ABSOLUTE MAXIMUM RATINGS

IN to GND	0.3V to +6V
OUT to GND	6V to +0.3V
C1+, SHDN, SHDN to GND	0.3V to (V _{IN} + 0.3V)
C1- to GND	(VOUT - 0.3V) to +0.3V
OUT Output Current	
OUT Short Circuit to GND	

Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
6-Pin SOT23 (derate 8.7mW/°C above +70°	°C)696mW
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

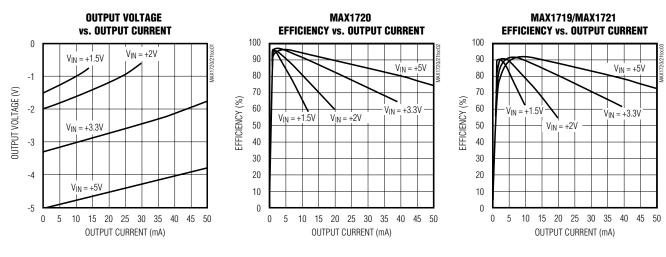
 $(V_{IN} = +5V, SHDN = GND (MAX1719), \overline{SHDN} = IN (MAX1720/MAX1721), C1 = C2 = 10\mu F (MAX1720), C1 = C2 = 1\mu F (MAX1719/MAX1721), circuit of Figure 1, TA = 0°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
		MAX1720	$T_A = +25^{\circ}C$	1.25		5.5	- V	
Supply Voltage Range	VIN	$R_L = 10k\Omega$	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	1.5		5.5		
Supply voltage halige	VIN	MAX1719/MAX1721	$T_A = +25^{\circ}C$	1.4		5.5		
		$R_L = 10k\Omega$	$T_A = 0^{\circ}C \text{ to } + 85^{\circ}C$	1.5		5.5		
Quiescent Supply Current	La a	TA = +25°C	MAX1720		50	90	μΑ	
(Note 3)	Icc	IA = +25 C	MAX1719/MAX1721		350	650		
Shutdown Supply Current	ISHDN	$\frac{\text{SHDN} = \text{IN (MAX1719),}}{\text{SHDN} = \text{GND}}$	$T_A = +25^{\circ}C$		0.001	1	- μΑ	
Shutdown Supply Current	13HDIN	(MAX1720/MAX1721)	$T_A = +85^{\circ}C$		0.02			
Oscillator Frequency	fosc	$T_A = +25^{\circ}C$	MAX1720	7	12	17	- kHz	
Oscillator requercy	IOSC		MAX1719/MAX1721	70	125	180		
Voltage Conversion Efficiency		Iout = 0, TA = +25°C		99	99.9		%	
Output Resistance (Note 1)	R _O	Ι _{ΟUT} = 10mA	$T_A = +25^{\circ}C$		23	50	Ω	
		1001 = 1011A	$T_A = 0^{\circ}C \text{ to } +85^{\circ}C$			65		
OUT to GND Shutdown Resistance	RO, SHDN	SHDN = IN (MAX1719), SHDN = GND (MAX1720/MAX1721), OUT is internally forced to GND in shutdown			4	12	Ω	
SHDN/ SHDN Input Logic High	\/m_i	$+2.5V \le V_{IN} \le +5.5V$		2.0			V	
SHDIV/ SHDIV INput Logic High	Vih	$V_{\rm IN (MIN)} \le V_{\rm IN} \le +2.5V$		V _{IN} - 0.2			v	
SHDN/ SHDN Input Logic Low	VIL	$+2.5V \le V_{IN} \le +5.5V$				0.6	V	
SHDN/ SHDN INput Logic Low		V_{IN} (MIN) $\leq V_{IN} \leq +2.5V$				0.2		
SHDN/SHDN Bias Current	I _{IL} , I _{IH}	$SHDN/\overline{SHDN} = GND$	$T_A = +25^{\circ}C$	-100	0.05	100	nA	
SHDIV SHDIV BIAS CUITEIIL		or VIN	$T_A = +85^{\circ}C$		10			
Wake-Up Time from Shutdown		lоuт = 5mA	MAX1720		800		— μs	
wake-op time from Shuldown			MAX1719/MAX1721		80			

ELECTRICAL CHARACTERISTICS

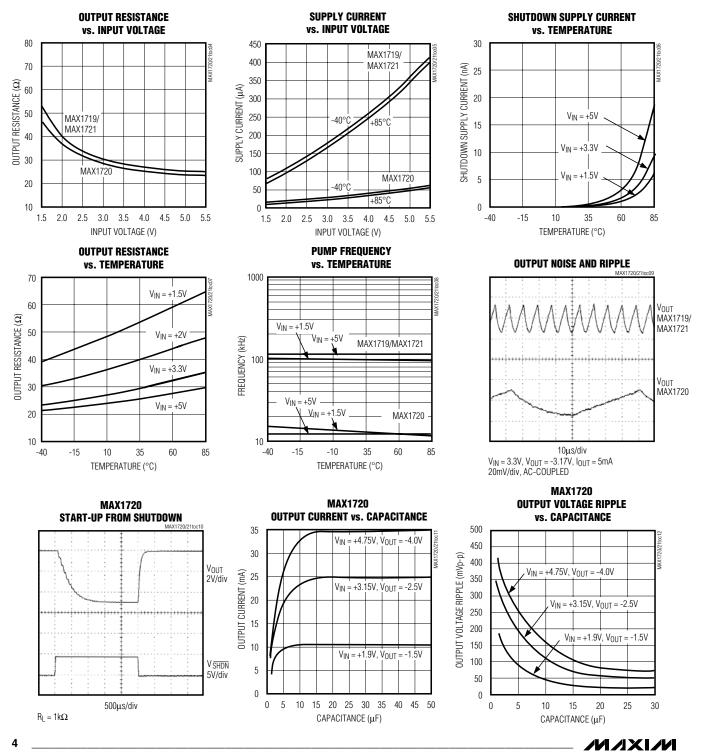
 $(V_{IN} = +5V, SHDN = GND (MAX1719), \overline{SHDN} = IN (MAX1720/MAX1721), C1 = C2 = 10\mu F (MAX1720), C1 = C2 = 1\mu F (MAX1719/MAX1721), circuit of Figure 1, TA = -40°C to +85°C, unless otherwise noted.) (Note 2)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Bange	N/m	$R_L = 10k\Omega$	MAX1720	1.5		5.5	- V
Supply Voltage Range	VIN		MAX1719/MAX1721	1.6		5.5	
Quiescent Current (Note 3)	ICC	MAX1720				100	μA
Quescent Current (Note 3)		MAX1719/MAX1721				750	
Occillator Fraguenov	fooo	MAX1720				21	kHz
Oscillator Frequency	fosc	MAX1719/MAX1721		60		200	
Voltage Conversion Efficiency		I _{OUT} = 0		99			%
Output Resistance (Note 1)	Ro	I _{OUT} = 10mA				65	Ω
Output Current	lout	Continuous, long-term				25	mA _{RMS}
OUT to GND Shutdown Resistance	Ro, SHDN	SHDN = IN (MAX1719), SHDN = GND (MAX1720/MAX1721), OUT is internally forced to GND in shutdown				12	Ω
	\/	$+2.5V \le V_{IN} \le +5.5V$		2.1			V
SHDN/ SHDN Input Logic High	ViH	$V_{IN (MIN)} \le V_{IN} \le +2.5V$		V _{IN} - 0.2			
SHDN/ SHDN Input Logic Low	VIL	$+2.5V \le V_{IN} \le +5.5V$				0.6	- V
SHUM SHUM IIIput Logic Low	VIL	$V_{IN (MIN)} \le V_{IN} \le +2.5V$				0.2	

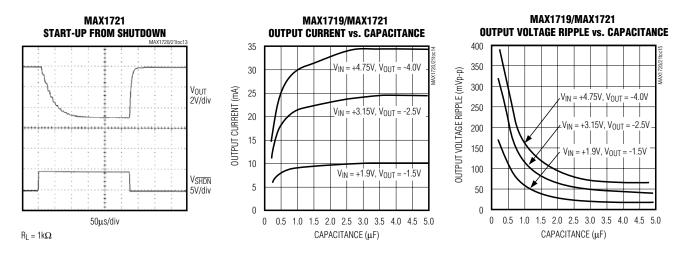

Note 1: Capacitor contribution (ESR component plus (1/fOSC) · C) is approximately 20% of output impedance.

Note 2: All specifications from -40°C to +85°C are guaranteed by design, not production tested.

Note 3: The MAX1719/MAX1720/MAX1721 may draw high supply current during startup, up to the minimum operating supply voltage. To guarantee proper startup, the input supply must be capable of delivering 90mA more than the maximum load current.


_Typical Operating Characteristics

(Circuit of Figure 1, $V_{IN} = +5V$, SHDN = GND (MAX1719), $\overline{SHDN} = IN$ (MAX1720/MAX1721), C1 = C2 = C3, $T_A = +25^{\circ}C$, unless otherwise noted.)


Typical Operating Characteristics (continued)

(Circuit of Figure 1, $V_{IN} = +5V$, SHDN = GND (MAX1719), $\overline{SHDN} = IN$ (MAX1720/MAX1721), C1 = C2 = C3, T_A = +25°C, unless otherwise noted.)

_Typical Operating Characteristics (continued)

(Circuit of Figure 1, $V_{IN} = +5V$, SHDN = GND (MAX1719), $\overline{SHDN} = IN$ (MAX1720/MAX1721), C1 = C2 = C3, T_A = +25°C, unless otherwise noted.)

Pin Description

Р	IN			
MAX1719	MAX1720 MAX1721	NAME	FUNCTION	
1	1	OUT	Inverting Charge-Pump Output	
2	2	IN	Power-Supply Positive Voltage Input	
3	3	C1-	Negative Terminal of Flying Capacitor	
4	4	GND	Ground	
5	_	SHDN	Noninverting Shutdown Input. Drive this pin low for normal operation; drive it high for shutdown mode. OUT is actively pulled to ground during shutdown.	
_	5	SHDN	Inverting Shutdown Input. Drive this pin high for normal operation; drive it low for shutdown mode. OUT is actively pulled to ground during shutdown.	
6	6	C1+	Positive Terminal of Flying Capacitor	

Detailed Description

The MAX1719/MAX1720/MAX1721 capacitive charge pumps invert the voltage applied to their input. For highest performance, use low equivalent series resistance (ESR) capacitors (e.g., ceramic).

During the first half-cycle, switches S2 and S4 open, switches S1 and S3 close, and capacitor C1 charges to the voltage at IN (Figure 2). During the second half-

cycle, S1 and S3 open, S2 and S4 close, and C1 is level shifted downward by V_{IN} volts. This connects C1 in parallel with the reservoir capacitor C2. If the voltage across C2 is smaller than the voltage across C1, charge flows from C1 to C2 until the voltage across C2 reaches -V_{IN}. The actual voltage at the output is more positive than -V_{IN}, since switches S1–S4 have resistance and the load drains charge from C2.

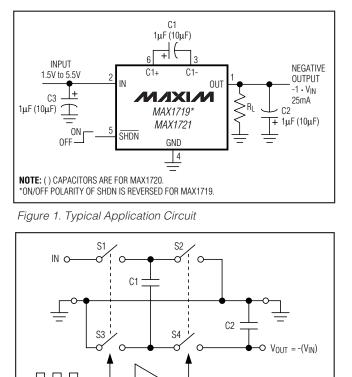


Figure 2. Ideal Voltage Inverter

Charge-Pump Output

The MAX1719/MAX1720/MAX1721 are not voltage regulators: the charge pumps' output resistance is approximately 23Ω at room temperature (with V_{IN} = +5V), and V_{OUT} approaches -5V when lightly loaded. V_{OUT} will droop toward GND as load current increases. The droop of the negative supply (V_{DROOP}-) equals the current draw from OUT (I_{OUT}) times the negative converter's output resistance (R_O):

VDROOP- = IOUT x RO

The negative output voltage will be:

VOUT = -(VIN - VDROOP)

Efficiency Considerations

The efficiency of the MAX1719/MAX1720/MAX1721 is dominated by its quiescent supply current (Iq) at low output current and by its output impedance (R_{OUT}) at higher output current; it is given by:

$$\eta \cong \frac{I_{OUT}}{I_{OUT} + I_{Q}} \left(1 - \frac{I_{OUT} \times R_{OUT}}{V_{IN}} \right)$$

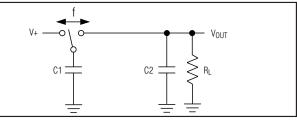


Figure 3a. Switched-Capacitor Model

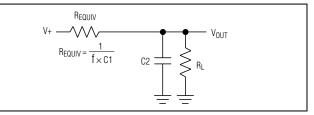


Figure 3b. Equivalent Circuit

where the output impedance is roughly approximated by:

$$R_{OUT} \cong \frac{1}{(f_{OSC}) \times C1} + 2R_{SW} + 4ESR_{C1} + ESR_{C2}$$

The first term is the effective resistance of an ideal switched-capacitor circuit (Figures 3a and 3b), and R_{SW} is the sum of the charge pump's internal switch resistances (typically 8Ω to 9Ω at V_{IN} = +5V). The typical output impedance is more accurately determined from the *Typical Operating Characteristics*.

Shutdown Mode

The MAX1719/MAX1720/MAX1721 have a logic-controlled shutdown input. Driving SHDN low places the MAX1720/MAX1721 in a low-power shutdown mode. The MAX1719's shutdown input is inverted from that of the MAX1720/MAX1721. Driving SHDN high places the MAX1719 in a low-power shutdown mode. The chargepump switching halts, supply current is reduced to 1nA, and OUT is actively pulled to ground through a 4 Ω resistance.

Applications Information

Capacitor Selection

To maintain the lowest output resistance, use capacitors with low ESR (Table 1). The charge-pump output resistance is a function of C1's and C2's ESR. Therefore, minimizing the charge-pump capacitor's ESR minimizes the total output resistance. Table 2 gives suggested capacitor values for minimizing output resistance or minimizing capacitor size.

Flying Capacitor (C1)

Increasing the flying capacitor's value reduces the output resistance. Above a certain point, increasing C1's capacitance has a negligible effect because the output resistance becomes dominated by the internal switch resistance and capacitor ESR.

Output Capacitor (C2)

Increasing the output capacitor's value reduces the output ripple voltage. Decreasing its ESR reduces both output resistance and ripple. Lower capacitance values can be used with light loads if higher output ripple can be tolerated. Use the following equation to calculate the peak-to-peak ripple:

$$V_{\text{RIPPLE}} = \frac{I_{\text{OUT}}}{2 \times f_{\text{OSC}} \times C2} + 2 \times I_{\text{OUT}} \times \text{ESR}_{C2}$$

Input Bypass Capacitor (C3)

Bypass the incoming supply to reduce its AC impedance and the impact of the MAX1719/MAX1720/MAX1721's switching noise. A bypass capacitor with a value equal to that of C1 is recommended.

Voltage Inverter

The most common application for these devices is a charge-pump voltage inverter (Figure 1). This application requires only two external components—capacitors C1 and C2—plus a bypass capacitor, if necessary. Refer to the *Capacitor Selection* section for suggested capacitor types.

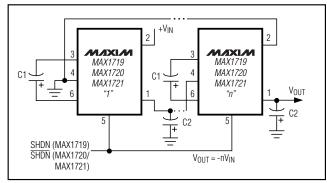


Figure 4. Cascading MAX1719s or MAX1720s or MAX1721s to Increase Output Voltage

Cascading Devices

Two devices can be cascaded to produce an even larger negative voltage (Figure 4). The unloaded output voltage is normally -2 x V_{IN}, but this is reduced slightly by the output resistance of the first device multiplied by the quiescent current of the second. When cascading more than two devices, the output resistance rises dramatically. For applications requiring larger negative voltages, see the MAX865 and MAX868 data sheets. The maximum load current and startup current of the nth cascaded circuit must not exceed the maximum output current capability of the (n - 1)th circuit to ensure proper startup.

PRODUCTION METHOD	MANUFACTURER	SERIES	PHONE	FAX
	AVX	TPS series	803-946-0690	803-626-3123
Surface-Mount Tantalum	Matsuo	267 series	714-969-2491	714-960-6492
ranalam	Sprague	593D, 595D series	603-224-1961	603-224-1430
Surface-Mount	AVX	X7R	803-946-0690	803-626-3123
Ceramic	Matsuo	X7R	714-969-2491	714-960-6492

Table 1. Low-ESR Capacitor Manufacturers

Table 2. Capacitor Selection for Minimum Output Resistance or Capacitor Size

PART	fosc	CAPACITORS TO MINIMIZE OUTPUT RESISTANCE ($R_0 = 23\Omega$, TYP) C1 = C2	CAPACITORS TO MINIMIZE SIZE ($R_0 = 40\Omega$, TYP) C1 = C2	
MAX1720	12kHz	10µF	3.3µF	
MAX1719/MAX1721	125kHz	1µF	0.33µF	

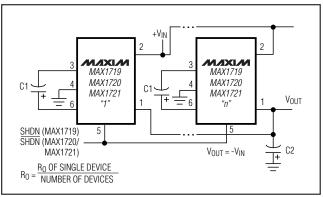


Figure 5. Paralleling MAX1719s or MAX1720s or MAX1721s to Reduce Output Resistance

Paralleling Devices

Paralleling multiple MAX1719s, MAX1720s, or MAX1721s reduces the output resistance. Each device requires its own pump capacitor (C1), but the reservoir capacitor (C2) serves all devices (Figure 5). Increase C2's value by a factor of n, where n is the number of parallel devices. Figure 5 shows the equation for calculating output resistance.

Combined Doubler/Inverter

In the circuit of Figure 6, capacitors C1 and C2 form the inverter, while C3 and C4 form the doubler. C1 and C3 are the pump capacitors; C2 and C4 are the reservoir capacitors. Because both the inverter and doubler use part of the charge-pump circuit, loading either output causes both outputs to decline toward GND. Make sure the sum of the currents drawn from the two outputs does not exceed 25mA.

Heavy Load Connected to a Positive Supply

Under heavy loads, where a higher supply is sourcing current into OUT, the OUT supply must not be pulled above ground. Applications that sink heavy current into

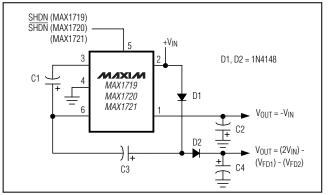


Figure 6. Combined Doubler and Inverter

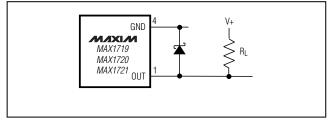


Figure 7. Heavy Load Connected to a Positive Supply

OUT require a Schottky diode (1N5817) between GND and OUT, with the anode connected to OUT (Figure 7).

Layout and Grounding

Good layout is important, primarily for good noise performance. To ensure good layout, mount all components as close together as possible, keep traces short to minimize parasitic inductance and capacitance, and use a ground plane.

Chip Information

TRANSISTOR COUNT: 85

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

8

MAX1719/MAX1720/MAX172

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.