCS1	R/W	Output Compare 0/1	0XX00000
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output Compare 2/2	0000XX00
5Вн	Output Compare Control Status Register 3	OCS3	R/W	Output Compare 2/3	0XX00000
5С н	Output Compare Control Status Register 4	OCS4	R/W	Output Compare 4/5	0000XX00
5Dн	Output Compare Control Status Register 5	OCS5	R/W	Output Compare 4/5	0XX00000
5Е н	Output Compare Control Status Register 6	OCS6	R/W	Output Compare 6/7	0000XX00
5 Fн	Output Compare Control Status Register 7	OCS7	R/W	Output Compare 6/7	0XX00000

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
60н	Timer Control Status Register 0	TMCSR0	R/W	16-bit Reload Timer 0	00000000
61н	Timer Control Status Register 0	TMCSR0	R/W	To-bit Reload Tiller o	XXXX0000
62н	Timer Control Status Register 1	TMCSR1	R/W	16-bit Reload Timer 1	00000000
63н	Timer Control Status Register 1	TMCSR1	R/W	To-bit Reload Timer T	XXXX0000
64н	Timer Control Status Register 2	TMCSR2	R/W	4C hit Dalaad Timer 2	00000000
65н	Timer Control Status Register 2	TMCSR2	R/W	16-bit Reload Timer 2	XXXX0000
66н	Timer Control Status Register 3	TMCSR3	R/W	16 hit Doland Timer 2	00000000
67н	Timer Control Status Register 3	TMCSR3	R/W	16-bit Reload Timer 3	XXXX0000
68н	A/D Control Status Register 0	ADCS0	R/W		000XXXX00
69н	A/D Control Status Register 1	ADCS1	R/W		0000000X
6Ан	A/D Data Register 0	ADCR0	R	A /D C	00000000
6Вн	A/D Data Register 1	ADCR1	R	A/D Converter	XXXXXX00
6Сн	ADC Setting Register 0	ADSR0	R/W		00000000
6Dн	ADC Setting Register 1	ADSR1	R/W		00000000
6Ен		Reserve	ed	L	
6 Fн	ROM Mirroring Register	ROMM	W	ROM Mirror	XXXXXXX1
70н to 8Fн		Reserve	ed		
90н to 9Ан		Reserve	ed		
9Вн	DMA Descriptor Channel Specification Register	DCSR	R/W		00000000
9Сн	DMA Status Register L	DSRL	R/W	DMA	00000000
9Dн	DMA Status Register H	DSRH	R/W		00000000
9Ен	Program Address Detection Control Status Register 0	PACSR0	R/W	Address Match Detection 0	00000000
9 F н	Delayed Interrupt/Release	DIRR	R/W	Delayed Interrupt	XXXXXXX0
А0н	Low-power Mode Control Register	LPMCR	W, R/W	Low Power Controller	00011000
А1н	Clock Selection Register	CKSCR	R, R/W	Low Power Controller	11111100
А2н, А3н		Reserve	ed		
А4н	DMA Stop Status Register	DSSR	R/W	DMA	00000000
А5н	Automatic Ready Function Select Reg.	ARSR	W		0011XX00
А6н	External Address Output Control Reg.	HACR	W	External Memory Access	00000000
А7н	Bus Control Signal Selection Register	ECSR	W		000000X
А8н	Watchdog Control Register	WDTC	R, W	Watchdog Timer	XXXXX111
А9н	Timebase Timer Control Register	TBTC	W, R/W	Time Base Timer	1XX00100

Address	Register	Abbrevia- tion	Access	Resource name	Initial value			
ААн	Watch Timer Control Register	WTC	R, R/W	Watch Timer	1X001000			
АВн	Reserved							
АСн	DMA Enable Register L	DERL	R/W	DMA	00000000			
АДн	DMA Enable Register H	DERH	R/W	DIVIA	00000000			
АЕн	Flash Control Status Register (FlashDevices only. Otherwise reserved)	FMCS	R, R/W	Flash Memory	000X0000			
AFн		Reserve	ed					
В0н	Interrupt Control Register 00	ICR00	W, R/W		00000111			
В1н	Interrupt Control Register 01	ICR01	W, R/W		00000111			
В2н	Interrupt Control Register 02	ICR02	W, R/W		00000111			
ВЗн	Interrupt Control Register 03	ICR03	W, R/W		00000111			
В4н	Interrupt Control Register 04	ICR04	W, R/W		00000111			
В5н	Interrupt Control Register 05	ICR05	W, R/W		00000111			
В6н	Interrupt Control Register 06	ICR06	W, R/W		00000111			
В7н	Interrupt Control Register 07	ICR07	W, R/W		00000111			
В8н	Interrupt Control Register 08	ICR08	W, R/W	Interrupt Controller	00000111			
В9н	Interrupt Control Register 09	ICR09	W, R/W		00000111			
ВАн	Interrupt Control Register 10	ICR10	W, R/W		00000111			
ВВн	Interrupt Control Register 11	ICR11	W, R/W		00000111			
ВСн	Interrupt Control Register 12	ICR12	W, R/W		00000111			
ВОн	Interrupt Control Register 13	ICR13	W, R/W		00000111			
ВЕн	Interrupt Control Register 14	ICR14	W, R/W		00000111			
ВҒн	Interrupt Control Register 15	ICR15	W, R/W		00000111			
С0н	D/A Converter Data 0	DAT0	R/W		XXXXXXX			
С1н	D/A Converter Data 1	DAT1	R/W	D/A Constantor	XXXXXXX			
С2н	D/A Control 0	DACR0	R/W	D/A Converter	XXXXXXX0			
СЗн	D/A Control 1	DACR1	R/W		XXXXXXX0			
С4н, С5н		Reserve	ed					
С6н	External Interrupt Request Enable Register 0	ENIR0	R/W	External Interrupt 0	00000000			
С7н	External Interrupt Request Register 0	EIRR0	R/W		XXXXXXX			
С8н	External Interrupt Level Register 0	ELVR0	R/W		00000000			
С9н	External Interrupt Level Register 0	ELVR0	R/W		00000000			

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
САн	External Interrupt Request Enable Register 1	ENIR1	R/W		00000000
СВн	External Interrupt Request Register 1	EIRR1	R/W		XXXXXXX
ССн	External Interrupt Level Register 1	ELVR1	R/W	External Interrupt 1	00000000
СДн	External Interrupt Level Register 1	ELVR1	R/W		00000000
СЕн	External Interrupt Source Select Register	EISSR	R/W		00000000
СҒн	PLL/Subclock Control Register	PSCCR	W	PLL	XXXX0000
D0н	DMA Buffer Address Pointer L	BAPL	R/W		XXXXXXX
D 1н	DMA Buffer Address Pointer M	BAPM	R/W		XXXXXXX
D2 н	DMA Buffer Address Pointer H	BAPH	R/W		XXXXXXX
D3н	DMA Control Register	DMACS	R/W	DMA	XXXXXXX
D4 н	I/O Register Address Pointer L	IOAL	R/W	DIMA	XXXXXXX
D 5н	I/O Register Address Pointer H	IOAH	R/W		XXXXXXX
D6н	Data Counter L	DCTL	R/W		XXXXXXX
D7 н	Data Counter H	DCTH	R/W		XXXXXXX
D8 _H	Serial Mode Register 2	SMR2	W, R/W		00000000
D 9н	Serial Control Register 2	SCR2	W, R/W		00000000
DAн	Reception/Transmission Data Register 2	RDR2/ TDR2	R/W		00000000
DВн	Serial Status Register 2	SSR2	R, R/W	UART2	00001000
DCн	Extended Communication Control Register 2	ECCR2	R, W, R/W	UAR12	000000XX
DDн	Extended Status/Control Register 2	ESCR2	R/W		00000100
DЕн	Baud Rate Reload Register 20	BGR20	R/W		00000000
DFн	Baud Rate Reload Register 21	BGR21	R/W		00000000
E0н to EFн		Reserv	ed		•
F0н to FFн		Extern	al		

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
7900н	Reload Register L0	PRLL0	R/W		XXXXXXX
7901н	Reload Register H0	PRLH0	R/W	16-bit PPG 0/1	XXXXXXX
7902н	Reload Register L1	PRLL1	R/W		XXXXXXX
7903н	Reload Register H1	PRLH1	R/W		XXXXXXX
7904н	Reload Register L2	PRLL2	R/W	16-bit PPG 2/3	XXXXXXX
7905н	Reload Register H2	PRLH2	R/W		XXXXXXX
7906н	Reload Register L3	PRLL3	R/W		XXXXXXX
7907н	Reload Register H3	PRLH3	R/W		XXXXXXX
7908н	Reload Register L4	PRLL4	R/W		XXXXXXX
7909н	Reload Register H4	PRLH4	R/W	16-bit PPG 4/5	XXXXXXX
790Ан	Reload Register L5	PRLL5	R/W	16-DIL PPG 4/5	XXXXXXX
790Вн	Reload Register H5	PRLH5	R/W		XXXXXXX
790Сн	Reload Register L6	PRLL6	R/W	16-bit PPG 6/7	XXXXXXX
790Dн	Reload Register H6	PRLH6	R/W		XXXXXXX
790Ен	Reload Register L7	PRLL7	R/W		XXXXXXX
790Гн	Reload Register H7	PRLH7	R/W		XXXXXXX
7910н	Reload Register L8	PRLL8	R/W	40 L''L DDC 0/0	XXXXXXX
7911н	Reload Register H8	PRLH8	R/W		XXXXXXX
7912н	Reload Register L9	PRLL9	R/W	16-bit PPG 8/9	XXXXXXX
7913н	Reload Register H9	PRLH9	R/W		XXXXXXX
7914н	Reload Register LA	PRLLA	R/W		XXXXXXX
7915н	Reload Register HA	PRLHA	R/W	40 hit DDO A/D	XXXXXXX
7916н	Reload Register LB	PRLLB	R/W	16-bit PPG A/B	XXXXXXX
7917н	Reload Register HB	PRLHB	R/W		XXXXXXX
7918н	Reload Register LC	PRLLC	R/W		XXXXXXX
7919н	Reload Register HC	PRLHC	R/W	40 hit DDC 0/D	XXXXXXX
791Ан	Reload Register LD	PRLLD	R/W	16-bit PPG C/D	XXXXXXX
791Вн	Reload Register HD	PRLHD	R/W		XXXXXXX
791Сн	Reload Register LE	PRLLE	R/W		XXXXXXX
791Dн	Reload Register HE	PRLHE	R/W	40 h# DDO E/E	XXXXXXX
791Ен	Reload Register LF	PRLLF	R/W	16-bit PPG E/F	XXXXXXX
791Гн	Reload Register HF	PRLHF	R/W		XXXXXXX
7920н	Input Capture Data Register 0	IPCP0	R		XXXXXXX
7921н	Input Capture Data Register 0	IPCP0	R	lanut Cantum 0/4	XXXXXXX
7922н	Input Capture Data Register 1	IPCP1	R	Input Capture 0/1	XXXXXXX
7923н	Input Capture Data Register 1	IPCP1	R		XXXXXXX

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
7924н	Input Capture Data Register 2	IPCP2	R		XXXXXXX
7925н	Input Capture Data Register 2	IPCP2	R	Input Capture 2/3	XXXXXXX
7926н	Input Capture Data Register 3	IPCP3	R		XXXXXXX
7927н	Input Capture Data Register 3	IPCP3	R		XXXXXXX
7928н	Input Capture Data Register 4	IPCP4	R		XXXXXXX
7929н	Input Capture Data Register 4	IPCP4	R	Input Capture 4/5	XXXXXXX
792Ан	Input Capture Data Register 5	IPCP5	R	Input Capture 4/5	XXXXXXX
792Вн	Input Capture Data Register 5	IPCP5	R		XXXXXXX
792Сн	Input Capture Data Register 6	IPCP6	R		XXXXXXX
792Dн	Input Capture Data Register 6	IPCP6	R		XXXXXXX
792Ен	Input Capture Data Register 7	IPCP7	R	Input Capture 6/7	XXXXXXX
792 Fн	Input Capture Data Register 7	IPCP7	R		XXXXXXX
7930н	Output Compare Register 0	OCCP0	R/W		XXXXXXX
7931н	Output Compare Register 0	OCCP0	R/W	Output Compare 0/1	XXXXXXX
7932н	Output Compare Register 1	OCCP1	R/W		XXXXXXX
7933н	Output Compare Register 1	OCCP1	R/W		XXXXXXX
7934н	Output Compare Register 2	OCCP2	R/W		XXXXXXX
7935н	Output Compare Register 2	OCCP2	R/W	Output Compare 2/3	XXXXXXX
7936н	Output Compare Register 3	OCCP3	R/W	Output Compare 2/3	XXXXXXX
7937н	Output Compare Register 3	OCCP3	R/W		XXXXXXX
7938н	Output Compare Register 4	OCCP4	R/W		XXXXXXX
7939н	Output Compare Register 4	OCCP4	R/W	Output Compare 4/5	XXXXXXX
793Ан	Output Compare Register 5	OCCP5	R/W	Output Compare 4/5	XXXXXXX
793Вн	Output Compare Register 5	OCCP5	R/W		XXXXXXX
793Сн	Output Compare Register 6	OCCP6	R/W		XXXXXXX
793Dн	Output Compare Register 6	OCCP6	R/W	Output Compara 6/7	XXXXXXX
793Ен	Output Compare Register 7	OCCP7	R/W	Output Compare 6/7	XXXXXXX
793Гн	Output Compare Register 7	OCCP7	R/W		XXXXXXX
7940н	Data Register 0	TCDT0	R/W		00000000
7941н	Data Register 0	TCDT0	R/W	I/O Timer 0	00000000
7942н	Control Status Register 0	TCCSL0	R/W	1/O Timer 0	00000000
7943н	Control Status Register 0	TCCSH0	R/W]	0XXXXXXX
7944н	Data Register 1	TCDT1	R/W		00000000
7945н	Data Register 1	TCDT1	R/W	I/O Timor 1	00000000
7946н	Control Status Register 1	TCCSL1	R/W	- I/O Timer 1	00000000
7947н	Control Status Register 1	TCCSH1	R/W		0XXXXXXX

Address	Register	Abbrevia- tion	Access	Resource name	Initial value	
7948н	Timer Degister O/Deleged Degister O	TMR0/	R/W	16-bit Reload	XXXXXXX	
7949н	Timer Register 0/Reload Register 0	TMRLR0	R/W	Timer 0	XXXXXXX	
794Ан	Timer Degister 1/Deleged Degister 1	TMR1/	R/W	16-bit Reload	XXXXXXX	
794Вн	Timer Register 1/Reload Register 1	TMRLR1	R/W	Timer 1	XXXXXXX	
794Сн	Timer Register 2/Relead Register 2	TMR2/	R/W	16-bit Reload	XXXXXXX	
794Dн	Timer Register 2/Reload Register 2	TMRLR2	R/W	Timer 2	XXXXXXX	
794Ен	Timer Register 2/Relead Register 2	TMR3/	R/W	16-bit Reload	XXXXXXX	
794Гн	Timer Register 3/Reload Register 3	TMRLR3	R/W	Timer 3	XXXXXXXX	
7950н	Serial Mode Register 3	SMR3	W, R/W		00000000	
7951н	Serial Control Register 3	SCR3	W, R/W		00000000	
7952н	Reception/Transmission Data Register 3	RDR3/ TDR3	R/W	UART3	00000000	
7953н	Serial Status Register 3	SSR3	R, R/W		00001000	
7954н	Extended Communication Control Reg. 3	ECCR3	R, W, R/W		000000XX	
7955н	Extended Status/Control Register 3	ESCR3	R/W		00000100	
7956н	Baud Rate Reload Register 30	BGR30	R/W		00000000	
7957н	Baud Rate Reload Register 31	BGR31	R/W		00000000	
7958н	Serial Mode Register 4	SMR4	W, R/W		00000000	
7959н	Serial Control Register 4	SCR4	W, R/W		00000000	
795Ан	Reception/Transmission Data Register 4	RDR4/ TDR4	R/W		00000000	
795Вн	Serial Status Register 4	SSR4	R, R/W	UART4	00001000	
795Сн	Extended Communication Control Reg. 4	ECCR4	R, W, R/W	UAR14	000000XX	
795Dн	Extended Status/Control Register 4	ESCR4	R/W		00000100	
795Ен	Baud Rate Reload Register 40	BGR40	R/W		00000000	
795Fн	Baud Rate Reload Register 41	BGR41	R/W		00000000	
7960н to 796Вн		Reserve	ed			
796Сн	Clock Output Enable Register	CLKR	R/W	Clock Monitor	XXXX0000	
796Dн to 796Fн	Reserved					

Address	Register	Abbrevia- tion	Access	Resource name	Initial value		
7970н	I ² C Bus Status Register 0	IBSR0	R		00000000		
7971н	I ² C Bus Control Register 0	IBCR0	W, R/W		00000000		
7972н	I2C 10 hit Slove Address Beginter 0	ITBAL0	R/W		00000000		
7973н	I ² C 10-bit Slave Address Register 0	ITBAH0	R/W		00000000		
7974н	12C 10 hit Clave Address Mask Beginter 0	ITMKL0	R/W	I ² C Interface 0	11111111		
7975н	I ² C 10-bit Slave Address Mask Register 0	ITMKH0	R/W		00111111		
7976н	I ² C 7-bit Slave Address Register 0	ISBA0	R/W		00000000		
7977н	I ² C 7-bit Slave Address Mask Register 0	ISMK0	R/W		01111111		
7978н	I ² C Data Register 0	IDAR0	R/W		00000000		
7979н, 797Ан	Reserved						
797Вн	I ² C Clock Control Register 0	ICCR0	R/W	I ² C Interface 0	00011111		
797Сн to 797Fн	Reserved						
7980н	I ² C Bus Status Register 1	IBSR1	R		00000000		
7981н	I ² C Bus Control Register 1	IBCR1	W, R/W		00000000		
7982н	I ² C 10-bit Slave Address Register 1	ITBAL1	R/W		00000000		
7983н	10 10-bit blave Address Negister 1	ITBAH1	R/W		00000000		
7984н	I ² C 10-bit Slave Address Mask Register 1	ITMKL1	R/W	I ² C Interface 1	11111111		
7985н	1 C 10-bit Slave Address Mask Negister 1	ITMKH1	R/W		00111111		
7986н	I ² C 7-bit Slave Address Register 1	ISBA1	R/W		00000000		
7987н	I ² C 7-bit Slave Address Mask Register 1	ISMK1	R/W		01111111		
7988н	I ² C Data Register 1	IDAR1	R/W		00000000		
7989н, 798Ан		Reserve	ed				
798Вн	I ² C Clock Control Register 1	ICCR1	R/W	I ² C Interface 1	00011111		
798Сн to 79С1н		Reserve	d				
79С2н	Clock Modulator Control Register	CMCR	R, R/W	Clock Modulator	0001X000		
79С3н to 79DFн		Reserve	d		(Continued)		

(Continued)

Address	Register	Abbrevia- tion	Access	Resource name	Initial value	
79Е0н	Program Address Detection Register 0	PADR0	R/W		XXXXXXX	
79Е1н	Program Address Detection Register 0	PADR0	R/W		XXXXXXXX	
79Е2н	Program Address Detection Register 0	PADR0	R/W		XXXXXXXX	
79ЕЗн	Program Address Detection Register 1	PADR1	R/W	Address Match Detection 0	XXXXXXXX	
79Е4н	Program Address Detection Register 1	PADR1	R/W		XXXXXXX	
79Е5н	Program Address Detection Register 1	PADR1	R/W	Detection	XXXXXXXX	
79Е6н	Program Address Detection Register 2	PADR2	R/W		XXXXXXXX	
79Е7н	Program Address Detection Register 2	PADR2	R/W		XXXXXXXX	
79Е8н	Program Address Detection Register 2	PADR2	R/W		XXXXXXXX	
79Е9н to 79ЕГн		Reserve	ed			
79F0н	Program Address Detection Register 3	PADR3	R/W		XXXXXXXX	
79F1н	Program Address Detection Register 3	PADR3	R/W		XXXXXXXX	
79F2н	Program Address Detection Register 3	PADR3	R/W		XXXXXXXX	
79F3н	Program Address Detection Register 4	PADR4	R/W		XXXXXXXX	
79F4н	Program Address Detection Register 4	PADR4	R/W	Address Match Detection 1	XXXXXXXX	
79F5н	Program Address Detection Register 4	PADR4	R/W	Detection	XXXXXXXX	
79F6н	Program Address Detection Register 5	PADR5	R/W		XXXXXXXX	
79F7н	Program Address Detection Register 5	PADR5	R/W		XXXXXXXX	
79F8н	Program Address Detection Register 5	PADR5	R/W		XXXXXXXX	
79F9н to 7FFFн	Reserved					

Notes: • Initial value of "X" represents unknown value.

• Addresses in the range 0000H to 00BFH, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results reading "X" and any write access should not be performed.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	El ² OS clear	DMA ch number	Interrupt vector		Interrupt control register	
-		Hullibei	Number Address		Number	Address
Reset	N	_	#08	FFFFDC _H	_	_
INT9 instruction	N		#09	FFFFD8 _H	_	
Exception	N	_	#10	FFFFD4 _H	_	_
(Reserved)	N	_	#11	FFFFD0 _H	ICR00	0000В0н
(Reserved)	N	_	#12	FFFFCCH	ICKUU	
Input Capture 6	Y1	_	#13	FFFFC8 _H	ICD04	0000P4
Input Capture 7	Y1	_	#14	FFFFC4 _H	ICR01	0000В1н
I ² C0	N		#15	FFFFC0 _H	ICR02	0000В2н
(Reserved)	N	_	#16	FFFFBC _H	ICKU2	
16-bit Reload Timer 0	Y1	0	#17	FFFFB8 _H	ICR03	0000ВЗн
16-bit Reload Timer 1	Y1	1	#18	FFFFB4 _H	ICKUS	
16-bit Reload Timer 2	Y1	2	#19	FFFFB0 _H	ICR04	0000В4н
16-bit Reload Timer 3	Y1	_	#20	FFFFAC⊢	ICKU4	
PPG 0/1/4/5	N	_	#21	FFFFA8 _H	ICR05	0000В5н
PPG 2/3/6/7	N	_	#22	FFFFA4 _H	ICKUS	
PPG 8/9/C/D	N	_	#23	FFFFA0 _H	ICR06	0000В6н
PPG A/B/E/F	N	_	#24	FFFF9C _H	ICKUU	
Time Base Timer	N	_	#25	FFFF98 _H	ICR07	0000В7н
External Interrupt 0 to 3, 8 to 11	Y1	3	#26	FFFF94 _H	ICKU1	
Watch Timer	N	_	#27	FFFF90⊦	ICR08	0000В8н
External Interrupt 4 to 7, 12 to 15	Y1	4	#28	FFFF8C _H	ICKUO	
A/D Converter	Y1	5	#29	FFFF88 _H	ICR09	0000В9н
I/O Timer 0 / I/O Timer 1	N	_	#30	FFFF84 _H	ICKU9	
Input Capture 4/5 / I ² C1	Y1	6	#31	FFFF80 _H	ICD10	0000ВАн
Output Compare 0/1/4/5	Y1	7	#32	FFFF7C _H	ICR10	
Input Capture 0 to 3	Y1	8	#33	FFFF78 _H	ICR11	0000ВВн
Output Compare 2/3/6/7	Y1	9	#34	FFFF74 _H	ICKTI	
UART 0 RX	Y2	10	#35	FFFF70 _H	ICR12	0000ВСн
UART 0 TX	Y1	11	#36	FFFF6C _H	IUNIZ	
UART 1 RX / UART 3 RX	Y2	12	#37	FFFF68 _H	ICD12	0000ВDн
UART 1 TX / UART 3 TX	Y1	13	#38	FFFF64 _H	ICR13	

(Continued)

Interrupt cause	El ² OS clear	DMA ch number	Interrup	t vector	Interrupt control register	
			Number	Address	Number	Address
UART 2 RX / UART 4 RX	Y2	14	#39	FFFF60 _H	ICR14	0000ВЕн
UART 2 TX / UART 4 TX	Y1	15	#40	FFFF5C _H	ICK 14	
Flash Memory	N	_	#41	FFFF58⊦	ICR15	0000ВFн
Delayed interrupt	N	_	#42	FFFF54 _H	ICK 15	

Y1: Usable

Y2: Usable, with El2OS stop function

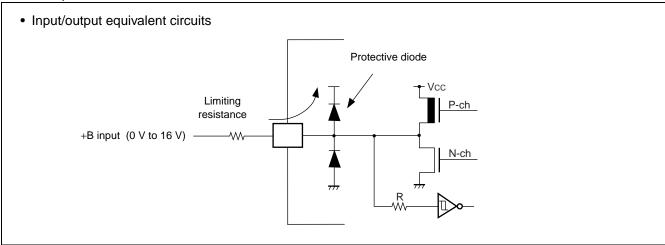
N : Unusable

Notes: • The peripheral resources sharing the ICR register have the same interrupt level.

• When two peripheral resources share the ICR register, only one can use Extended Intelligent I/O Service at a time.

• When either of the two peripheral resources sharing the ICR register specifies Extended Intelligent I/O Service, the other one cannot use interrupts.

■ ELECTRICAL CHARACTERISTICS

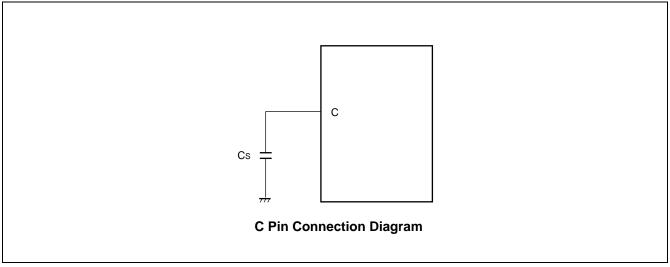

1. Absolute Maximum Ratings

(Vss = AVss = 0 V)

Parameter	Symbol	Rating		Unit	Remarks	
Farameter	Syllibol	Min	Max	Oilit	Keiliaiks	
Power supply voltage	Vcc	Vss - 0.3	Vss + 6.0	V		
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *1	
	AVRH, AVRL	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVRH, AVcc ≥ AVRL, AVRH ≥ AVRL	
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V	*2	
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	*2	
Maximum Clamp Current	I CLAMP	-4.0	+4.0	mA	*4	
Total Maximum Clamp Current	$\Sigma I_{CLAMP} $	_	40	mA	*4	
"L" level maximum output current	Іоь	_	15	mA	*3	
"L" level average output current	lolav	_	4	mA	*3	
"L" level maximum overall output current	ΣΙοι	_	100	mA	*3	
"L" level average overall output current	ΣΙοιαν	_	50	mA	*3	
"H" level maximum output current	Іон	_	-15	mA	*3	
"H" level average output current	І онаv	_	-4	mA	*3	
"H" level maximum overall output current	ΣІон	_	-100	mA	*3	
"H" level average overall output current	Σ lohav	_	-50	mA	*3	
Power consumption	Po	_	340	mW	MB90F867A	
Operating temperature	TA	-40	+105	°C		
Storage temperature	Тѕтс	-55	+150	°C		

(Continued)

- *1: Set AVcc and Vcc to the same voltage. Make sure that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.
- *2: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should not exceed the specified ratings. However if the maximun current to/from an input is limited by some means with external components, the I_{CLAMP} rating supercedes the V_I rating.
- *3: Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P90 to P97, PA0 to PA1
- *4: Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67 P70 to P77, P80 to P87, P90 to P97, PA0 to PA1
 - Use within recommended operating conditions.
 - Use at DC voltage (current)
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input
 potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect
 other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Sample recommended circuits:



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Conditions

(Vss = AVss = 0 V)

Parameter	Symbol		Value		Unit	Remarks
Farameter	Syllibol	Min	Тур	Max	Oilit	Remarks
		4.0	5.0	5.5	V	Under normal operation
Power supply voltage	Vcc, AVcc	3.5	5.0	5.5	V	Under normal operation, when not using the A/D converter and not Flash programming.
		4.5	5.0	5.5	V	When External bus is used.
		3.0	_	5.5	V	Maintains RAM data in stop mode
Smooth capacitor	Cs	0.1	_	1.0	μF	Use a ceramic capacitor or capacitor of better AC characteristics. Capacitor at the Vcc should be greater than this capacitor.
Operating temperature	TA	-40	_	+105	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Ta = -40 °C to +105 °C, Vcc = 5.0 V \pm 10%, Vss = AVss = 0 V)

Parameter	Sym-	Pin	Condition		Value		Unit	Remarks
Parameter	bol	FIII	Condition	Min	Тур	Max	Offic	Remarks
	Vihs	_	l	0.8 Vcc	_	Vcc + 0.3	V	Port inputs if CMOS hysteresis input levels are selected (except UART SIN input pins and I ² C input pins)
	VIHA	_		0.8 Vcc	_	Vcc + 0.3	V	Port inputs if AUTOMOTIVE input levels are selected
Input H voltage	Vінт	_	_	2.0	_	Vcc + 0.3	V	Port inputs if TTL input levels are selected
(At Vcc = 5 V ± 10%)	Vihs	_	_	0.7 Vcc	_	Vcc + 0.3	V	UART SIN inputs if CMOS input levels are selected
	Vіні	_	_	0.7 Vcc	_	Vcc + 0.3	V	I ² C Port inputs if CMOS hysteresis input levels are selected
	VIHR	_	_	0.8 Vcc	_	Vcc + 0.3	V	RST input pin (CMOS hysteresis)
	V _{IHM}		_	Vcc - 0.3	_	Vcc + 0.3	V	MD input pin
	Vils —	_	Vss - 0.3	_	0.2 Vcc	V	Port inputs if CMOS hysteresis input levels are selected (except UART SIN input pins and I ² C input pins)	
	VILA	_	_	Vss - 0.3	_	0.5 Vcc	V	Port inputs if AUTOMOTIVE input levels are selected
Input L voltage	V_{ILT}	_		Vss - 0.3	_	0.8	V	Port inputs if TTL input levels are selected
(At Vcc = 5 V ± 10%)	VILS	_	_	Vss - 0.3	_	0.3 Vcc	V	UART SIN inputs if CMOS input levels are selected
	VILI	_		Vss - 0.3	_	0.3 Vcc	V	l ² C Port inputs if CMOS hysteresis input levels are selected
	VILR	_		Vss - 0.3	_	0.2 Vcc	V	RST input pin (CMOS hysteresis)
	VILM	_	_	Vss - 0.3	_	Vss + 0.3	V	MD input pin
Output H voltage	Vон	Normal outputs	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -4.0 \text{ mA}$	Vcc - 0.5		_	V	
Output H voltage	Vоні	I ² C current outputs	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -3.0 \text{ mA}$	Vcc - 0.5			V	
Output L voltage	Vol	Normal outputs	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$	_		0.4	V	
Output L voltage	Voli	I ² C current outputs	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 3.0 \text{ mA}$	_	_	0.4	V	

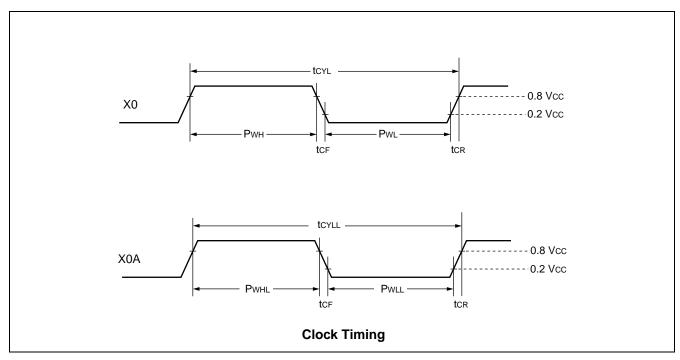
(Continued)

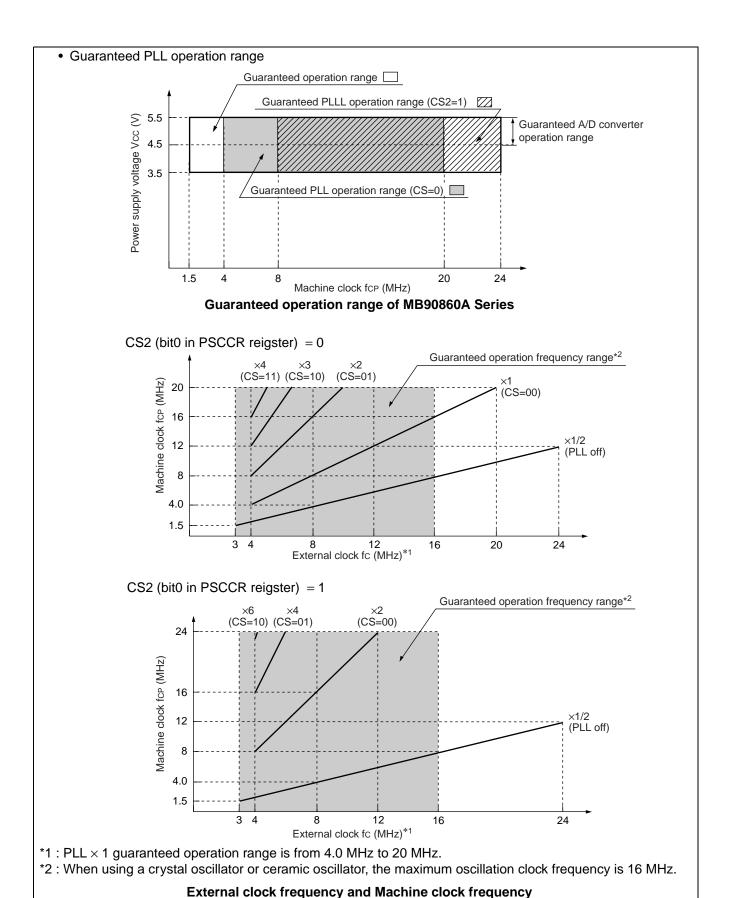
(Continued)

 $(T_A = -40 \, {}^{\circ}\text{C to} + 105, \, V_{CC} = 5.0 \, \text{V} \pm 10\%, \, V_{SS} = \text{AV}_{SS} = 0 \, \text{V})$

Danagasta	Sym-	D'	Onnall Com		Value		11 14	Damada
Parameter	bol	Pin	Condition	Min	Тур	Max	Unit	Remarks
Input leak current	lı∟	_	$Vcc = 5.5 \text{ V}, \text{ Vss} < \text{V}_{\text{I}} < \text{Vcc}$	-1	_	1	μΑ	
Pull-up resistance	Rup	P00 to P07, P10 to P17, P20 to P27, P30 to P37, RST	_	25	50	100	kΩ	
Pull-down resistance	RDOWN	MD2	_	25	50	100	kΩ	Except Flash devices
		Vcc = 5.0 V, Internal frequency : 24 MHz, At normal operation.		55	70	mA	MB90F867A	
	Icc		Vcc = 5.0 V, Internal frequency : 24 MHz, At writing FLASH memory.		70	85	mA	MB90F867A
			Vcc = 5.0 V, Internal frequency : 24 MHz, At erasing FLASH memory.		75	90	mA	MB90F867A
Iccs		Vcc = 5.0 V, Internal frequency : 24 MHz, At Sleep mode.		25	35	mA	MB90F867A	
	Істѕ		Vcc = 5.0 V, Internal frequency : 2 MHz, At Main Timer mode		0.3	0.8	mA	MB90F867A
Power supply current*	ICTSPLL6	Vcc	Vcc = 5.0 V, Internal frequency : 24 MHz, At PLL Timer mode, external frequency = 4 MHz	_	4	7	mA	MB90F867A
	Icc _L		Vcc = 5.0V Internal frequency: 8 kHz, At sub operation T _A = +25°C	_	170	360	μΑ	MB90F867A
	Iccls		Vcc = 5.0V Internal frequency: 8 kHz, At sub sleep T _A = +25°C	_	20	50	μΑ	MB90F867A
	Ісст		Vcc = 5.0V Internal frequency: 8 kHz, At watch mode T _A = +25°C	_	10	35	μΑ	MB90F867A
	Іссн		Vcc = 5.0 V, At Stop mode, T _A = +25°C		7	25	μΑ	MB90F867A
Input capacity	CIN	Other than C, AVRH, AVRL,			5	15	pF	

^{*:} Current values are tentative. They are subject to change without notice according to improvements in the characteristics. The power supply current is measured with an external clock.

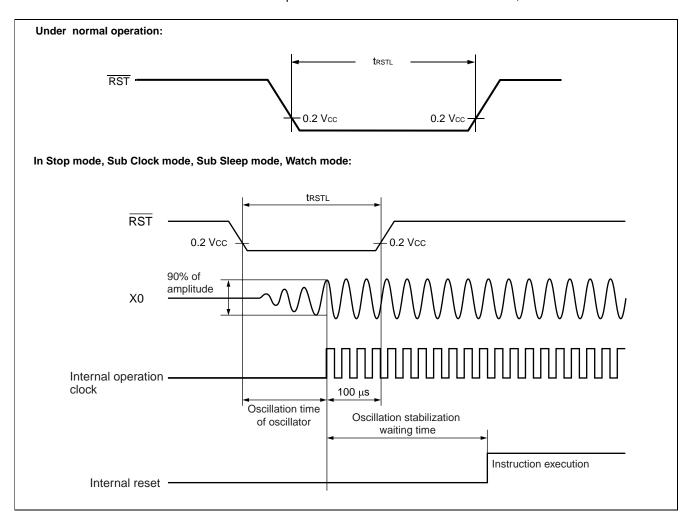

4. AC Characteristics


(1) Clock Timing

$$(T_A = -40 \, ^{\circ}\text{C to} + 105 \, ^{\circ}\text{C}, \, \text{Vcc} = 5.0 \, \text{V} \pm 10\%, \, \text{Vss} = \text{AVss} = 0 \, \text{V})$$

Parameter	Symbol	Pin		Value		Unit	Remarks
raiailletei	Зуппоп	FIII	Min	Тур	Max	Oilit	Remarks
	fc	X0, X1	3	_	16	MHz	When using an oscillation circuit
Clock frequency	ic	Х0	3	_	24	MHz	When using an external clock*
	fcL	X0A, X1A		32.768	100	kHz	
	t cyL	X0, X1	62.5	_	333	ns	When using an oscillation circuit
Clock cycle time	tot	X0	41.67		333	ns	When using an external clock
	tcyll	X0A, X1A	10	30.5	_	μs	
Input clock pulse width	Pwh, PwL	X0	10	_		ns	Duty ratio is about 30% to
Input clock pulse width	Pwhl, Pwll	X0A	5	15.2		μs	70%.
Input clock rise and fall time	tcr, tcf	X0	_		5	ns	When using external clock
Internal operating clock	f CP	_	1.5	_	24	MHz	When using main clock
frequency (machine clock)	f CPL			8.192	50	kHz	When using sub clock
Internal operating clock	t CP		41.67	_	666	ns	When using main clock
cycle time (machine clock)	t CPL		20	122.1	_	μs	When using sub clock

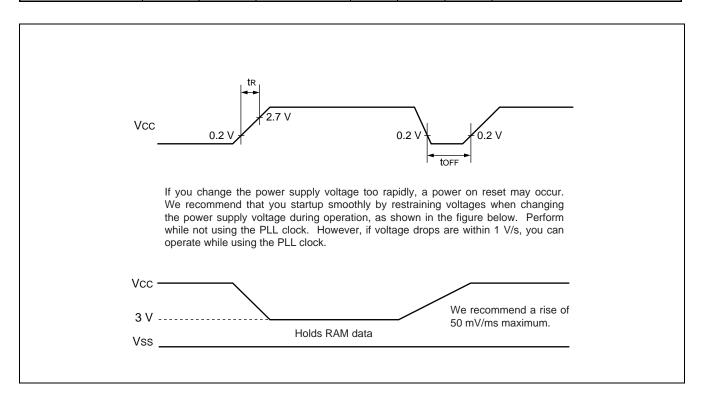
^{*:} Whem selecting the PLL clock, the range of clock frequency is limitted. Use this product within range as mentioned in "Relation among external clock frequency and machine clock frequency".


(2) Reset Standby Input

(Ta = -40 °C to +105 °C, Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V)

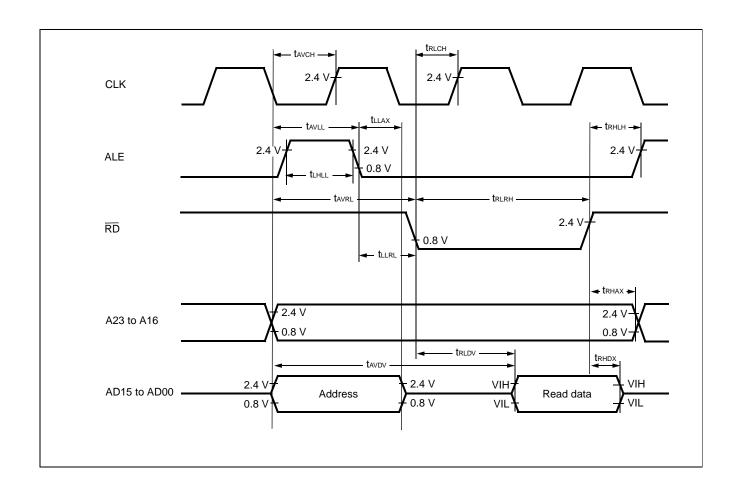
Parameter	Symbol	Pin	Value	Unit	Remarks		
Parameter	leter Symbol Fill		Min	Max	Ollit	Nemarks	
			500	_	ns	Under normal operation	
Reset input time	t rstl	trstl RST	Oscillation time of oscillator* + 100 μs		ns	In Stop mode, Sub Clock mode, Sub Sleep mode and Watch mode	
			100	_	μs	In Time Timer mode	

*: Oscillation time of oscillator is the time that the amplitude reaches 90%.


In the crystal oscillator, the oscillation time is between several ms and to tens of ms. In FAR / ceramic oscillators, the oscillation time is between hundreds of μs to several ms. With an external clock, the oscillation time is 0 ms.

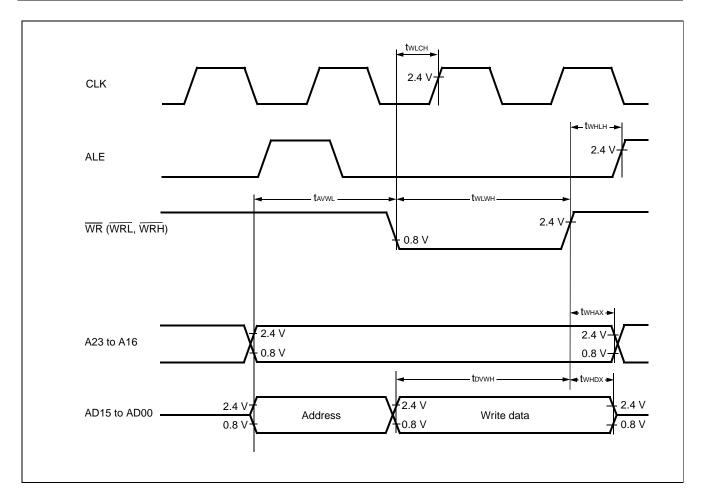
(3) Power On Reset

(T_A = -40 °C to +105 °C, Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V)


Parameter	Symbol Pin		Condition	Va	lue	Unit	Remarks		
Farameter	Syllibol	FIII	Condition	Min Max		Offic	iveillai va		
Power on rise time	t R	Vcc		0.05	30	ms			
Power off time	t off	Vcc	_	1 — ms Due		Due to repetitive operation			

(4) Bus Timing (Read)

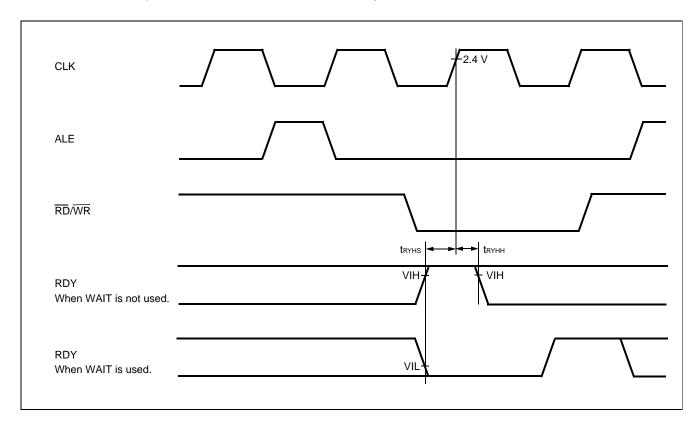
 $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{ Vcc} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ Machine Clock} \le 16 \text{ MHz})$


Parameter	Sym-	Pin	Condition		lue	Unit	Remarks
Farameter	bol	FIII	Condition	Min	Max	Oilit	Remarks
ALE pulse width	t LHLL	ALE		tcp/2 - 10	_	ns	
Valid address ⇒ ALE ↓ time	t avll	ALE, A23 to A16, AD15 to AD00		tcp/2 - 15	_	ns	
$ALE \downarrow \Rightarrow Address valid time$	t llax	ALE, AD15 to AD00		tcp/2 - 15	_	ns	
Valid address \Rightarrow \overline{RD} ↓ time	t avrl	A23 toA16, AD15 to AD00, RD		tcp - 15	_	ns	
Valid address ⇒ Valid data input	t avdv	A23 to A16, AD15 to AD00		_	5 tcp/2 - 40	ns	
RD pulse width	trlrh	RD		3 tcp/2 - 20	_	ns	
$\overline{RD} \downarrow \Rightarrow Valid \; data \; input$	t RLDV	RD, AD15 to AD00		_	3 tcp/2 - 50	ns	
RD ↑ ⇒ Data hold time	t RHDX	RD, AD15 to AD00		0	_	ns	
$\overline{RD} \downarrow \Rightarrow ALE \uparrow time$	t RHLH	RD, ALE		tcp/2 - 15	_	ns	
RD ↑ ⇒ Address valid time	t RHAX	RD, A23 to A16		tcp/2 - 10	_	ns	
Valid address ⇒ CLK ↑ time	t avch	A23 to A16, AD15 to AD00, CLK		tcp/2 - 15	_	ns	
RD ↓ ⇒ CLK ↑ time	t RLCH	RD, CLK		tcp/2 - 15	_	ns	
$ALE \downarrow \Rightarrow \overline{RD} \downarrow time$	t llrl	ALE, RD		tcp/2 - 15	_	ns	

(5) Bus Timing (Write)

 $(T_A = -40$ °C to +85°C, $V_{CC} = 4.5$ V to 5.5 V, $V_{SS} = 0.0$ V, Machine Clock ≤ 16 MHz)

Parameter	Symbol	Pin	Condition	Val	ue	Unit	Remarks
raiailletei	Syllibol	FIII	Condition	Min	Max	Oilit	iveillai va
Valid address \Rightarrow WR ↓ time	tavwl	A23 to A16, AD15 to AD00, WR		tcp-15	_	ns	
WR pulse width	twlwh	WR		3 tcp/2 - 20	_	ns	
Valid data output \Rightarrow $\overline{\text{WR}}$ \uparrow time	t dvwh	AD15 to AD00, WR		3 tcp/2 - 20	_	ns	
$\overline{\mathrm{WR}} \uparrow \Rightarrow \mathrm{Data} \ \mathrm{hold} \ \mathrm{time}$	t whdx	AD15 to AD00, WR	_	15	_	ns	
$\overline{ m WR}\!\!\uparrow \Rightarrow { m Address} { m valid} { m time}$	twhax	A23 to A16, WR		tcp/2 - 10	_	ns	
$\overline{WR} \uparrow \Rightarrow ALE \uparrow time$	twhlh	WR, ALE		tcp/2 - 15	_	ns	
$\overline{WR} \downarrow \Rightarrow CLK \uparrow time$	twlch	WR, CLK		tcp/2 - 15		ns	

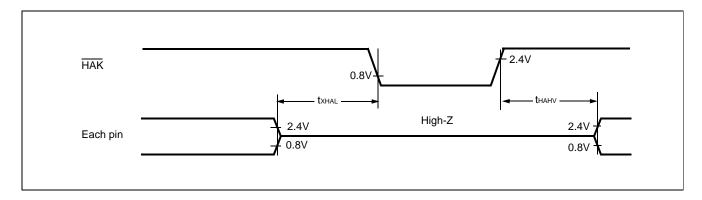


(6) Ready Input Timing

 $(T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}, \text{Vcc} = 4.5 \text{ V to } 5.5 \text{ V}, \text{Vss} = 0.0 \text{ V}, \text{Machine Clock} \le 16 \text{ MHz})$

Parameter	Sym-		Test	Va	lue	Units	Remarks
	bol	F III	Condition	Min	Max	Ullits	Nemarks
RDY setup time	t RYHS	RDY		45	_	ns	
RDY hold time	t RYHH	RDY		0	_	ns	

Note: If the RDY setup time is insufficient, use the auto-ready function.

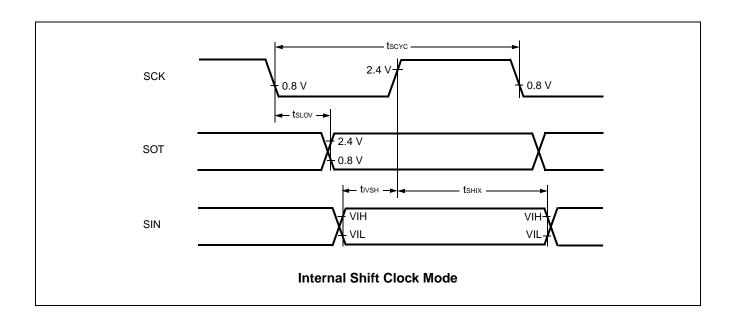


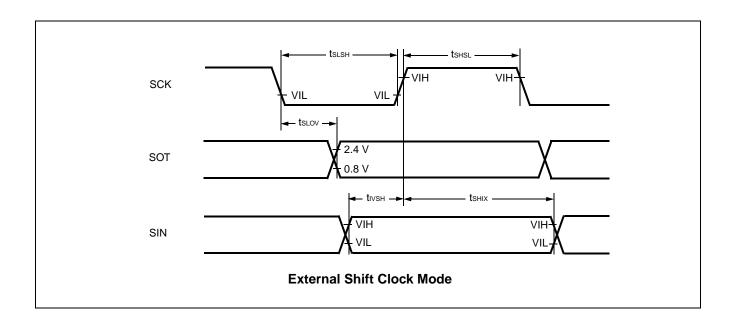
(7) Hold Timing

(T_A = -40°C to +85°C, V_{CC} = 4.5 V to 5.5 V, V_{SS} = 0.0 V, Machine Clock ≤ 16 MHz)

Parameter	Symbol Pin		Condition	Val	lue	Units	Remarks
Farameter	Syllibol	FIII	Condition	Min	Max	Units	Nemarks
$\begin{array}{c} \text{Pin floating} \ \Rightarrow \ \overline{\text{HAK}} \downarrow \\ \text{time} \end{array}$	txhal	HAK		30	t cp	ns	
HAK ↑ time ⇒ Pin valid time	t hahv	HAK		t CP	2 tcp	ns	

Note: There is more than 1 cycle from when HRQ reads in until the \overline{HAK} is changed.

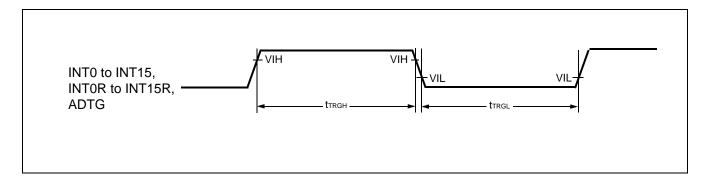

(8) UART0/1/2/3/4


 $(T_A = -40 \, ^{\circ}\text{C} \text{ to } +105 \, ^{\circ}\text{C}, \, \text{Vcc} = 4.5 \, \text{V to } 5.5 \, \text{V}, \, \text{Vss} = 0 \, \text{V})$

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
raiailletei	Syllibol	FIII	Condition	Min	Max	Oilit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK4		8 tcp	_	ns	
$SCK \downarrow \; o \; SOT \; delay \; time$	tsLOV	SCK0 to SCK4, SOT0 to SOT4	Internal clock operation output	-80	+80	ns	
Valid SIN → SCK ↑	t ıvsh	SCK0 to SCK4, SIN0 to SIN4	pins are C _L = 80 pF + 1 TTL.	100		ns	
$SCK \uparrow \to Valid \; SIN \; hold \; time$	t sнıx	SCK0 to SCK4, SIN0 to SIN4		60		ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK4		4 tcp		ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK4		4 tcp	_	ns	
$SCK \downarrow \; o \; SOT \; delay \; time$	t sLOV	SCK0 to SCK4, SOT0 to SOT4	External clock operation output		150	ns	
Valid SIN → SCK ↑	t ıvsh	SCK0 to SCK4, SIN0 to SIN4	pins are C _L = 80 pF + 1 TTL.	60		ns	
$SCK \! \uparrow \to Valid SIN hold time$	t shix	SCK0 to SCK4, SIN0 to SIN4		60		ns	

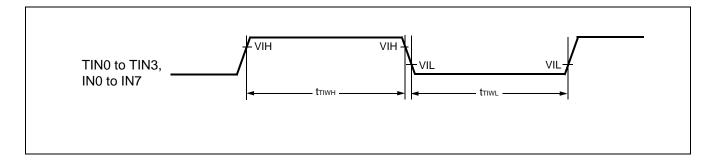
Notes: • AC characteristic in CLK synchronized mode.

- C_L is load capacity value of pins when testing.
- tcp is the machine cycle (Unit: ns)



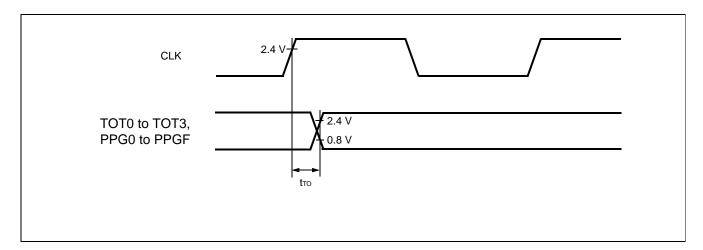
(9) Trigger Input Timing

 $(T_A = -40 \text{ °C to } +105 \text{ °C}, \text{ Vcc} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$


Parameter	Symbol Pin		Condition	Val	ue	Unit	Remarks
	Symbol	FIII	Condition	Min	Max	Onne	Remarks
Input pulse width	ttrgh ttrgl	INT0 to INT15, INT0R to INT15R, ADTG	_	5 tcp	_	ns	

(10) Timer Related Resource Input Timing

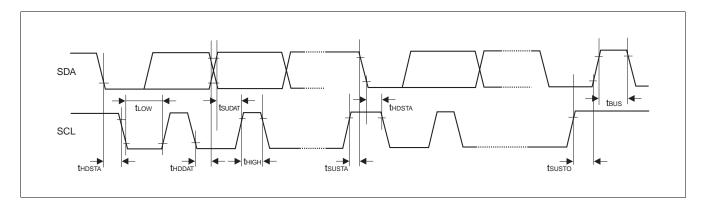
 $(T_A = -40 \, ^{\circ}\text{C} \text{ to } +105 \, ^{\circ}\text{C}, \, \text{Vcc} = 4.5 \, \text{V to } 5.5 \, \text{V}, \, \text{Vss} = 0 \, \text{V})$


Parameter	Symbol	Pin Condition —		Val	lue	Unit	Remarks	
raiametei	Symbol	FIII	Condition	Min	Max	Oilit	Kemarks	
Input pulse width	ttiwh	TIN0 to TIN3 IN0 to IN7		4 tcp	_	ns		

(11) Timer Related Resource Output Timing

 $(T_A = -40^{\circ} \text{ to } +105^{\circ}\text{C}, \text{Vcc} = 4.5 \text{ V to } 5.5 \text{ V}, \text{Vss} = 0.0 \text{ V})$

Parameter	Symbol	Pin Condition		Value		Unit	Remarks
i didilietei	Symbol		Condition	Min	Max	Oill	Neillai KS
CLK ↑ ⇒ Touт change time	t TO	TOT0 to TOT3, PPG0 to PPGF	_	30	_	ns	



(12) I2C Timing

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C, \text{ Vcc} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V})$

Parameter	Symbol	bol Condition	Standar	d-mode	Fast-mode*4		Unit
i didilietei	Symbol	Condition	Min	Max	Min	Max	Oilit
SCL clock frequency	fscL		0	100	0	400	kHz
Hold time (repeated) START condition SDA $\downarrow \to$ SCL \downarrow	t HDSTA		4.0		0.6	_	μs
"L" width of the SCL clock	t LOW		4.7	_	1.3	_	μs
"H" width of the SCL clock	t HIGH		4.0	_	0.6		μs
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	$R = 1.7 \text{ k}\Omega,$	4.7		0.6	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t hddat	$C = 50 \text{ pF}^{*1}$	0	3.45*2	0	0.9*3	μs
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	t sudat		250		100	_	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	t susto		4.0	_	0.6	_	μs
Bus free time between a STOP and START condition	tвus		4.7	_	1.3	_	μs

- *1: R, C: Pull-up resistor and load capacitor of the SCL and SDA lines.
- *2: The maximum thddat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.
- *3 : A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, but the requirement $t_{SUDAT} \ge 250$ ns must then be met.
- *4: For use at over 100 kHz, set the machine clock to at least 6 MHz.

5. A/D Converter

 $(T_{\text{A}} = -40~^{\circ}\text{C to } + 105~^{\circ}\text{C},~3.0~\text{V} \leq \text{AVRH} - \text{AVRL},~\text{Vcc} = \text{AVcc} = 5.0~\text{V} \pm 10\%,~\text{Vss} = \text{AVss} = 0~\text{V})$

Parameter	Symbol	Pin		Value		Unit	Remarks	
Parameter	Symbol	PIII	Min Typ		Max	Unit	i\ciliai N3	
Resolution	_	_	_	_	10	bit		
Total error	_	_			±3.0	LSB		
Nonlinearity error	_	_			±2.5	LSB		
Differential nonlinearity error		_	_	_	±1.9	LSB		
Zero reading voltage	Vот	AN0 to AN23	AVRL – 1.5	AVRL + 0.5	AVRL + 2.5	LSB		
Full scale reading voltage	V _{FST}	AN0 to AN23	AVRH – 3.5	AVRH – 1.5	AVRH + 0.5	LSB		
Compare time			1.0		16,500	μs	4.5 V ≤ AVcc ≤ 5.5 V	
Compare time		_	2.0		10,500		4.0 V ≤ AVcc < 4.5 V	
Sampling time —			0.5		∞	μs	4.5 V ≤ AVcc ≤ 5.5 V	
Sampling time			1.2		~	μδ	4.0 V ≤ AVcc < 4.5 V	
Analog port input current	lain	AN0 to AN23	-0.3	_	+0.3	μΑ		
Analog input voltage range	Vain	AN0 to AN23	AVRL	_	AVRH	V		
Reference	_	AVRH	AVRL + 2.7	_	AVcc	V		
voltage range		AVRL	0	_	AVRH – 2.7	V		
Power supply	lΑ	AVcc	_	3.5	7.5	mA		
current	Іан	AVcc	_	_	5	μΑ	*	
Reference	IR	AVRH	_	600	900	μΑ		
voltage current	IRH	AVRH	_	5		μΑ	*	
Offset between input channels	_	AN0 to AN23	_	_	4	LSB		

^{*:} When not operating A/D converter, this is the current (Vcc = AVcc = AVRH = 5.0 V).

Note: The accuracy gets worse as AVRH – AVRL becomes smaller.

6. Definition of A/D Converter Terms

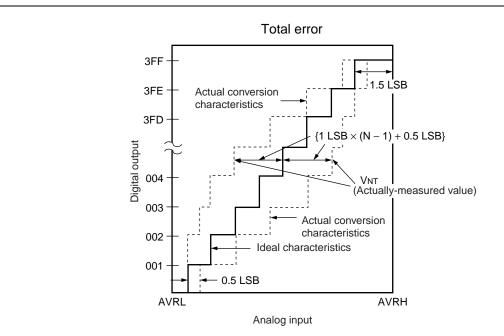
Resolution : Analog variation that is recognized by an A/D converter.

Non linearity : Deviation between a line across zero-transition line ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") error and full-scale transition line ("11 1111 1110" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion

characteristics.

Differential : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal linearity error value.

Total error : Difference between an actual value and an ideal value. A total error includes zero transition


error, full-scale transition error, and linear error.

Zero reading voltage Full scale

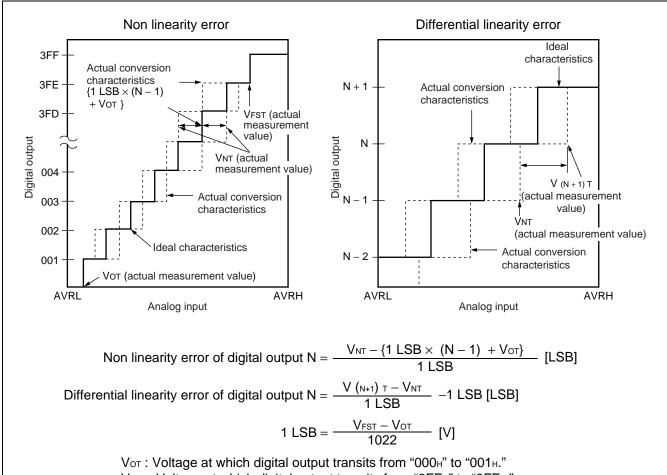
eading : Input voltage which results in the minimum conversion value.

: Input voltage which results in the maximum conversion value.

reading voltage

$$Total \ error \ of \ digital \ output \ "N" = \frac{V_{NT} - \{1 \ LSB \times \ (N-1) \ + 0.5 \ LSB\}}{1 \ LSB} \quad [LSB]$$

1 LSB = (Ideal value)
$$\frac{AVRH - AVRL}{1024}$$
 [V]


Vot (Ideal value) = AVRL + 0.5 LSB [V]

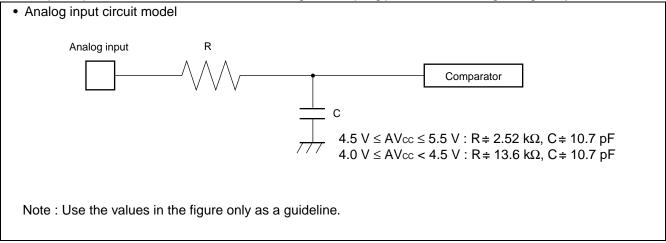
V_{FST} (Ideal value) = AVRH - 1.5 LSB [V]

 V_{NT} : A voltage at which digital output transitions from (N-1) to N.

(Continued)

VFST: Voltage at which digital output transits from "3FEH" to "3FFH."

7. Notes on A/D Converter Section


Use the device with external circuits of the following output impedance for analog inputs:

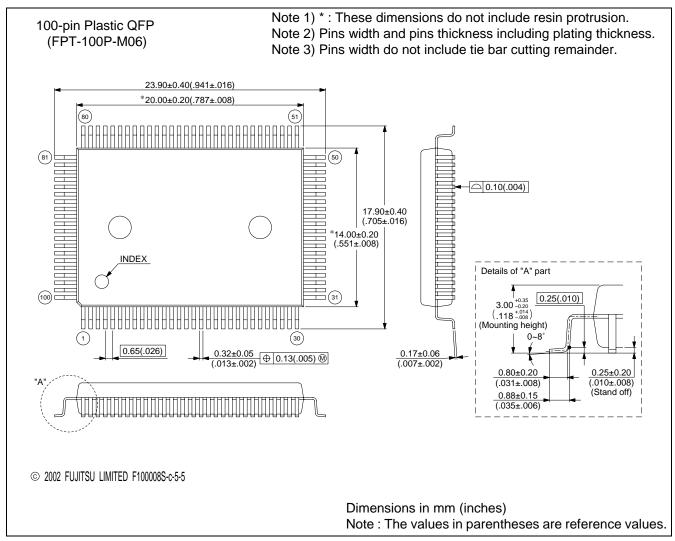
Recommended output impedance of external circuits are : Approx. 1.5 k Ω or lower (4.0 V \leq AVcc \leq 5.5 V, sampling period \leq 0.5 μ s)

if the output inpedance exceeds 1.5 k Ω , set a longer sampling time or add an external capacitor compensate the output inpedance. About setting of sampling time, please refer to hardware manual of MB90860A series.

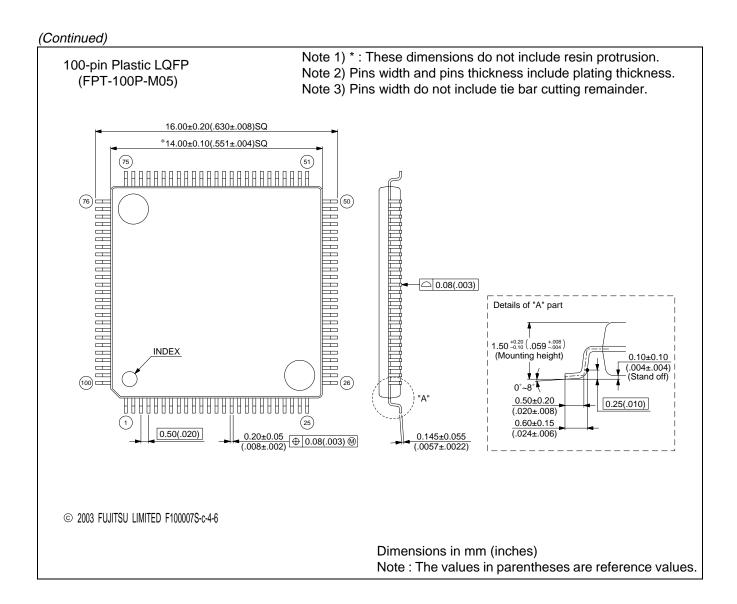
If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

8. Flash Memory Program/Erase Characteristics


Parameter	Conditions		Value		Unit	Remarks	
Farameter	Conditions	Min	Тур	Max	Oill	Keillaiks	
Sector erase time		_	1	15	S	Excludes programming prior to erasure	
Chip erase time	$T_A = +25 ^{\circ}C$ Vcc = 5.0 V	_	9	_	S	Excludes programming prior to erasure	
Word (16 bit width) programming time		_	16	3,600	μs	Except for the over head time of the system	
Programs/Erase cycle	_	10,000	_	_	cycle		
Flash Data Retention Time	Average T _A = +85 °C	20	_	_	Year	*	

 $^{^*}$: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85\,^{\circ}\text{C}$).


■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F867APF		
MB90F867ASPF	100-pin Plastic QFP	
MB90867APF	(FPT-100P-M06)	
MB90867ASPF		
MB90F867APFV		
MB90F867ASPFV	100-pin Plastic LQFP	
MB90867APFV	(FPT-100P-M05)	
MB90867ASPFV		
MB90V340 MB90V340S	299-pin Ceramic PGA (PGA-299C-A01)	For evaluation

■ PACKAGE DIMENSIONS

(Continued)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0405

© FUJITSU LIMITED Printed in Japan