

AP3422

Pin Configuration



Figure 2. Pin Configuration of AP3422 (Top View)

Pin Description

Pin Number	Pin Name	Function
1	EN1	Channel 1 enable control input. Drive EN1 above 1.5V to turn on the Channel 1. Drive EN1 below 0.6V to turn it off (shutdown current $< 0.1 \mu A$)
2	FB1	Channel 1 feedback input. Connect FB1 to the center point of the external resistor divider. The feedback voltage is 0.6V
3	3 VIN2 Channel 2 supply input. Bypass to GND with a 10μF or greater capacitor 4 GND2 Ground 2	
4		
5	SW2	Channel 2 power switch output. Inductor connection to drains of the internal PFET and NFET switches
6	Channel 2 Enable Control Input. Drive EN2 above 1.5V Channel 2. Drive EN2 below 0.6V to turn it off (shutdo 0.1μA)	
7	FB2	Channel 2 feedback input. Connect FB2 to the center point of the external resistor divider. The feedback voltage is 0.6V
8	8 VIN1 Channel 1 supply input. Bypass to GND with a 10μF or greater cera capacitor 9 GND1 Ground 1	
9		
10	Channel 1 power switch output. Inductor connection to drains of the internal PFET and NFET switches	

AP3422

Functional Block Diagram

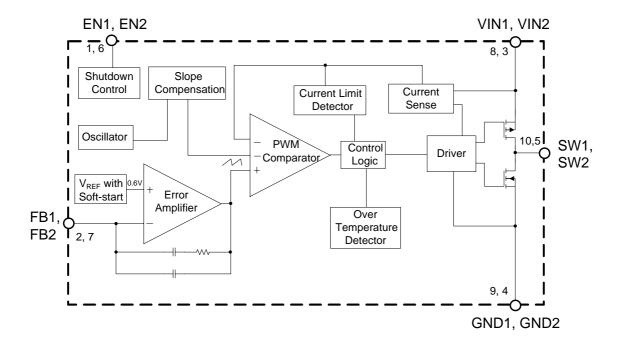
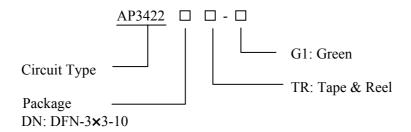



Figure 3. Functional Block Diagram of AP3422 (Diagram represents ½ of the AP3422)

Ordering Information

Package		Temperature Range	Part Number	Marking ID	Packing Type	
	DFN-3×3-10	-40 to 85 °C	AP3422DNTR-G1	BDC	Tape & Reel	

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AP3422

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit
Input Voltage	$V_{\rm IN1,}V_{\rm IN2}$	-0.3 to 6	V
Feedback Voltage	$V_{\mathrm{FB1},}V_{\mathrm{FB2}}$	-0.3 to $V_{\rm IN}$ +0.3	V
EN1, EN2 Pin Voltage	$V_{\text{EN1}}, V_{\text{IN2}}$	-0.3 to V _{IN} +0.3	V
SW1, SW2 Pin Voltage	$V_{\mathrm{SW1}}, V_{\mathrm{SW2}}$	-0.3 to V _{IN} +0.3	V
Thermal Resistance	θ_{JA}	50	°C/W
Operating Junction Temperature	T_{J}	150	°C
Storage Temperature	T_{STG}	-65 to 150	°C
Lead Temperature (Soldering, 10sec)	T_{LEAD}	260	°C

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

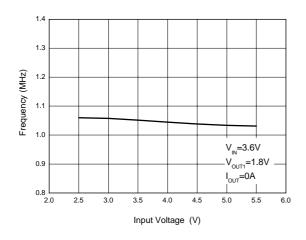
Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Input Voltage	$V_{\mathrm{IN1}}, V_{\mathrm{IN2}}$	2.5	5.5	V
Maximum Output Current	I _{OUT1 (MAX),} I _{OUT2 (MAX)}	800		mA
Operating Ambient Temperature	T_{A}	-40	85	°C

AP3422

Electrical Characteristics

 $V_{IN1}=V_{IN2}=V_{EN1}=V_{EN2}=3.6V$, $T_A=25\,^{\circ}\text{C}$, unless otherwise specified. Specifications with **boldface type** apply over full operating temperature range from -40 to 85 $^{\circ}\text{C}$.


Parameters	Symbol	Conditions	Min	Тур	Max	Unit
Supply Current on Each Converter	I_{CC}	V _{FB} =0.55V		400	600	μΑ
Shutdown Supply Current on Each Converter	I_{SHDN}	V _{EN} =0V, V _{IN} =5.5V		0.01	1	μΑ
Under Voltage Lockout Threshold	V _{UVLO}	Rising Edge		2.27		V
Under Voltage Lockout Hysteresis	$V_{ m HUVLO}$			200		mV
Feedback Bias Current	I_{FB}	V _{FB} =0.65V	-50	0.5	50	nA
Feedback Voltage	V_{FB}	I _{OUT} =100mA	0.588/ 0.582	0.600	0.612/ 0.618	V
	I _{OUT (MAX)}	V_{IN} =2.5V, V_{OUT} =0.9V	800			mA
Maximum Output Current		V _{IN} =3.6V, V _{OUT} =1.2V	800			
		V _{IN} =4.6V, V _{OUT} =3.3V	800			
Switch Current Limit	I_{LIM}	V _{FB} =0.55V	0.95	1.25		A
Oscillator Frequency	f_{OSC}		0.8	1.1	1.4	MHz
EN Pin Threshold	V_{ENL}				0.6	V
EN FIII THIESHOID	V _{ENH}		1.5			
EN Pin Input Leakage	I_{H}	V _{EN} =3.6V	-0.1		0.1	μΑ
Current	I_{L}	V _{EN} =0V	-0.1		0.1	μΑ
Internal PFET On Resistance	R_{DSONP}	I _{SW} =100mA		0.44		Ω
Internal NFET On Resistance	$R_{ m DSONN}$	I _{SW} =-100mA		0.29		Ω
Maximum Duty Cycle	D_{MAX}	$V_{FB} = 0.55V$		100		%
Soft-start Time	T_{SS}	V_{EN} =0V to V_{IN} I_{OUT} =50mA		220		μs
Thermal Shutdown Threshold	T_{OTSD}			160		°C
Thermal Shutdown Hysteresis	T_{HYS}			30		°C

AP3422

Typical Performance Characteristics

L1=L2=10 μ H, C_{IN1}=C_{IN2}=C_{OUT1}=C_{OUT2}=10 μ F, T_A=25 °C, unless otherwise noted.

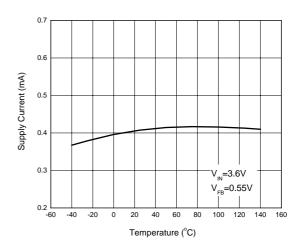
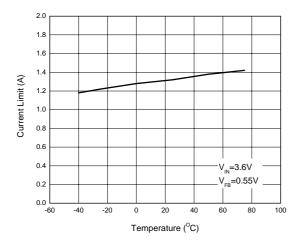



Figure 4. Frequency vs. Input Voltage

Figure 5. Supply Current vs. Temperature

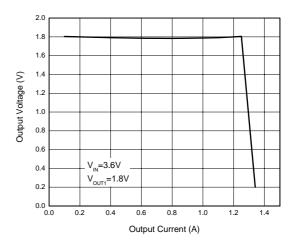
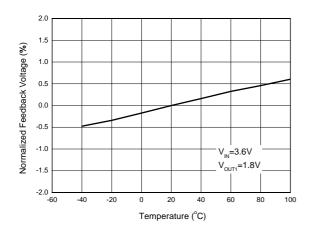


Figure 6. Current Limit vs. Temperature


Figure 7. Output Voltage vs. Output Current

AP3422

Typical Performance Characteristics (Continued)

L1=L2= $10\mu\text{H}$, $C_{\text{IN1}}=C_{\text{IN2}}=C_{\text{OUT1}}=C_{\text{OUT2}}=10\mu\text{F}$, $T_{\text{A}}=25$ °C, unless otherwise noted.

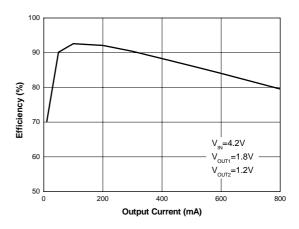
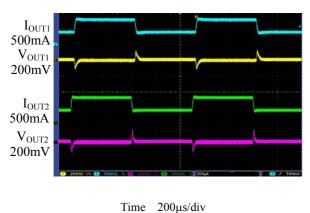
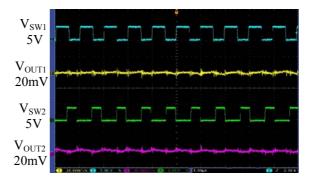




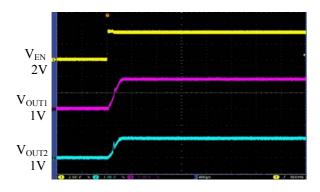
Figure 8. Normalized Feedback Voltage vs. Temperature

Figure 9. Efficiency vs. Output Current

Time 200µs/urv

Time 1µs/div

Figure 10. Load Transient (V_{IN}=4.2V, V_{OUT1}=1.8V, V_{OUT2}=1.2V, I_{OUT1}=400mA to 800mA, I_{OUT2}=400 to 800mA)


Figure 11. Heavy Load Operation (V_{IN} =4.2V, V_{OUT1} =1.8V, V_{OUT2} =1.2V, I_{OUT1} = I_{OUT2} =800mA)

AP3422

Typical Performance Characteristics (Continued)

L1=L2=10 μ H, C_{IN1}=C_{IN2}=C_{OUT1}=C_{OUT2}=10 μ F, T_A=25 °C, unless otherwise noted.

Time 400 µs/div

Figure 12. Start-up from Shutdown (V $_{IN}$ =4.2V, V $_{OUT1}$ =1.8V, V $_{OUT2}$ =1.2V, V $_{EN}$ =0 to 3.6V, I $_{OUT1}$ =I $_{OUT2}$ =400mA)

AP3422

Typical Application

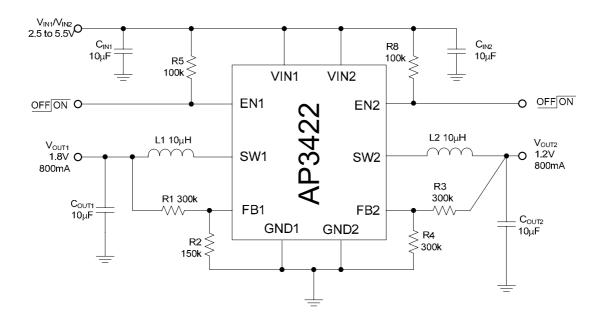
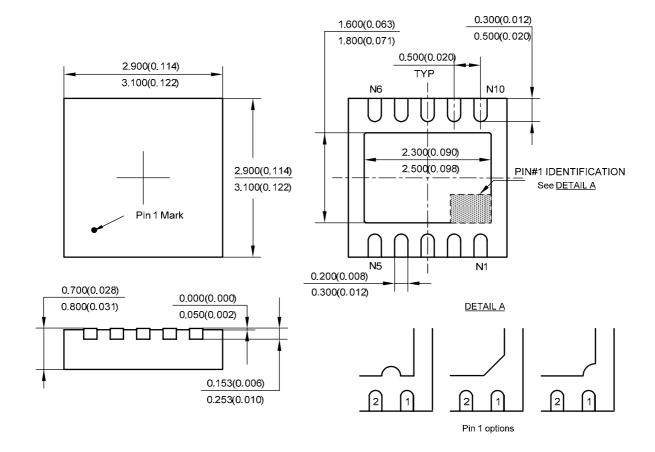


Figure 13. Typical Application of AP3422



AP3422

Mechanical Dimensions

DFN-3×3-10

Unit:mm(inch)

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Tel: +86-755-8826 7951 Fax: +86-755-8826 7865 - Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788