ABSOLUTE MAXIMUM RATINGS

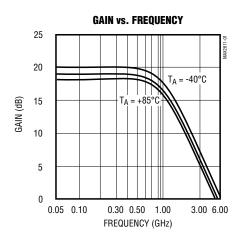
Ip40mA	Operating Temperature Range40°C to +85°C
Input Power+13dBm	Junction Temperature+150°C
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	Storage Temperature Range65°C to +150°C
SOT143-4 (derate 4mW/°C above +70°C)320mW	Lead Temperature (soldering, 10s)+300°C

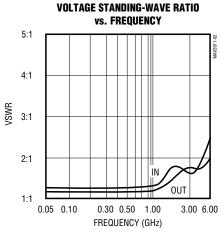
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

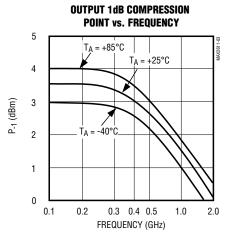
ELECTRICAL CHARACTERISTICS

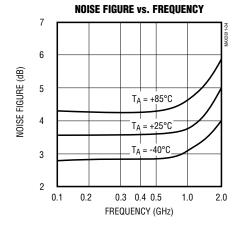
(ID = 16mA, $Z_0 = 50\Omega$, $f_{IN} = 500MHz$, $T_A = +25$ °C, unless otherwise noted.)

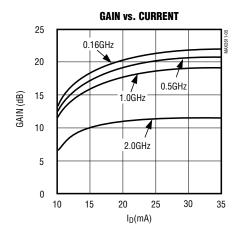
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
Operating Temperature Range	(Note 1)	-40		85	°C		
Power Gain	$f_{IN} = 100MHz$		19.0		dB		
Tower dain	$f_{IN} = 500MHz$	17.3	18.3				
Gain Flatness	$f_{IN} = 100MHz$ to $500MHz$		±0.3		dB		
3dB Bandwidth			1100		MHz		
Input Voltage Standing-Wave Maximum Ratio	f _{IN} = 100MHz to 1500MHz		1.9:1				
Output Voltage Standing-Wave Maximum Ratio	f _{IN} = 100MHz to 1500MHz		1.6:1				
Output 1dB Compression Point			2.9		dBm		
Noise Figure			3.5		dB		
Output IP3			13		dBm		
Group Delay			210		ps		
Davida a Malka wa		3.5 3.8					
Device Voltage	$T_A = T_{MIN} \text{ to } T_{MAX} \text{ (Note 2)}$ 3.25 3.8 4.2				V		
Device Voltage Temperature Coefficient			-6.1		mV/°C		


Note 1: Parts are designed to operate over specified temperature range. Specifications are production tested and guaranteed at +25°C.


Note 2: Guaranteed by design, not tested.




Typical Operating Characteristics


(ID = 16mA, Z0 = 50 Ω , fIN = 500MHz, TA = +25°C, unless otherwise noted.)

Pin Description

PIN	NAME	FUNCTION
1	OUT	Amplifier Output. Use a series blocking capacitor with less than 3Ω reactance at your lowest operating frequency. Bias with an external resistor and an optional RF choke.
2, 4	GND	Ground Connection. For optimum performance, provide a low-inductance connection to the ground plane.
3	IN	Amplifier Input. Use a series blocking capacitor with less than 3Ω reactance at your lowest operating frequency.

Table 1. Typical Scattering Parameters

 $(I_D = 16\text{mA}, Z_0 = 50\Omega, T_A = +25^{\circ}\text{C})$

FREQUENCY (GHz)	S11 (mag)	S11 (ang)	S21 (dB)	S21 (mag)	S21 (ang)	S12 (dB)	S12 (mag)	S12 (ang)	S22 (mag)	S22 (ang)	к
0.1	0.12	-11	19.0	8.90	173	-22.6	0.074	2	0.05	53	1.08
0.2	0.11	-44	18.8	8.73	166	-21.9	0.081	4	0.03	12	1.06
0.3	0.13	-58	18.6	8.53	158	-21.6	0.083	5	0.04	45	1.05
0.4	0.14	-78	18.5	8.43	151	-21.6	0.083	6	0.06	32	1.06
0.5	0.15	-89	18.3	8.26	144	-21.6	0.083	7	0.08	34	1.06
0.6	0.15	77	18.1	7.99	137	-21.6	0.083	9	0.09	26	1.07
0.8	0.13	50	17.4	7.45	123	-21.6	0.083	10	0.10	23	1.10
1.0	0.12	16	16.6	6.79	109	-20.9	0.090	10	0.10	35	1.11
1.5	0.32	-60	14.1	5.07	79	-21.8	0.081	11	0.21	-86	1.29
2.0	0.31	-72	10.3	3.27	59	-22.2	0.078	18	0.22	-72	1.87
2.5	0.32	-76	7.9	2.48	47	-22.6	0.074	25	0.26	-53	2.44
3.0	0.20	-70	5.9	1.98	32	-22.3	0.077	37	0.24	-29	3.10
3.5	0.24	-64	3.0	1.41	13	-21.4	0.086	30	0.19	47	3.83
4.0	0.31	-68	-0.7	0.92	17	-23.0	0.070	35	0.24	82	6.66

Detailed Description

The MAX2611 is a broadband amplifier with flat gain and 50Ω input and output ports. Its small size and simple bias circuitry make it ideal for applications where board space is limited.

Applications Information

External Components

As shown in the *Typical Operating Circuit*, the MAX2611 is easy to use. Input and output series capacitors may be necessary to block DC bias voltages (generated by the MAX2611) from interacting with adjacent circuitry. These capacitors must be large enough to contribute negligible reactance in a 50Ω system at the minimum operating frequency. Use the following equation to calculate their minimum value:

$$C_{BLOCK} = \frac{53,000}{f} (pF)$$

where f (in MHz) is the minimum operating frequency.

Bias current is supplied to the MAX2611 through an external resistor and optional RF choke connected between $V_{\rm CC}$ and the OUT pin. A bypass capacitor from $V_{\rm CC}$ to GND may be necessary to isolate the $V_{\rm CC}$ line from other circuitry. The resistor value determines the bias current from the following equation:

$$I_D = \frac{V_{CC} - V_D}{R_{BIAS}}$$

where V_D is the device voltage, nominally 3.8V.

An optional RF choke can be added to improve the MAX2611's gain and output power. The choke should be large enough to reduce the loading effect that the bias resistor has on the amplifier output. This is a function of RBIAS, frequency of operation, and output impedance.

Grounding

Proper grounding of the GND pins is essential. If the PC board uses a topside RF ground, the GND pins should be connected directly to it. For a board where the ground plane is not on the component side, the best technique is to connect the GND pins to it through multiple plated through-holes.

PC Board Layout Example

An example PC board layout is given in Figure 1. It uses FR-4 with 31mil layer thickness between the RF lines and the ground plane. This board satisfies all the above requirements.

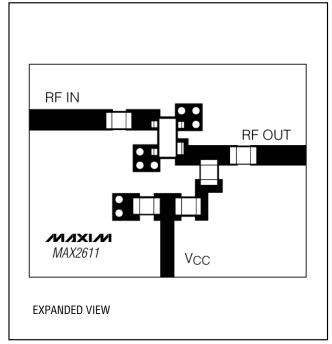
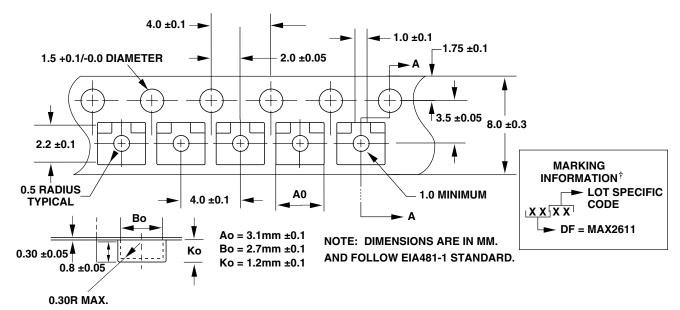



Figure 1. Example PC Board Layout

Tape-and-Reel Information

[†]ICs MAY ALSO BE MARKED WITH FULL PART NAME: 2611

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 2005 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products, Inc.