

AP384XG

Pin Configuration

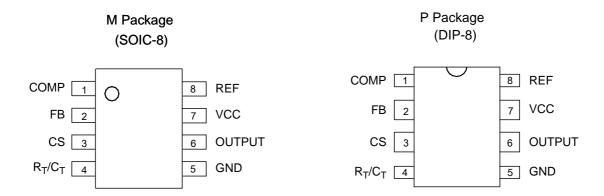


Figure 2. Pin Configuration of AP384XG (Top View)

Pin Description

Pin Number	Pin Name	Function
1	COMP	This pin is the Error Amplifier output and is made available for loop compensation.
2	FB	The inverting input of the Error Amplifier. It is normally connected to the switching power supply output through an external resistor divider.
3	CS	It is used either for current sense (normal mode) or skip cycle level selection (standby mode).
4	R _T /C _T	The oscillator frequency and maximum output duty cycle are programmed by connecting resistor R_T to REF and capacitor C_T to ground.
5	GND	The ground pin.
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sunk by this pin.
7	VCC	The power supply pin.
8	REF	This is the reference output. It provides charging current for capacitor C_T through resistor $R_{T^{\cdot}}$

AP384XG

Functional Block Diagram

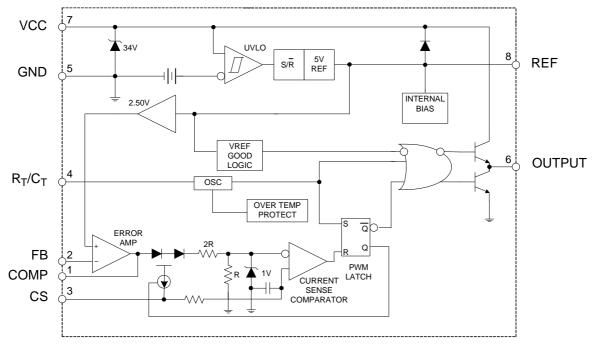
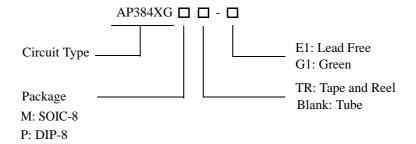



Figure 3. Functional Block Diagram of AP384XG

Ordering Information

Package Temperature Range	Tempera-	Part Number		Mark	Packing	
	Lead Free	Green	Lead Free	Green	Type	
SOIC-8	OIC 9 40 4 050G	AP3842/3/4/5GM-E1	AP3842/3/4/5GM-G1	3842/3/4/5GM-E1	3842/3/4/5GM-G1	Tube
SOIC-8 -40 to 85°C	AP3842/3/4/5GMTR-E1	AP3842/3/4/5GMTR-G1	3842/3/4/5GM-E1	3842/3/4/5GM-G1	Tape & Reel	
DIP-8	-40 to 85°C	AP3842/3/4/5GP-E1	AP3842/3/4/5GP-G1	AP3842/3/4/5GP-E1	AP3842/3/4/5GP-G1	Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

Jul. 2013 Rev. 2. 0

BCD Semiconductor Manufacturing Limited

AP384XG

Absolute Maximum Ratings (Note 1, 2)

Parameter	Symbol	Value	Unit
Supply Voltage	V _{CC}	30	V
Gate Output Current	I_{O}	± 1	A
Analog Inputs (pin2, 3)	V(ANA)	-0.3 to 6.3	V
Error Amp Output Sink Current	I _{SINK} (E.A)	20	mA
Power Dissipation at T _A < 25 °C (DIP-8)	P _D (Note 3)	1000	mW
Power Dissipation at T _A <25 °C (SOIC-8)	P _D (Note 3)	460	mW
Storage Temperature Range	T _{STG}	-65 to 150	°C
Ambient Temperature	T _A	-40 to 85	°C
Lead Temperature (Soldering, 10sec)	T _{LEAD}	+300	°C
ESD (Machine Model)		300	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: All voltages are with respect to pin GND and all currents are positive into specified terminal.

Note 3: Board thickness 1.6mm, board dimension 90mm X 90mm.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Oscillation Frequency	f		500	KHz
Ambient Temperature	T_{A}	-40	85	°C

AP384XG

Electrical Characteristics

(V $_{CC}$ =15V, R $_{T}$ =10k Ω C $_{T}$ =3.3nF, T $_{A}$ =25 o C, unless otherwise specified.)

Parameter Symbol		Conditions	Min	Тур	Max	Unit	
REFERENCE SECTION							
Reference Output Voltage	V _{REF}	T _A =25°C, I _{REF} =1mA	4.95	5.00	5.05	V	
Total Output Variation		Line, Load, Temp.	4.9		5.10	V	
Line Regulation	$\Delta V_{ m REF}$	12V ≤ V _{CC} ≤25V		4	15	mV	
Load Regulation	$\Delta V_{ m REF}$	1mA ≤ I _{REF} ≤20mA		4	15	mV	
Short Circuit Output Current	I_{SC}	$T_{A}=25^{o}C$		-100	-180	mA	
Temperature Stability		(Note 6)		0.3		mV/°C	
UNDER VOLTAGE LOCK OUT	SECTION						
Start-up Threshold		AP3842G/AP3844G	15	16	17	V	
		AP3843G/AP3845G	7.8	8.4	9.0		
Minimum Operating Voltage		AP3842G/AP3844G	8.5	10	11.5	V	
		AP3843G/AP3845G	7.0	7.6	8.2		
TOTAL STANDBY CURRENT S	ECTION						
Start-up Current		AP3842G/AP3844G, V _{CC} =14V		50	80	μΑ	
		AP3843G/AP3845G, V _{CC} =6.5V		50	80		
Operating Current		V _{FB} =0, V _{CS} =0, C _L =1nF		8		mA	
Standby Operating Current		V _{FB} =2.7V, V _{CS} =0.5V		6		mA	
Zener Voltage		I _{CC} =25mA	30	34		V	
PWM SECTION							
Maximum Duty Cycle		AP3842G/AP3843G	94	96		%	
		AP3844G/AP3845G	46	48	50		
Minimum Duty Cycle					0	%	
OSCILLATOR SECTION							
Oscillation Frequency	f	$T_{A}=25^{\circ}C$	47	52	57	KHz	
Oscillator Amplitude	V _{OSC}	Pin RT/CT, peak to peak		1.7		V	
Temperature Stability				2		%	
Voltage Stability		$12V \le V_{CC} \le 25V$		0.2	1	%	
Discharge Current		$V_{RT/CT} = 2V \text{ (Note 4)}$	8.5	9.5	10.5	mA	

Note 4: This parameter is measured with RT= $10k\Omega$ to V_{REF} , it contributes 0.3mA of current to the measured value. So the total current flowing into the CT pin will be 0.3mA higher than the measured value approximately.

BCD Semiconductor Manufacturing Limited

AP384XG

Electrical Characteristics (Continued)

Parameter Symbol Conditions		Min	Тур	Max	Unit	
ERROR AMPLIFIER SECTION	Ī					
Input Voltage	V_{I}	V _{COMP} =2.5V	2.45	2.50	2.55	V
Output Sink Current	I _{SINK}	V _{COMP} =1.1V	6	10		mA
Output Source Current	I _{SOURCE}	V _{COMP} =5V	-0.5	-0.8		mA
High Output Voltage	V _{OH}	R_L =15k Ω to GND	5	7		V
Low Output Voltage	V _{OL}	R_L =15k Ω to pin REF		0.7	1.1	V
Voltage Gain		$2V \le V_O \le 4V$	65	90		dB
Power Supply Rejection Ratio	PSRR	$12V \le V_{\rm CC} \le 25V$	60	70		dB
CURRENT SENSE SECTION	•			•		
Maximum Input Signal	V _I (MAX)	V _{COMP} =5V (Note 5)	0.9	1	1.1	V
Gain	GV	$0V \le V_{CS} \le 4V \text{ (Note 5, 6)}$	2.85	3	3.15	V/V
Power Supply Rejection Ratio	PSRR	$12V \le V_{CC} \le 25V \text{ (Note 5, 7)}$		70		dB
Delay to Output		V _{CS} = 0 to 2V (Note 7)		150	250	ns
Input Bias Current	I _{BIAS}	V _{OUTPUT} =High		-3	-10	μΑ
Leading Edge Blanking Duration	T_{LEB}			250		ns
OUTPUT SECTION						
Low Output Voltage	V _{OL}	$I_{SINK} = 20mA$		0.2	0.4	V
		$I_{SINK} = 200 \text{mA}$		1.4	2.2	V
High Output Voltage	V _{OH}	I _{SOURCE} = 20mA	13	13.5		V
	YOH	I _{SOURCE} = 200mA	12	13		V
Rise Time	t _R	T _A =25°C, C _L =1nF		150	250	ns
Fall Time	t _F	T _A =25°C, C _L =1nF		50	150	ns
SKIP CYCLE MODE SECTION			•	•	•	
Source Current (@CS)		V _{OUTPUT} =Low, T _A =25°C	180	200	220	μΑ
OVER-TEMPERATURE PROT	ECT SECTIO)N		•		
Shutdown Temperature	T_{SHUT}			155		°C
Temperature Hysteresis	T _{HYS}			25		°C
Thermal Resistance	$\theta_{ m JC}$	SOIC-8		18		°C/W
(Junction to Case)		DIP-8		12		

Note 5: Parameters are tested at trip point of latch with Vpin2 = 0.

Note 6: Here gain is defined as:

$$A {=} \frac{\Delta V Pin~1}{\Delta V Pin~3},~0 \leq V pin 3 \leq 0.8 V$$

Note 7: These parameters, although guaranteed, are not 100% tested in production.

6

BCD Semiconductor Manufacturing Limited

AP384XG

Electrical Characteristics (Continued)

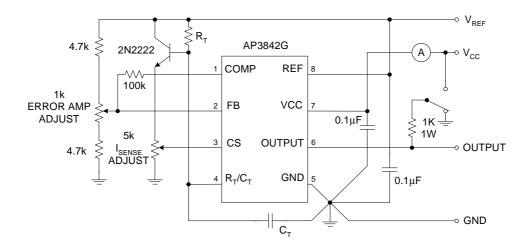


Figure 4. Basic Test Circuit

Figure 4 is the basic test circuit for AP384XG. In testing, the high peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Typical Performance Characteristics

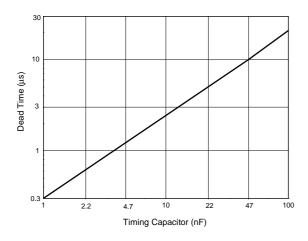
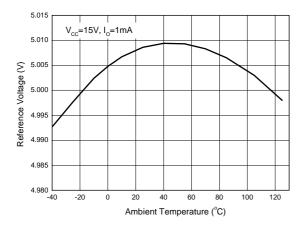



Figure 5. Oscillator Dead Time vs. Timing Capacitor

Figure 6. Timing Resistor vs. Frequency

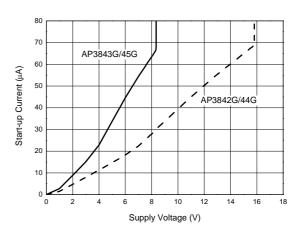


Figure 7. Reference Voltage vs. Ambient Temperature

Figure 8. Start-up Current vs. Supply Voltage

AP384XG

Typical Performance Characteristics (Continued)

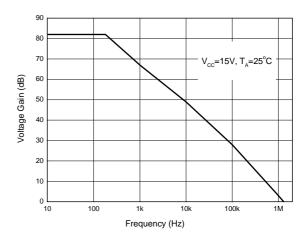


Figure 9. Output Saturation Characteristics

Figure 10. Error Amplifier Open-Loop Frequency Response

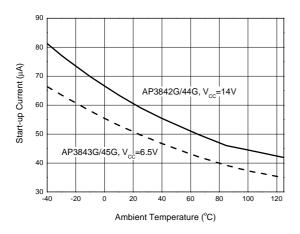
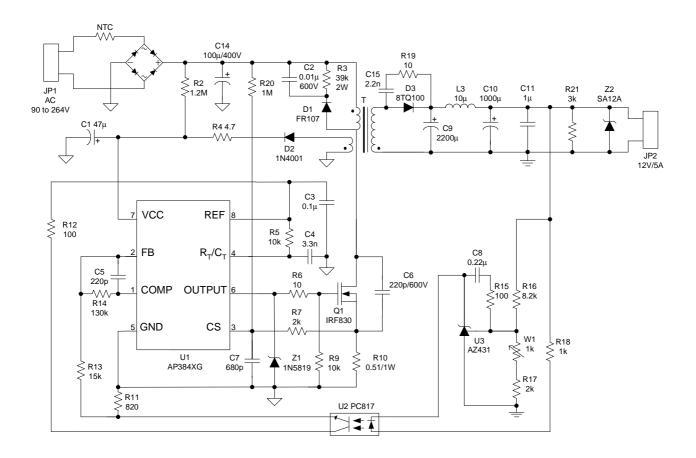
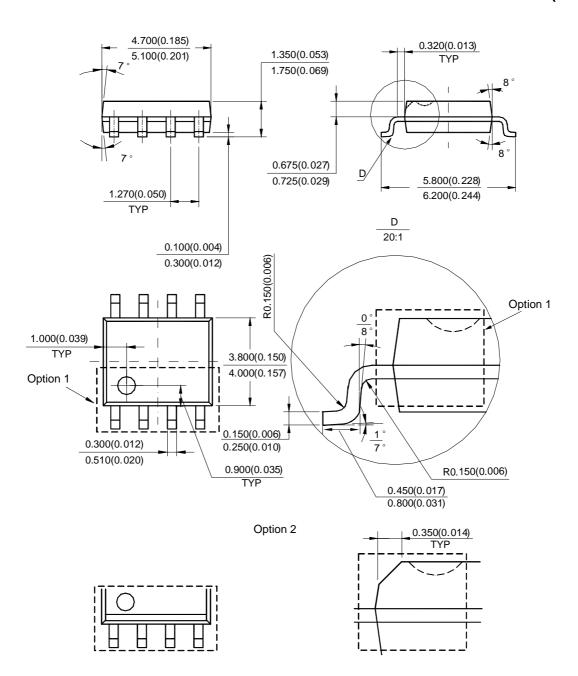


Figure 11. Start-up Current vs. Ambient Temperature

AP384XG

Typical Application

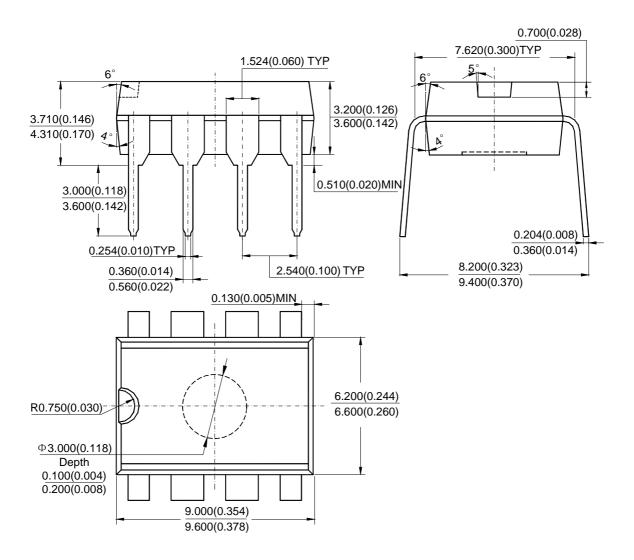



Figure 12. Typical Application of AP384XG in AC/DC Converter

AP384XG

Mechanical Dimensions

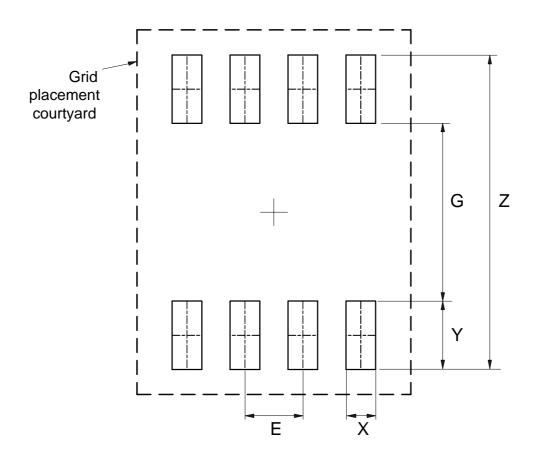
SOIC-8 Unit: mm(inch)


Note: Eject hole, oriented hole and mold mark is optional.

AP384XG

Mechanical Dimensions (Continued)

DIP-8 Unit: mm(inch)


Note: Eject hole, oriented hole and mold mark is optional.

AP384XG

Mounting Pad Layout

SOIC-8 Unit: mm(inch)

Dimensions	Z (mm)/(inch)	G (mm)/(inch)	X (mm)/(inch)	Y (mm)/(inch)	E (mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarter

BCD (Shanghai) Micro-electronics Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, P. R.C. Tel: +86-021-2416-2266, Fax: +86-021-2416-2277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203,Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District Shenzhen 518057, China

Tel: +86-0755-8660-4900 Fax: +86-0755-8660-4958

Taiwan Office (Hsinchu) BCD Semiconductor (Taiwan) Company Limited 8F, No.176, Sec. 2, Gong-Dao 5th Road, East District HsinChu City 300, Taiwan, R.O.C Tel: +886-3-5160181, Fax: +886-3-5160181

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd.

800 Yishan Road, Shanghai 200233, China Tel: +021-6485-1491, Fax: +86-021-5450-0008

Taiwan Office (Taipei)

BCD Semiconductor (Taiwan) Company Limited 3F, No.17, Lane 171, Sec. 2, Jiu-Zong Rd., Nei-Hu Dist., Taipei(114), Taiwan, R.O.C Tel: +886-2-2656 2808

Fax: +886-2-2656-2806/26562950

BCD Semiconductor Corp. 48460 Kato Road, Fremont, CA 94538, USA

Tel: +1-510-668-1950

BCD Semiconductor Limited Korea office. Room 101-1112, Digital-Empire II, 486 Sin-dong, Yeongtong-Gu, Suwon-city, Gyeonggi-do, Korea Tel: +82-31-695-8430