Device Marking FQA9N90C		Device Packag		e R	eel Size	Тар	e Widt	h	Quan	tity
		FQA9N90C	TO-3P						30	
FQA9N90C		FQA9N90C_F109	TO-3PN						30	
Electric	al Cha	racteristics T _c .	= 25°C unless othe	rwise noted		·				
Symbol		Parameter		Test	Conditio	ns	Min	Тур	Max	Units
Off Charac	teristics			•						
BV _{DSS}	Drain-Sou	urce Breakdown Voltag	je	V _{GS} = 0 V, I _E	, = 250 μA		900			V
∆BV _{DSS} / ∆T _J	Breakdov	akdown Voltage Temperature Coefficient		I_D = 250 µA, Referenced to 25°C			0.99		V/°C	
I _{DSS}	Zero Gate Voltage Drain Current		V _{DS} = 900 V, V _{GS} = 0 V				10	μA		
				V _{DS} = 720 V	T _C = 125°C				100	μA
I _{GSSF}	Gate-Bod	dy Leakage Current, Forward		V _{GS} = 30 V,	V_{GS} = 30 V, V_{DS} = 0 V				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse		V_{GS} = -30 V, V_{DS} = 0 V				-100	nA		
On Charact	eristics									1
V _{GS(th)}	Gate Thre	ate Threshold Voltage		V_{DS} = V_{GS} , I_D = 250 μ A		3.0		5.0	V	
R _{DS(on)}	Static Dra	Drain-Source On-Resistance		V _{GS} = 10 V, I _D = 4.5 A			1.12	1.4	Ω	
9 _{FS}	Forward 7	vard Transconductance		$V_{DS} = 50 \text{ V}, I_D = 4.5 \text{ A}$ (Note 4)			9.2		S	
Dynamic Ch	naracteristi	CS		1				1	1	1
C _{iss}	Input Cap	t Capacitance out Capacitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			2100	2730	pF	
C _{oss}	Output Ca						175	230	pF	
C _{rss}		Transfer Capacitance						14	18	pF
Switching C	1							1	1	
t _{d(on)}	Turn-On I	on Delay Time		V_{DD} = 450 V, I _D = 11.0A, R _G = 25 Ω			50	110	ns	
t _r	Turn-On I						120	250	ns	
t _{d(off)}	Turn-Off I	Delay Time					100	210	ns	
t _f	Turn-Off I	Fall Time		1		(Note 4, 5)		75	160	ns
Qg	Total Gate	e Charge		V _{DS} = 720 V, I _D = 11.0A, V _{GS} = 10 V				45	58	nC
Q _{gs}	Gate-Sou	Irce Charge				·		13		nC
Q _{gd}	Gate-Dra	in Charge				(Note 4, 5)		18		nC
	e Diode C	haracteristics and Max	imum Ratings	I				1	1	1
I _S	Maximum	n Continuous Drain-So	urce Diode For	rward Current					9.0	Α
I _{SM}	Maximum	Aximum Pulsed Drain-Source Diode Forward		d Current					36	Α
V _{SD}	Drain-Sou	urce Diode Forward Vo	ltage	V _{GS} = 0 V, I _S	=9.0 A				1.4	V
t _{rr}	Reverse	Recovery Time			V _{GS} = 0 V, I _S = 9.0 A,			550		ns
Q _{rr}	Reverse	Recovery Charge		dI _F / dt = 100 A/μs		(Note 4)		6.5		μC

1. Repetitive Rating : Pulse width limited by maximum junction temperature

2. L = 21mH, I_{AS} =9.0A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C

3. I_{SD} \leq 9.0A, di/dt \leq 200A/µs, V_{DD} \leq BV_{DSS,} Starting ~T_J = 25°C

4. Pulse Test : Pulse width $\leq 300 \mu s,$ Duty cycle $\leq 2\%$

5. Essentially independent of operating temperature

Downloaded from Arrow.com.

-55°C

6

0.8

V_{DS} = 180V

V_{DS} = 450V

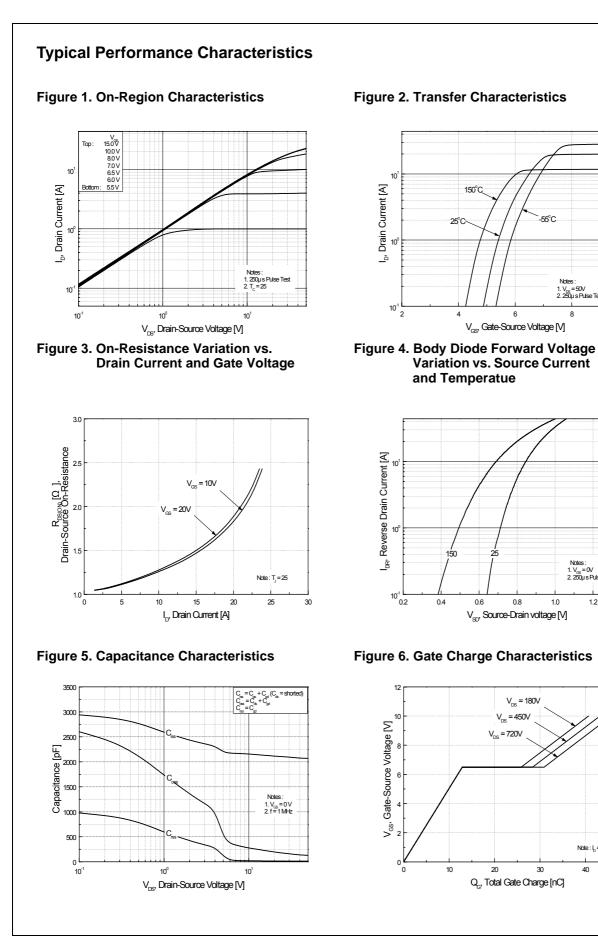
V_{DS} = 720V

20

30

Notes : 1. V_{DS} = 50V 2. 250µ s Pulse Test

Notes : 1. V_{cs} = 0V 2. 250µ s Pulse

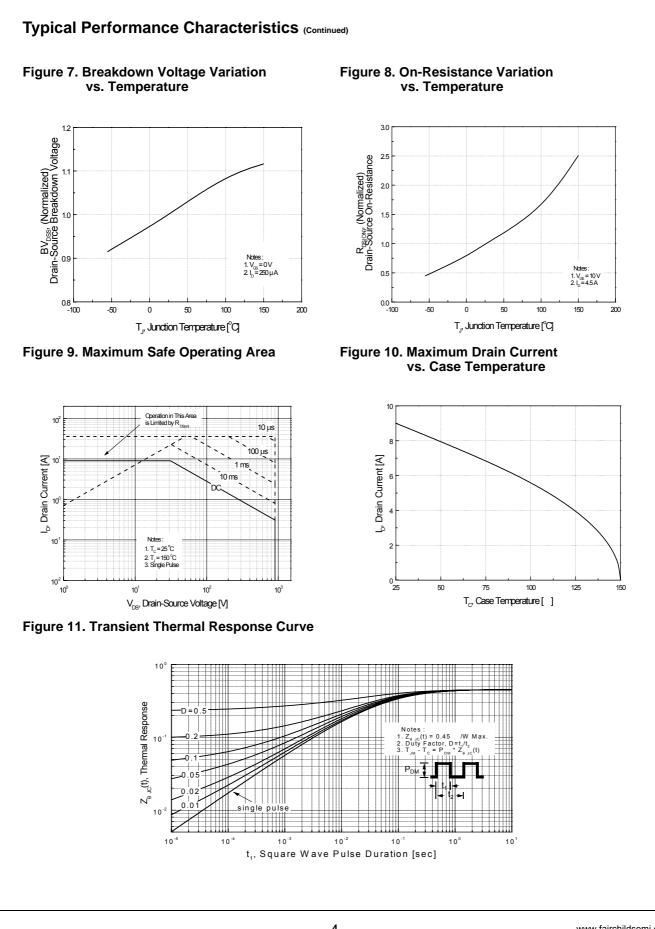

1.2

1.4

1.0

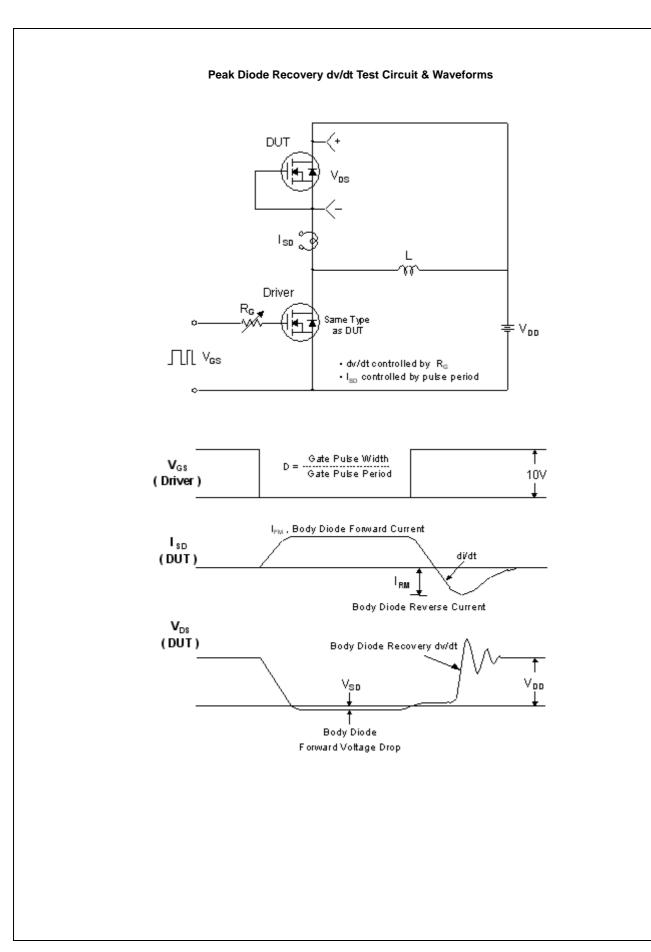
10

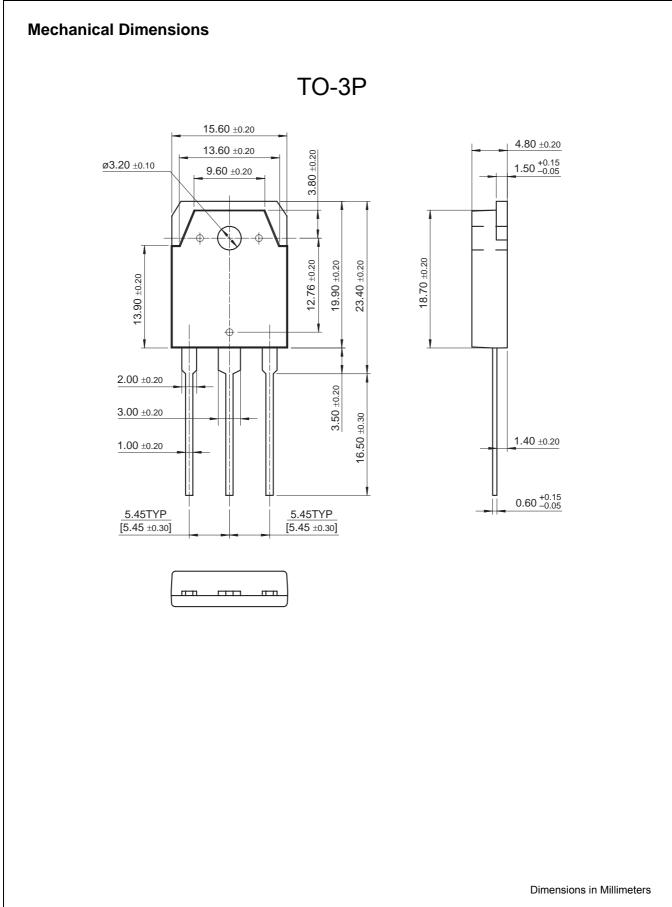
8

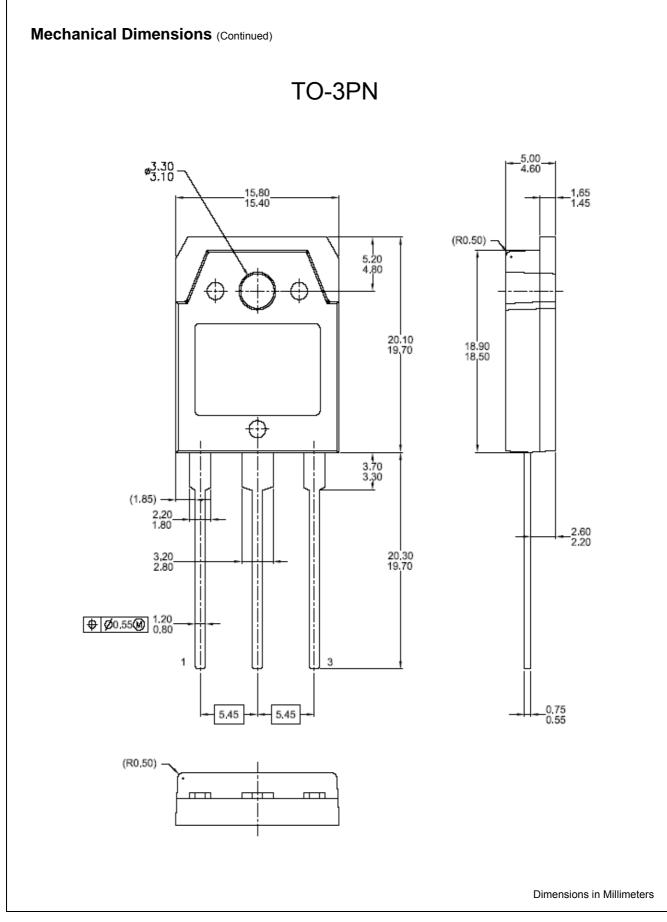


www.fairchildsemi.com

50


Note: In = 9A


40



FQA9N90C Rev. A

FQA9N90C Rev. A

FQA9N90C Rev. A

www.fairchildsemi.com

FQA9N90C 900V N-Channel MOSFET

FQA9N90C 900V N-Channel MOSFET

AIRCHILD

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx®	Green FPS™ e-Series™	POWEREDGE [®]	SuperSOT™-8
Build it Now™	GOT™	Power-SPM™	SyncFET™
CorePLUS™	<i>i-Lo</i> ™	PowerTrench [®]	The Power Franchise [®]
CROSSVOLT™	IntelliMAX™	Programmable Active Droop™	() ™
CTL™	ISOPLANAR™	QFET®	TinyBoost™
Current Transfer Logic™	MegaBuck™	QS™	TinyBuck™
EcoSPARK [®]	MICROCOUPLER™	QT Optoelectronics™	TinyLogic [®]
FACT Quiet Series™	MicroFET™	Quiet Series™	TINYOPTO™
FACT [®]	MicroPak™	RapidConfigure™	TinyPower™
FAST [®]	Motion-SPM™	SMART START™	TinyPWM™
FastvCore™	OPTOLOGIC [®]	SPM [®]	TinyWire™
FPS™	OPTOPLANAR [®]	STEALTH™	µSerDes™
FRFET [®]	PDP-SPM™	SuperFET™	UHC [®]
Global Power Resource SM	Power220 [®]	SuperSOT™-3	UniFET™
Green FPS™	Power247 [®]	SuperSOT™-6	VCX™

DISCLAIMER

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein.

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been dis- continued by Fairchild Semiconductor. The datasheet is printed for refer- ence information only.		

Rev. 129