ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V _{EE} V _{CC} 0.3V to 13V	
Voltage into Any Terminal (Note 1)(VEE - 0.3V) to (VCC + 0.3V)	
Continuous Current into Any Terminal±20mA	
Peak Current, X_, Y_, Z_	
(pulsed at 1ms, 10% duty cycle)±40mA	
ESD per Method 3015.7>2000V	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
16-Pin PDIP (derate 10.53mW/°C above +70°C)842mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C)696mW	

16-Pin QSOP (derate 8.3mW/°C above +7	70°C)667mW
16-Pin TSSOP (derate 9.4mW/°C above +	70°C)755mW
16-Pin TQFN (derate 14.7mW/°C above +	70°C)1177mW
Operating Temperature Ranges	
MAX458_C	0°C to +70°C
MAX458_E	40°C to +85°C
MAX458_A	40°C to +125°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Note 1: Voltages exceeding V_{CC} or V_{EE} on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

(VCC = 4.5V to 5.5V, VEE = -4.5V to -5.5V, V_{L} = 2.4V, V_{L} = 0.8V, T_{A} = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_{A} = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP (Note 2)	MAX	UNITS		
ANALOG SWITCH								1	
Analog-Signal Range	Vx, Vy, Vz			C, E, A	VEE		Vcc	V	
Switch On-Resistance	Ron	VCC = 4.5V; VEE = -4.5V;		+25°C		50	80	Ω	
	11011	I_X , I_Y , $I_Z = 1mA$; V_X , V_Y , $V_Z = 3.5$	/	C, E, A			100		
Switch On-Resistance Match Between	ΔRon	V _{CC} = 4.5V; V _{EE} = -4.5V; x, y, z = 1mA: Vx, Vy, Vz = 3.5	/	+25°C		1	4	Ω	
Channels (Note 3)		$1\chi, 1\gamma, 1\zeta = 1111\Delta, V\chi, V\gamma, V\zeta = 3.3$	v	C, E, A			6		
Switch On-Resistance	RFLAT(ON)	$V_{CC} = 5V$; $V_{EE} = -5V$; I_{X} , I_{Y} , $I_{Z} = 1$	1mA;	+25°C		4	10	Ω	
Flatness (Note 4)	TIFLAT(ON)	V_X , V_Y , $V_Z = 3V$, $0V$, $-3V$	V_X , V_Y , $V_Z = 3V$, $0V$, $-3V$				12	32	
X_, Y_, Z_ Off-Leakage	IX_(OFF), IY (OFF),	VCC = 5.5V; VEE = -5.5V;					+1	nA	
(Note 5)	$ V_{Z}(OFF) $ $ V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = \pm 4.5V; V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = \pm 4.5V$; = ∓4.5V	C, E, A	-10		+10	1	
	IX(OFF), IY(OFF), IZ(OFF)	` '		MAX4581	+25°C	-2		+2	
X, Y, Z Off-Leakage			$V_{CC} = 5.5V; V_{EE} = -5.5V; V_{X}, V_{Y}, V_{Z} = \pm 4.5V;$	1017 074501	C, E, A	-100		+100	nA l
(Note 5)		V_X , V_Y , $V_Z = \mp 4.5V$	MAX4582	+25°C	-1		+1		
	_(3)		MAX4583	C, E, A	-50		+50		
			MAX4581	+25°C	-2		+2		
X, Y, Z On-Leakage	IX(ON),	$V_{CC} = 5.5V; V_{EE} = -5.5V;$	IVIAX4301	C, E, A	-100		+100	nA	
(Note 5)	l _{Y(ON)} , Iz(ON)	V_X , V_Y , $V_Z = \pm 4.5V$	MAX4582	+25°C	-1		+1		
	2(011)		MAX4583	C, E, A	-50		+50		
DIGITAL I/O					•				
Logic Input Logic Threshold High	V _{AH} , V _{BH} , V _{CH}			C, E, A		1.5	2.4	V	
Logic Input Logic Threshold Low	VAL, VBL, VCL			C, E, A	0.8	1.5		V	

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

($V_{CC} = 4.5V$ to 5.5V, $V_{EE} = -4.5V$ to -5.5V, $V_{_H} = 2.4V$, $V_{_L} = 0.8V$, $T_{A} = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_{A} = +25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP (Note 2)	MAX	UNITS									
Input-Current High	I _{AH} , I _{BH} , I _{CH}	VA, VB, VC = 2.4V	C, E, A	-1		+1	μА									
Input-Current Low	I _{AL} , I _{BL} ,	VA, VB, VC = 0.8V		C, E, A	-1		+1	μА								
SWITCH DYNAMIC CHA	RACTERIS	TICS														
Inhibit Turn-On Time	t(ON)	$V_{X}, V_{Y}, V_{Z} = 3V; R_L = 300\Omega; C_L$	= 35pF;	$T_A = +25^{\circ}C$		100	200	ns								
IIIIIDIL TUITI-OTI TIITIE	I (ON)	Figure 3		C, E, A			200	110								
Inhibit Turn-Off Time	t(OFF)	$V_{X}, V_{Y}, V_{Z} = 3V; R_L = 300\Omega; C_L$	= 35pF;	T _A = +25°C		40	100	ns								
TITILDIC TUTTI-OTI TITTIE	i(OFF)	Figure 3		C, E, A			150	113								
Address Transition Time	ttrans	$V_{X}, V_{Y}, V_{Z} = \pm 3V; R_L = 300\Omega; C$	L = 35pF;	$T_A = +25^{\circ}C$		90	200	ns								
Address Hallstoll Hille	TIMANS	Figure 2		C, E, A			200	110								
Break-Before-Make Time	tBBM	V_{X} , V_{Y} , V_{Z} = 3V; R_L = 300 Ω ; C_L Figure 4	$V_{X}, V_{Y}, V_{Z} = 3V; R_L = 300\Omega; C_L = 35pF;$ Figure 4			20		ns								
Charge Injection (Note 6)	Q	$C = 1nF, R_S = 0\Omega, V_S = 0V$		T _A = +25°C		0.5	5	рС								
Input Off-Capacitance	Cx_(OFF), Cy_(OFF), Cz_(OFF)	V _{X_} , V _{Y_} , V _{Z_} = 0V; f = 1MHz; Figur	Vx_, Vy_, Vz_ = 0V; f = 1MHz; Figure 7			4		pF								
	Cx(OFF),	V V V OV 6 AMI	MAX4581			18										
Output Off-Capacitance	Cy(OFF),	Cy(OFF),	CY(OFF),	Cy(OFF),	Cy(OFF),	Cy(OFF),	Cy(OFF),	Cy(OFF),	Cy(OFF),	V _{X_} , V _{Y_} , V _{Z_} = 0V; f = 1MHz; Figure 7	MAX4582	$T_A = +25^{\circ}C$		10		рF
	C _{Z(OFF)}	MAX4583			6											
	C _{X(ON)} ,	., ., ., ., ., ., ., ., ., ., ., ., ., .	MAX4581			25										
Output On-Capacitance	C _{Y(ON)} ,	V_{X} , V_{Y} , V_{Z} = 0V; f = 1MHz; Figure 7	MAX4582	T _A = +25°C		17		pF								
	C _{Z(ON)}	rigare r	MAX4583			12.5		1								
Off-Isolation	V _{ISO}	$R_L = 50\Omega$, f = 1MHz, Figure 6	'	$T_A = +25^{\circ}C$		-74		dB								
01 11 01 1			MAX4581	T _A = +25°C		-78		٩D								
Channel-to-Channel Crosstalk	VCT	$R_L = 50\Omega$, f = 1MHz, Figure 6	MAX4582	T _A = +25°C		-96		- dB								
Orossiain			MAX4583	T _A = +25°C		-73		pF								
Total Harmonic Distortion	THD	$R_L = 600\Omega$, 5Vp-p, f = 20Hz to 20kl	T _A = +25°C		0.02		%									
POWER SUPPLY																
Power-Supply Range	V _{CC} , V _{EE}			C, E, A	±2		±6	V								
Power-Supply Current	loo Irr	V _{CC} = 5.5V, V _{EE} = -5.5V,		T _A = +25°C	-1	-1 +1	μΑ									
r ower-oupply ourlett	ICC, IEE	V _A , V _B , V _C , V _{Enable} = V+ or 0V		C, E, A	-10		+10] μΛ								

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V_{CC} = 4.5V \text{ to } 5.5V, V_{EE} = 0V, V_{L} = 2.4V, V_{L} = 0.8V, T_{A} = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_{A} = +25^{\circ}C.$)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP (Note 2)	MAX	UNITS	
ANALOG SWITCH								
Analog-Signal Range	Vx_, Vy_, Vz_, Vx, Vy, Vz			C, E, A	VEE		Vcc	V
Switch On-Resistance	Ron	$V_{CC} = 4.5V$; I_X , I_Y , $I_Z = 1mA$; V_X , V_Y , $V_Z = 3.5V$		T _A = +25°C C, E, A		90	150 200	Ω
Switch On-Resistance Match Between Channels (Note 3)	ΔRon	V _{CC} = 4.5V; I _X , I _Y , I _Z = 1mA; V _X , V _Y , V _Z = 3.5V		T _A = +25°C C, E, A		2	8	Ω
X_, Y_, Z Off-Leakage (Note 5)	IX_(OFF), IY_(OFF),	V _{CC} = 5.5V; V _{X_} , V _{Y_} , V _{Z_} = 1V, V _X , V _Y , V _Z = 4.5V, 1V	4.5V;	T _A = +25°C	-1		+1	nA
(Note 5)	IZ_(OFF)		MAX4581	C, E, A $T_A = +25^{\circ}C$	-10 -2		+10	
X, Y, Z Off-Leakage (Note 5)	IX(OFF), IY(OFF), IZ(OFF)	V _{CC} = 5.5V; V _X , V _Y , V _Z = 1V, 4.5V; V _X , V _Y , V _Z = 4.5V, 1V	MAX4582	C, E, A T _A = +25°C	-100 -1		+100	nA
		7,7,7,7,2	MAX4583	C, E, A T _A = +25°C	-50 -2		+50 +2	
X, Y, Z On-Leakage (Note 5)		$V_{CC} = 5.5V;$ $V_X, V_Y, V_Z = 4.5V, 1V$	MAX4581 MAX4582	C, E, A T _A = +25°C	-100 -1		+100	nA
DIGITAL I/O	12(ON)		MAX4583	C, E, A	-50		+50	
Logic Input Logic Threshold High	V _{AH} , V _{BH} , V _{CH} , V _{ENABLEH}			C, E, A		1.5	2.4	V
Logic Input Logic Threshold Low	V _{AL} , V _{BL} , V _{CL} , VENABLEL			C, E, A	0.8	1.5		V
Input-Current High	I _{AH} , I _{BH} , I _{CH} , I _{ENABLEH}	V _{AL} , V _{BL} , V _{CL} , V _{EnableL} = 2.4V		C, E, A	-1		+1	μА
Input-Current Low	IAL, IBL, ICL, IENABLEL	V _{AL} , V _{BL} , V _{CL} , V _{EnableL} = 0.8V		C, E, A	-1		+1	μА
SWITCH DYNAMIC CH	HARACTERISTIC	CS						
Charge Injection (Note 6)	Q	$C = 1nF, R_S = 0\Omega, V_S = 2.5V$		$T_A = +25^{\circ}C$		0.8	5	рС
Enable Turn-On Time	t(ON)	V_{X} , V_{Y} , V_{Z} = 3V, R_L = 300 Ω , 0 Figure 3	$C_L = 35pF$,	T _A = +25°C C, E, A		100	200	ns
Enable Turn-Off Time	t(OFF)	V_{X} , V_{Y} , V_{Z} = 3V, R_L = 300 Ω , 0 Figure 3	$V_{X}, V_{Y}, V_{Z} = 3V, R_L = 300\Omega, C_L = 35pF,$ Figure 3			40	100 150	- ns
Address Transition Time	ttrans	$V_{X}, V_{Y}, V_{Z} = 3V/0V, R_L = 3000$ $C_L = 35pF, Figure 2$	$T_A = +25^{\circ}C$ C, E, A		80	200 250	ns	
Break-Before-Make Time	tBBM	V_{X} , V_{Y} , V_{Z} = 3V, R_L = 300 Ω , (Figure 4	T _A = +25°C	10	30		ns	
POWER SUPPLY								
Power-Supply Range	V _{CC} , V _{EE}			C, E, A	2		12	V
Power-Supply Current	ICC, IEE	VCC = 3.6V; VA, VB, VC, VEnable = V+ or 0V		T _A = +25°C C, E, A	-1 -10		+10	μΑ

! ______ *NIXIM*

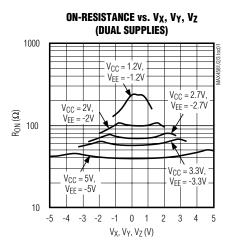
ELECTRICAL CHARACTERISTICS—Single +3V Supply

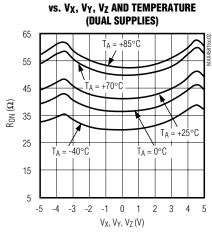
(V_{CC} = 2.7V to 3.6V, V_{EE} = 0V, V_L = 2.0V, V_L = 0.5V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	TEMP	MIN	TYP (Note 2)	MAX	UNITS	
ANALOG SWITCH								1
Analog-Signal Range	Vx_, Vy_, Vz_, Vx, Vy, Vz			C, E, A	VEE		Vcc	V
Switch On-Resistance	Ron	$V_{CC} = 2.7V$; I_X , I_Y , $I_Z = 0.1mA$;		$T_A = +25$ °C		190	450	Ω
Owner On resistance	TION	V_X , V_Y , $V_Z = 1.5V$		C, E, A			550	
X_, Y_, Z_ Off-Leakage	IX_(OFF), IY_(OFF),	VCC = 3.6V; Vx_, Vy_, Vz_ = 1V	, 3V;	$T_A = +25^{\circ}C$	-1		+1	nA
(Note 5)	IZ_(OFF)	V_X , V_Y , $V_Z = 3V$, $1V$		C, E, A	-10		+10	11/
	hwass	Va. 2. 0.V.	MAX4581	T _A = +25°C	-2		+2	
X, Y, Z Off-Leakage	IX(OFF), IY(OFF),	$V_{CC} = 3.6V;$ $V_{X}, V_{Y}, V_{Z} = 1V, 3.0V;$	1017 (714301	C, E, A	-100		+100	nA
(Note 6)	IZ(OFF)	$V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 1V, 0.0V,$ $V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 3.0V, 1V$	MAX4582	$T_A = +25$ °C	-1		+1] '''
	.2(011)	7,7,7,7,2	MAX4583	C, E, A	-50		+50]
X, Y, Z On-Leakage			MAVAEO1	T _A = +25°C	-2		+2	
	IX(ON), IY(ON),	V _{CC} = 3.6V; V _X , V _Y , V _Z = 3.0V, 1V	MAX4581	C, E, A	-100		+100	
(Note 6)			MAX4582	T _A = +25°C	-1		+1	nA
	I _{Z(ON)}		MAX4583	C, E, A	-50		+50	
DIGITAL I/O			-					
Logic Input Logic Threshold High	VAH, VBH, VCH, VENABLEH			C, E, A		1.0	2.0	V
Logic Input Logic Threshold Low	V _{AL} , V _{BL} , V _{CL} , VENABLEL			C, E, A	0.5	1.0		V
Input-Current High	IAH, IBH, ICH, IENABLEH	V _A , V _B , V _C = V _{Enable} = 2.0V		C, E, A	-1		+1	μΑ
Input-Current Low	I _{AL} , I _{BL} , I _{CL} , I _{ENABLEL}	VA, VB, VC = VEnable = 0.5V		C, E, A	-1		+1	μΑ
SWITCH DYNAMIC CHA	ARACTERISTIC	S (Note 6)						
Enable Turn-On Time	*****	$V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 1.5V; R_{L} = 3000$	Ω;	$T_A = +25^{\circ}C$		170	300	no
Enable rum-on nine	t(ON)	$C_L = 35pF$; Figure 3		C, E, A			400	ns
		V_X , V_Y , V_Z = 1.5V; R_L = 300	Ω ;	T _A = +25°C		50	200	
Enable Turn-Off Time	t(OFF)	CL = 35pF; Figure 3		C, E, A			300	ns
Address Transition		Vx_, Vy_, Vz_ = 1.5V/0V; RL = 3	00Ω;	T _A = +25°C		130	300	
Time	ttrans	C _L = 35pF; Figure 2		C, E, A			400	ns
Break-Before-Make Time	t _{BBM}	$V_{X_{-}}, V_{Y_{-}}, V_{Z_{-}} = 1.5V; R_L = 300\Omega; C_L = 35pF$		T _A = +25°C	15	40		ns
POWER SUPPLY								
D 0 1 0 :		V _{CC} = 3.6V,		$T_A = +25^{\circ}C$	-1		+1	_
Power-Supply Current	I _{CC} , I _{EE}	VA, VB, VC, VEnable = V+ or 0V		C, E, A	-10		+10	μΑ

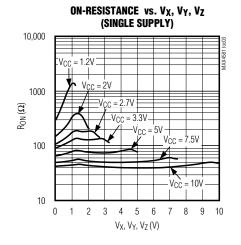
Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

Note 3: $\Delta R_{ON} = R_{ON(MAX)} - R_{ON(MIN)}$.

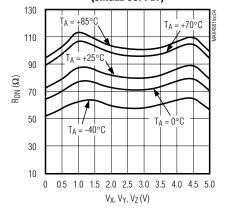

Note 4: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges; i.e., V_X , V_Y , V_Z = 3V to 0 and 0 to -3V.

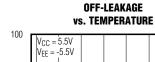

Note 5: Leakage parameters are 100% tested at maximum-rated hot operating temperature, and guaranteed by correlation at T_A = +25°C.

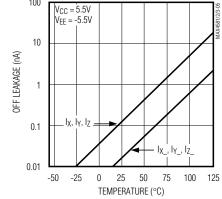
Note 6: Guaranteed by design, not production tested.

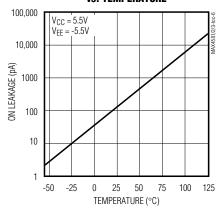

Typical Operating Characteristics

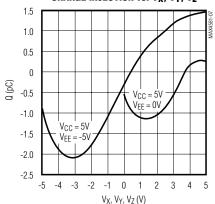
(VCC = 5V, VEE = -5V, VGND = 0V, TA = +25°C, unless otherwise noted.)



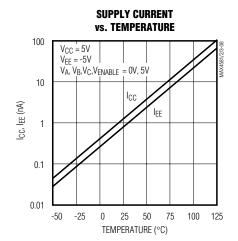


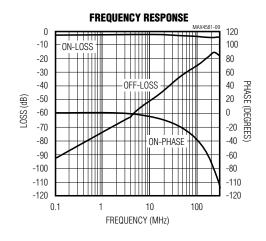

ON-RESISTANCE

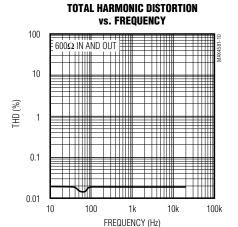

ON-RESISTANCE vs. V_X , V_Y , V_Z and temperature (Single Supply)

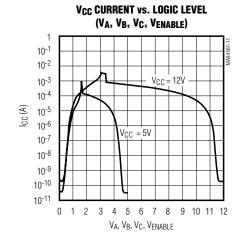


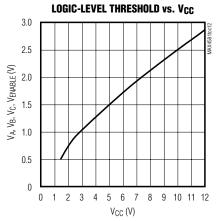
ON-LEAKAGE vs. TEMPERATURE








Typical Operating Characteristics (continued)


 $(VCC = 5V, VEE = -5V, VGND = 0V, TA = +25^{\circ}C, unless otherwise noted.)$

Pin Description

		P	IN					
MAX	4581	MAX	4582	MAX	4583	NAME	FUNCTION	
PDIP, SO, TSSOP	TQFN-EP	PDIP, SO, TSSOP	TQFN-EP	PDIP, SO, TSSOP	TQFN-EP	NAME	FUNCTION	
13, 14, 15, 12, 1, 5, 2, 4	11, 12, 13, 10, 15, 3, 16, 2		_		_	X0-X7	Analog Switch Inputs 0-7	
3	1	13	11	14	12	Х	Analog Switch "X" Output	
_	_	12, 14, 15, 11	10, 12, 13, 9	_	_	X0, X1, X2, X3	Analog Switch "X" Inputs 0-3	
_	_	1, 5, 2, 4	15, 3, 16, 2	_	_	Y0, Y1, Y2, Y3	Analog Switch "Y" Inputs 0-3	
_	_	3	1	15	13	Υ	Analog Switch "Y" Output	
_	_	_	_	13	11	X1	Analog Switch "X" Normally Open Input	
_	_	_	_	12	10	X0	Analog Switch "X" Normally Closed Input	
_	_	_	_	1	15	Y1	Analog Switch "Y" Normally Open Input	
_	_	_	_	2	16	Y0	Analog Switch "Y" Normally Open Input	
_	_	_	_	3	1	Z1	Analog Switch "Z" Normally Open Input	
_	_	_	_	5	3	Z0	Analog Switch "Z" Normally Open Input	
_	_	_	_	4	2	Z	Analog Switch "Z" Output	
16	14	16	14	16	14	Vcc	Positive Analog and Digital Supply-Voltage Input	
11	9	10	8	11	9	А	Digital Address "A" Input	
10	8	9	7	10	8	В	Digital Address "B" Input	
9	7	_	_	9	7	С	Digital Address "C" Input	
8	6	8	6	8	6	GND	Ground. Connect to digital ground. (Analog signals have no ground reference; they are limited to V _{CC} and V _{EE} .)	
7	5	7	5	7	5	VEE	Negative Analog Supply-Voltage Input. Connect to GND for single-supply operation.	
6	4	6	4	6	4	ENABLE	Digital Enable Input. Normally connected to GND.	
	_	_	_	_		EP	Exposed Pad (TQFN only). Connect EP to V _{CC} .	

Note: Input and output pins are identical and interchangeable. Any may be considered an input or output; signals pass equally well in both directions.

_Applications Information Power-Supply Considerations Overview

The MAX4581/MAX4582/MAX4583 construction is typical of most CMOS analog switches. They have three

supply pins: V_{CC}, V_{EE}, and GND. V_{CC} and V_{EE} are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD-protection diodes are internally connected between each analog-signal pin and both V_{CC} and V_{EE}. If any analog signal exceeds V_{CC} or V_{EE}, one of these diodes

Table 1. Truth Table/Switch Programming

ENABLE	SI	ELECT INPUT	rs	ON SWITCHES				
INPUT	C*	В	Α	MAX4581	MAX4582	MAX4583		
Н	X	X	Х	All switches open	All switches open	All switches open		
L	L	L	L	X–X0	X–X0, Y–Y0	X–X0, Y–Y0, Z–Z0		
L	L	L	Н	X–X1	X–X1, Y–Y1	X–X1, Y–Y0, Z–Z0		
L	L	Н	L	X-X2	X–X2, Y–Y2	X–X0, Y–Y1, Z–Z0		
L	L	Н	Н	X-X3	X–X3, Y–Y3	X–X1, Y–Y1, Z–Z0		
L	Н	L	L	X-X4	X–X0, Y–Y0	X–X0, Y–Y0, Z–Z1		
L	Н	L	Н	X-X5	X–X1, Y–Y1	X–X1, Y–Y0, Z–Z1		
L	Н	Н	L	X–X6	X–X2, Y–Y2	X–X0, Y–Y1, Z–Z1		
L	Н	Н	Н	X-X7	X–X3, Y–Y3	X–X1, Y–Y1, Z–Z1		

X = Don't care

Note: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from VCC or VEE.

Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either VCC or VEE and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the VCC and VEE pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch can minal. This is why both sides of a given switch can

show leakage currents of either the same or opposite polarity.

There is no connection between the analog-signal paths and GND.

VCC and GND power the internal logic and logic-level translators, and set the input logic limits. The logic-level translators convert the logic levels into switched VCC and VEE signals to drive the gates of the analog signals. This drive signal is the only connection between the logic supplies and signals and the analog supplies. VCC and VEE have ESD-protection diodes to GND.

The logic-level thresholds are TTL/CMOS compatible when V_{CC} is +5V. As V_{CC} rises, the threshold increases

^{*}C not present on MAX4582.

slightly, so when V_{CC} reaches +12V the threshold is about 3.1V (above the TTL-guaranteed high-level minimum of 2.8V, but still compatible with CMOS outputs).

Bipolar Supplies

These devices operate with bipolar supplies between $\pm 2V$ and $\pm 5V$. The V_{CC} and V_{EE} supplies need not be symmetrical, but their sum cannot exceed the $\pm 13V$ absolute maximum rating

Single Supply

These devices operate from a single supply between +2V and +12V when VEE is connected to GND. All of the bipolar precautions must be observed. At room temperature, they actually "work" with a single supply near or below +1.7V, although as supply voltage decreases, switch on-resistance and switching times become very high.

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence VCC on first, then VEE, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1).

Adding diodes reduces the analog-signal range to one diode drop below V_{CC} and one diode drop above V_{EE} , but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V_{CC} and V_{EE} should not exceed 13V. These protection diodes are not recommended when using a single supply if signal levels must extend to ground.

High-Frequency Performance

In 50Ω systems, signal response is reasonably flat up to 50MHz (see *Typical Operating Characteristics*). Above 20MHz, the on response has several minor peaks which are highly layout dependent. The problem is not turning the switch on, but turning it off. The off-state switch acts like a capacitor and passes higher frequencies with less attenuation. At 10MHz, off isolation is about -50dB in 50Ω systems, becoming worse (approximately 20dB per decade) as frequency increases. Higher circuit impedances also degrade off isolation. Adjacent channel attenuation is about 3dB above that of a bare IC socket and is entirely due to capacitive coupling.

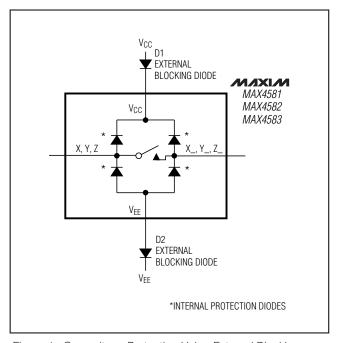


Figure 1. Overvoltage Protection Using External Blocking Diodes

Pin Nomenclature

The MAX4581/MAX4582/MAX4583 are pin-compatible with the industry-standard 74HC4051/74HC4052/74HC4053 and the MAX4051/MAX4052/MAX4053. They function identically and have identical logic diagrams, although these parts differ electrically.

The pin designations and logic diagrams in this data sheet conform to the original 1972 specifications published by RCA for the CD4051/CD4052/CD4053. These designations differ from the standard Maxim switch and mux designations as found all other Maxim data sheets (including the MAX4051/MAX4052/MAX4053) and may cause confusion. Designers who feel more comfortable with Maxim's standard designations are advised that the pin designations and logic diagrams on the MAX4051/MAX4052/MAX4053 data sheet may be freely applied to the MAX4581/MAX4582/MAX4583.

10 ______ /I/1XI/M

Test Circuits/Timing Diagrams

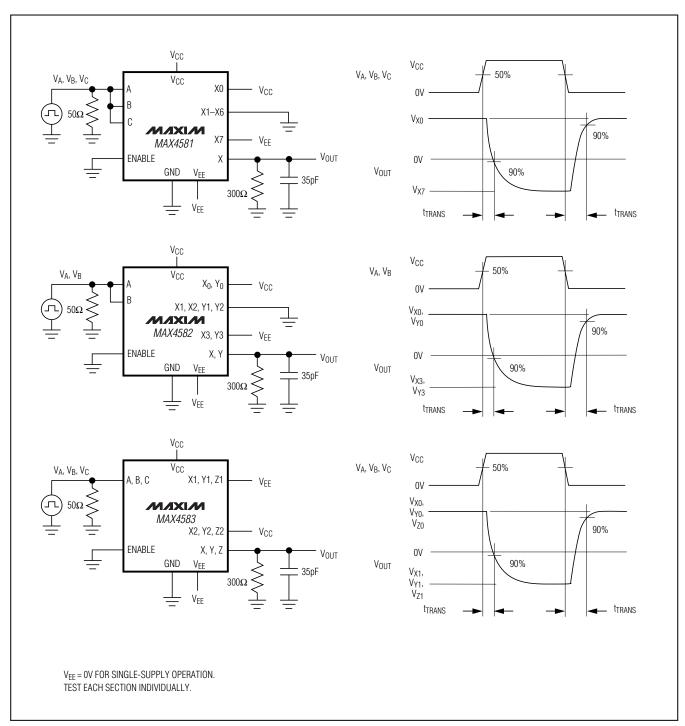


Figure 2. Address Transition Times

/**///X**//// _______ 11

Test Circuits/Timing Diagrams (continued)

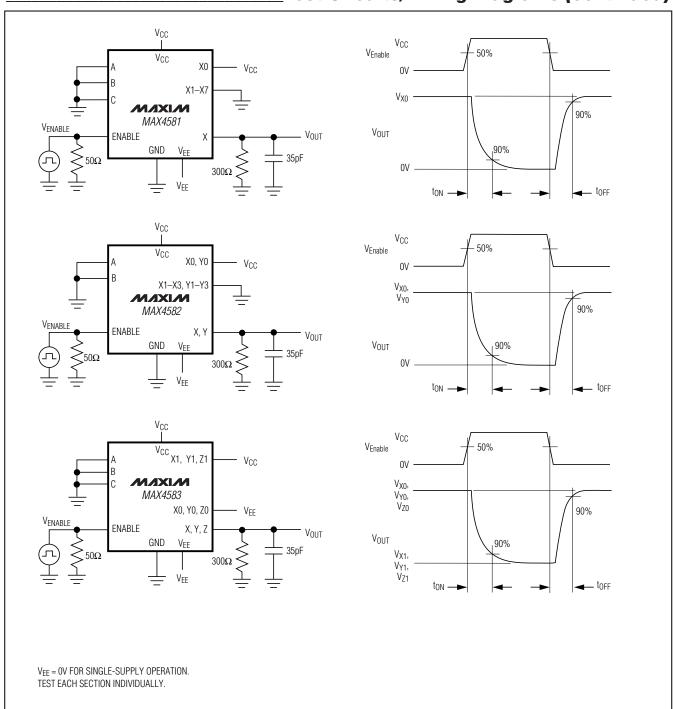


Figure 3. Inhibit Switching Times

12 _______ **/\/**/**X//**/

Test Circuits/Timing Diagrams (continued)

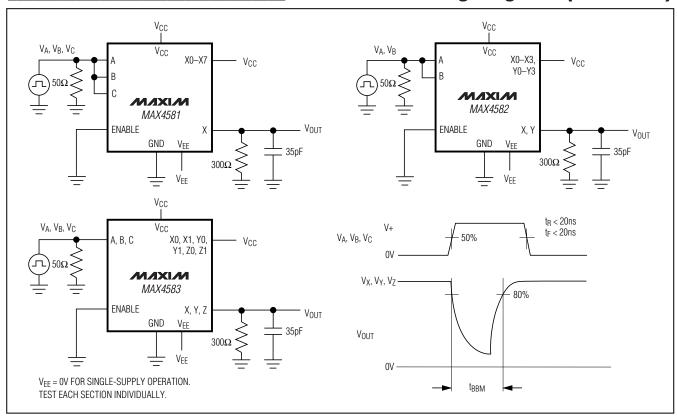


Figure 4. Break-Before-Make Interval

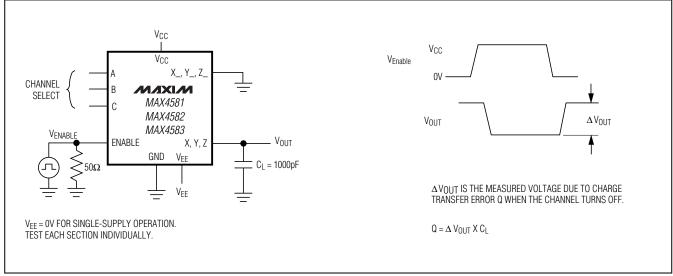
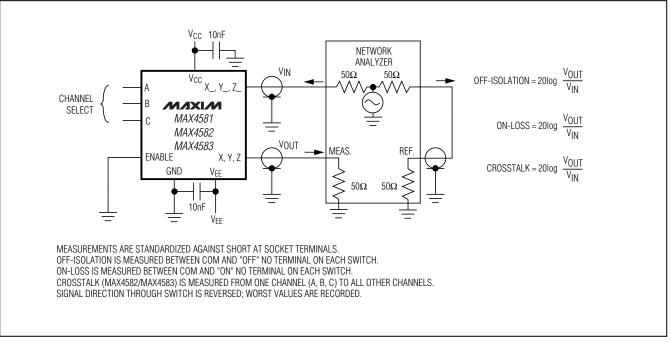


Figure 5. Charge Injection

////XI/// _______ 13

Test Circuits/Timing Diagrams (continued)



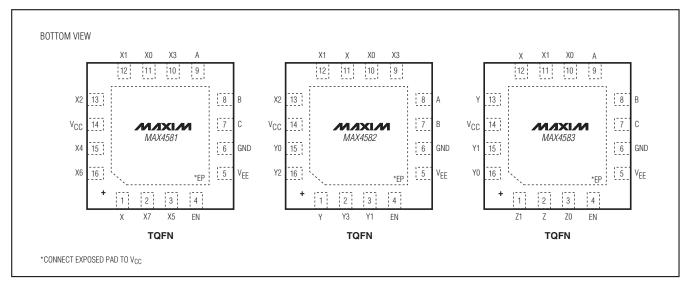

Figure 6. Off Isolation, On Loss, and Crosstalk

Figure 7. Capacitance

14 ______ **/\!/**1X**!/\!**

Pin Configurations/Functional Diagrams (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4581CEE+	0°C to +70°C	16 QSOP	_
MAX4581EPE+	-40°C to +85°C	16 PDIP	
MAX4581ESE+	-40°C to +85°C	16 Narrow SO	_
MAX4581EUE+	-40°C to +85°C	16 TSSOP	
MAX4581EEE+	-40°C to +85°C	16 QSOP	
MAX4581ETE+	-40°C to +85°C	16 TQFN-EP*	AGH
MAX4581ASE+	-40°C to +125°C	16 Narrow SO	_
MAX4581AUE+	-40°C to +125°C	16 TSSOP	
MAX4582CPE+	0°C to +70°C	16 PDIP	_
MAX4582CSE+	0°C to +70°C	16 Narrow SO	_
MAX4582CUE+	0°C to +70°C	16 TSSOP	
MAX4582CEE+	0°C to +70°C	16 QSOP	_
MAX4582EPE+	-40°C to +85°C	16 PDIP	
MAX4582ESE+	-40°C to +85°C	16 Narrow SO	
MAX4582EUE+	-40°C to +85°C	16 TSSOP	_

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX4582EEE+	-40°C to +85°C	16 QSOP	_
MAX4582ETE+	-40°C to +85°C	16 TQFN-EP*	AGH
MAX4582ASE+	-40°C to +125°C	16 Narrow SO	_
MAX4582AUE/V+T	-40°C to +125°C	16 TSSOP	_
MAX4583CPE+	0°C to +70°C	16 PDIP	_
MAX4583CSE+	0°C to +70°C	16 Narrow SO	_
MAX4583CUE+	0°C to +70°C	16 TSSOP	_
MAX4583CEE+	0°C to +70°C	16 QSOP	_
MAX4583EPE+	-40°C to +85°C	16 PDIP	_
MAX4583ESE+	-40°C to +85°C	16 Narrow SO	_
MAX4583EUE+	-40°C to +85°C	16 TSSOP	_
MAX4583EEE+	-40°C to +85°C	16 QSOP	_
MAX4583ETE+	-40°C to +85°C	16 TQFN-EP*	AGH
MAX4583ASE+	-40°C to +125°C	16 Narrow SO	_
MAX4583AUE+	-40°C to +125°C	16 TSSOP	_

N Denotes an automotive qualified part.

T = Tape and reel.

^{*}EP = Exposed pad.

Chip Information

_Package Information

PROCESS: BICMOS
TRANSISTOR COUNT: 219

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 PDIP	P16+1	<u>21-0043</u>	_
16 Narrow SO	S16+1	21-0041	90-0097
16 TSSOP	U16+2	21-0066	<u>90-0117</u>
16 QSOP	E16+4	<u>21-0055</u>	<u>90-0167</u>
16 TQFN	T1633+5	<u>21-0136</u>	90-0032

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
5	6/07	Various changes	_
6	3/12	Updated TQFN, PDIP, and lead-free packaging options; updated temperature ranges	1–7, 15, 16

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

17 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600