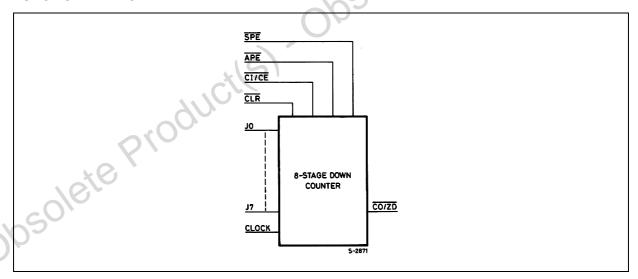

inputs are high at the time of zero count, the counters will jump to the maximum count, giving a counting sequence of 256 clock pulses long.

IINPUT EQUIVALENT CIRCUIT

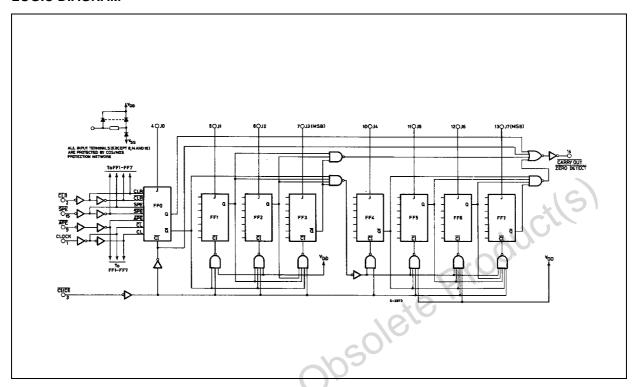


HCF40103B may be cascaded using the $\overline{\text{CI/CE}}$ input and the $\overline{\text{CO/ZD}}$ output, in either a synchronous or ripple mode.

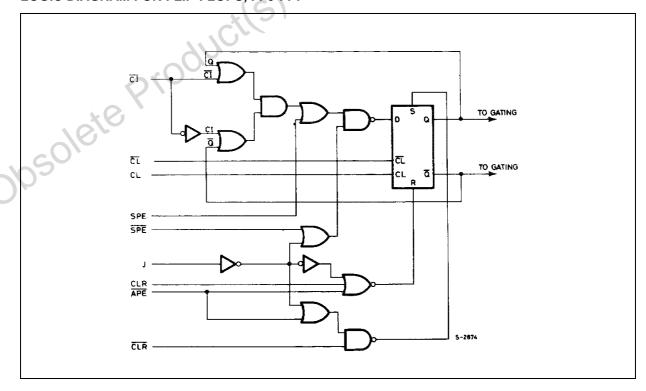
PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	CLOCK	Clock Input (LOW to HIGH edge triggered)
2	CLEAR	Asynchronous Master Reset Input (Active Low)
3	CI/CE	Terminal Enable Input
4, 5, 6, 7, 10, 11, 12, 13	J0 to J7	Jam Inputs
9	APE	Asynchronous Preset Enable Inputs(Active Low)
14	CO/ZD	Terminal Count Output (Active Low)
15	SPE	Synchronous Preset Enable Input (Active Low)
8	V_{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

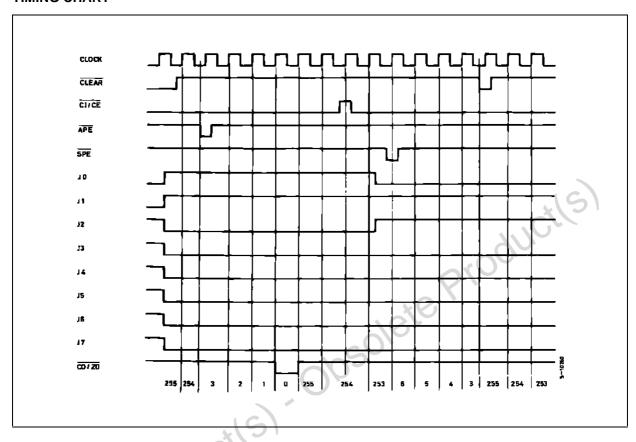
FUNCTIONAL DIAGRAM



TRUTH TABLES


	CONTRO	L INPUTS		PRESET MODE	ACTION		
CLR	APE	SPE	CI/CE	PRESEI MODE	ACTION		
Н	Н	Н	Н		Inhibit Counter		
Н	Н	Н	L	Synchronous	Count Down		
Н	Н	L	Х		Preset on Next Positive Clock Transition		
Н	L	Х	Х	Agynahranaya	Preset Asynchronously		
L	Х	Х	Х	Asynchronous	Clear to Maximum Count		

X : Don't Care
Clock connected to Clock input
Synchronous Operation : changes occur on negative to positive clock transitions.


LOGIC DIAGRAM

LOGIC DIAGRAM FOR FLIP-FLOPS, FF0-FF7

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	-0.5 to +22	V
VI	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
l _l	DC Input Current	± 10	mA
P _D	Power Dissipation per Package	200	mW
60.	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

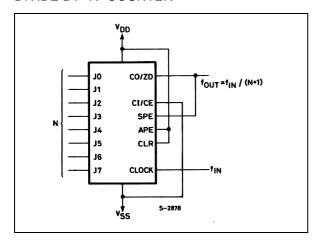
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

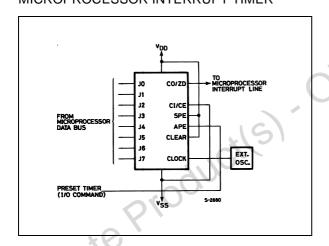
DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol	Parameter	VI	٧o	v _o Io	V _{DD}	T _A = 25°C			-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)	(μ A)	(V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.04	5		150		150	
		0/10			10		0.04	10		300		300	μΑ
		0/15			15		0.04	20		600		600	μΑ
		0/20			20		0.08	100		3000		3000	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95	/	V
		0/15		<1	15	14.95			14.95		14.95	S	
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	1
Voltage	10/0		<1	10		0.05			0.05	10	0.05	V	
		15/0		<1	15		0.05			0.05	O.	0.05	
V _{IH}	High Level Input		0.5/4.5	<1	5	3.5			3.5		3.5		V
	Voltage		1/9	<1	10	7			7		7		
			1.5/13.5	<1	15	11			11		11		
V_{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10		7/6	3		3		3	V
			13.5/1.5	<1	15		0,	4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.36	-3.2		-1.1		-1.1		
	Current	0/5	4.6	<1	5	-0.44	-1		-0.36		-0.36		 Λ
		0/10	9.5	<1	10	-1.1	-2.6		-0.9		-0.9		mA
		0/15	13.5	<1	15	-3.0	-6.8		-2.4		-2.4		
I _{OL}	Output Sink	0/5	0.4	<1	5	0.44	1		0.36		0.36		
	Current	0/10	0.5	<1	10	1.1	2.6		0.9		0.9		mA
		0/15	1.5	<1	15	3.0	6.8		2.4		2.4		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
Cı	Input Capacitance		Any In	put			5	7.5					pF

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD}=5V, 2V min. with V_{DD}=10V, 2.5V min. with V_{DD}=15V

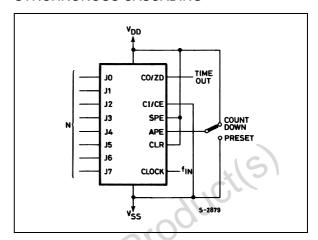

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (\textbf{T}_{amb} = 25^{\circ} \textbf{C}, \;\; \textbf{C}_{L} = 50 \text{pF}, \; \textbf{R}_{L} = 200 \text{K}\Omega, \;\; \textbf{t}_{r} = \textbf{t}_{f} = 20 \; \text{ns})$

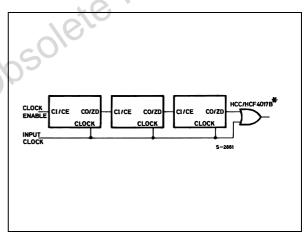
Comple of	-		Test Condition	\	Unit		
Symbol	Parameter	V _{DD} (V)		Min.	Тур.	Max.	
t _{PHL} t _{PLH}	Propagation Delay Time	5			300	600	
	Clock To Out	10			130	260	ns
		15			95	190	
t _{PHL} t _{PLH}	Propagation Delay Time	5			200	400	
	Carry In/counter Enable To	10			90	180	ns
	Output	15			65	130	
t _{PHL} t _{PLH}	Propagation Delay Time	5			650	1300	
	Asynchronous Preset	10			300	600	ns
	Enable To Output	15			200	400	1
t _{PHL} t _{PLH}	Propagation Delay Time	5			375	750	
	Clear To Output	10			180	360	ns
		15		$\Delta 0$	100	200	
t _{THL} t _{TLH}	Transition Time	5		0	100	200	
		10		Þ	50	100	ns
		15	.0,		40	80	
t _W	Clock Pulse Width	5	10	300	150		
		10		180	90		ns
		15	1250	80	40		
t _W	Clear Pulse Width	5		320	160		
		10	0.	160	80		ns
		15		100	50		
t _W	APE Pulse Width	5		360	180		
		10		160	80		ns
	(15		120	60		
t _{setup}	SPE Setup Time	5		280	140		
ootap	- 400	10		140	70		ns
		15		100	50		
t _{setup}	JAM Setup Time	5		200	100		
	70	10		80	40		ns
	6	15		60	30		
f _{CL}	Maximum Clock Input	5		0.7	1.4		
	Frequency	10		1.8	3.6		MHz
		15		2.4	4.8		


^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.

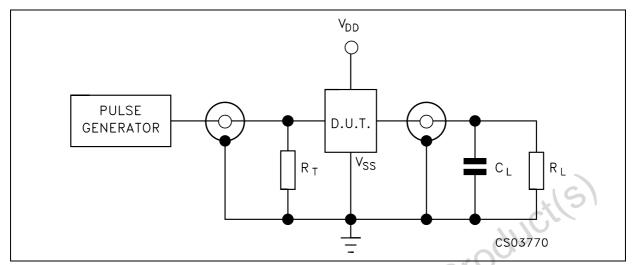
TYPICAL APPLICATIONS

DIVIDE BY "N" COUNTER


MICROPROCESSOR INTERRUPT TIMER


MICROPROCESSOR INTERRUPT TIMER

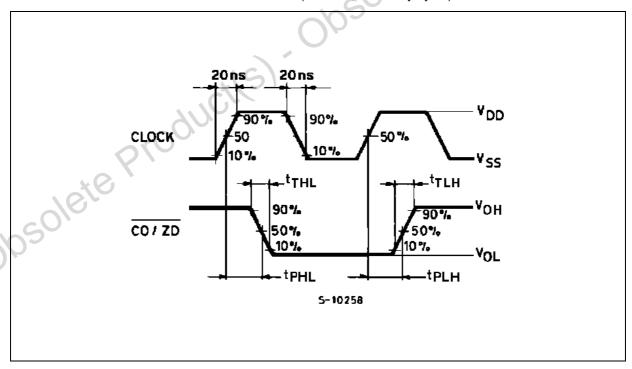
SYNCHRONOUS CASCADING



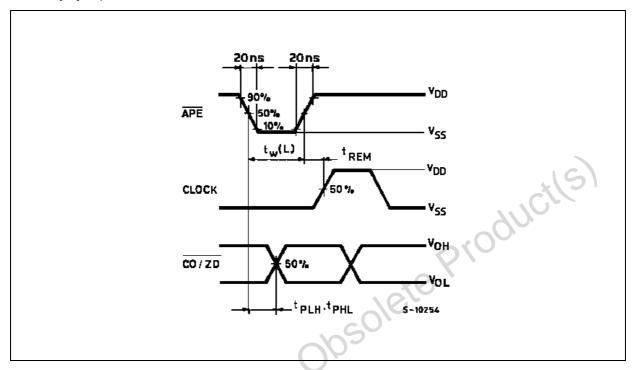
SYNCHRONOUS CASCADING

 * An Output spike (160ns at V_DD = 5V) occurs whenever two or more devices are cascaded in the parallel clocked mode because the clock-to-carry out delay is greater than the carry-in-to-carry-out delay. This spike is eliminated by gating the output of the last device with the clock as shown.

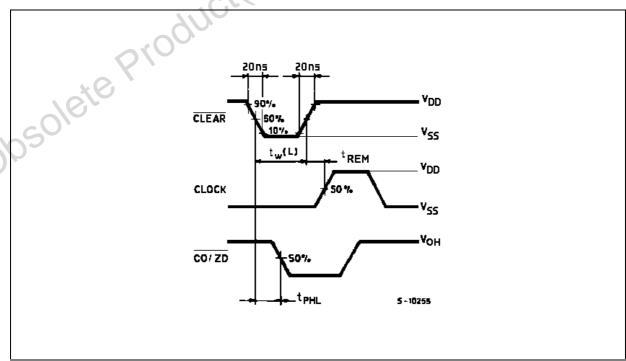
TEST CIRCUIT

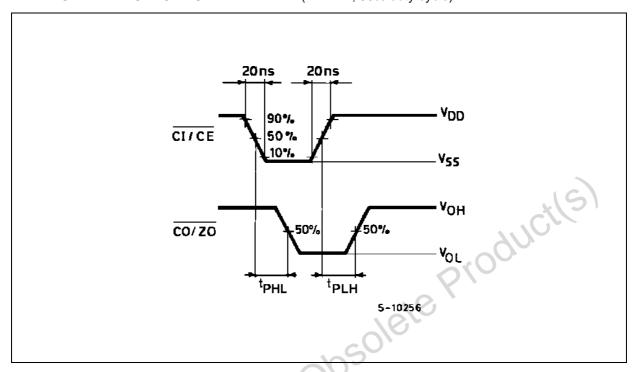


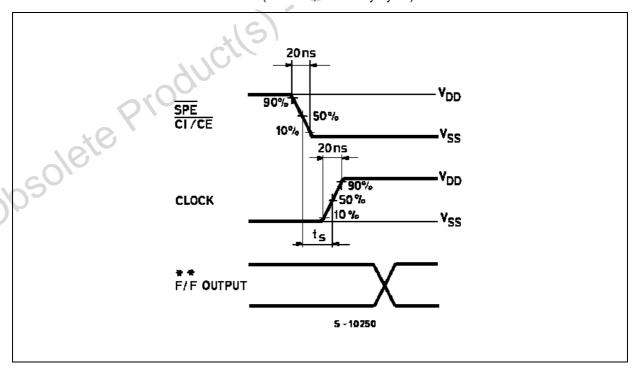
 $C_L = 50 pF$ or equivalent (includes jig and probe capacitance)

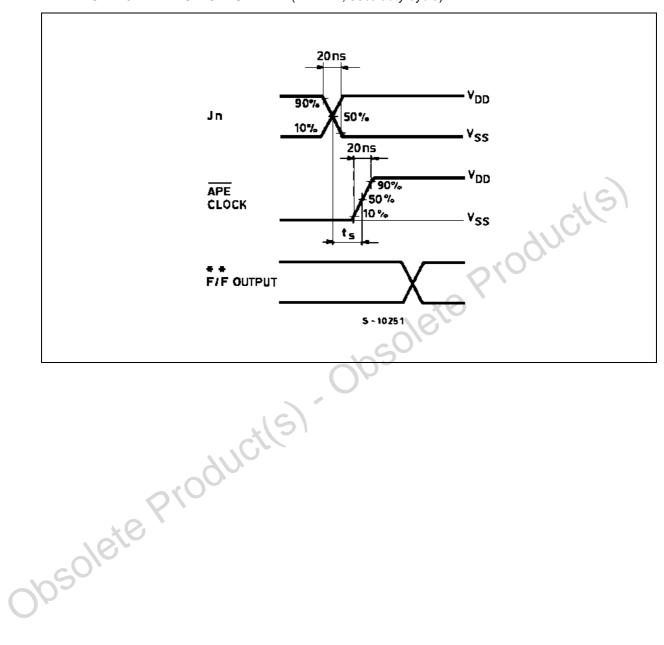

 $R_L = 200 K\Omega$

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

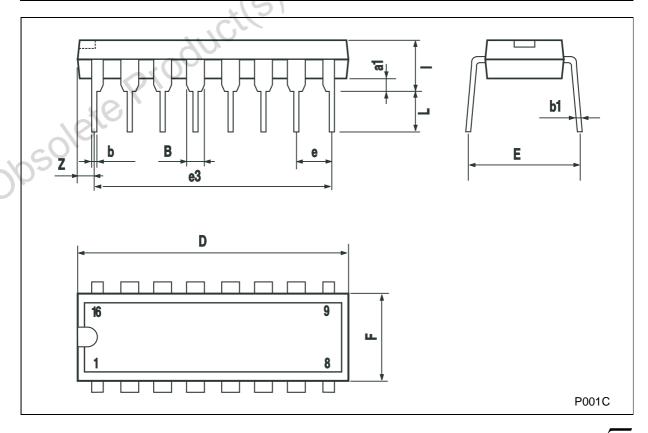

WAVEFORM 1: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)


WAVEFORM 2 : PROPAGATION DELAY, MINIMUM PULSE WIDTH AND REMOVAL TIME (f=1MHz; 50% duty cycle)

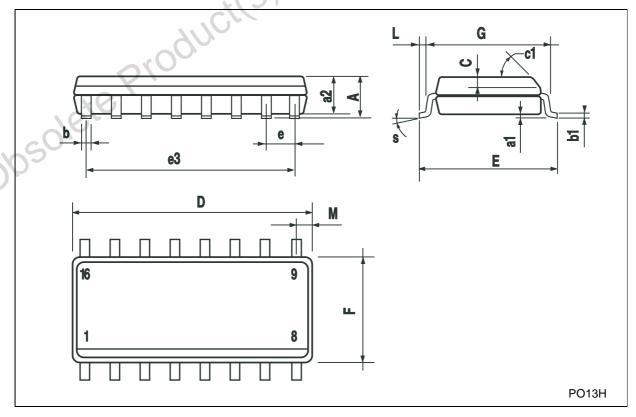

WAVEFORM 3 : PROPAGATION DELAY, MINIMUM PULSE WIDTH AND REMOVAL TIME (f=1MHz; 50% duty cycle)


WAVEFORM 4: PROPAGATION DELAY TIME (f=1MHz; 50% duty cycle)

WAVEFORM 5: MINIMUM SETUP TIME (f=1MHz; 50% duty cycle)



WAVEFORM 6: MINIMUM SETUP TIME (f=1MHz; 50% duty cycle)


Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	0.77		1.65	0.030		0.065			
b		0.5			0.020				
b1		0.25			0.010	19			
D			20		.(0.787			
E		8.5			0.335				
е		2.54			0.100				
e3		17.78		20	0.700				
F			7.1	76/		0.280			
I			5.1	0.		0.201			
L		3.3	Oh	_	0.130				
Z			1.27			0.050			

SO-16 MECHANICAL DATA

DIM		mm.		inch				
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
Α			1.75			0.068		
a1	0.1		0.2	0.003		0.007		
a2			1.65			0.064		
b	0.35		0.46	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С		0.5			0.019	(15)		
c1			45° (typ.)	,(11		
D	9.8		10	0.385	YO.	0.393		
E	5.8		6.2	0.228	100	0.244		
е		1.27			0.050			
e3		8.89		46	0.350			
F	3.8		4.0	0.149		0.157		
G	4.6		5.3	0.181		0.208		
L	0.5		1.27	0.019		0.050		
М			0.62			0.024		
S			g° (m	nax.)	1			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com