Contents VN5E006ASP-E

Contents

1	Bloc	k diagram and pin description	5
2	Elec	trical specifications	7
	2.1	Absolute maximum ratings	7
	2.2	Thermal data	8
	2.3	Electrical characteristics	9
	2.4	Waveforms	8
	2.5	Electrical characteristics curves	<u>'</u> 1
3	Арр	lication information 2	4
	3.1	MCU I/Os protection	<u>'</u> 4
	3.2	Load dump protection	24
	3.3	Current sense and diagnostic	25
		3.3.1 Short to VCC and off-state open-load detection	26
	3.4	Maximum demagnetization energy (V _{CC} = 13.5 V)	?7
4	Pacl	kage and PCB thermal data	8
	4.1	PowerSO-10 thermal data	28
5	Pacl	kage information	1
	5.1	ECOPACK [®] packages 3	31
	5.2	PowerSO-10 mechanical data	32
	5.3	Packing information 3	14
6	Orde	er codes 3	5
7	Revi	sion history	6

VN5E006ASP-E List of tables

List of tables

Table 1.	Pin function	5
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data	8
Table 5.	Power section	9
Table 6.	Switching (V _{CC} = 13 V; T _i = 25 °C)	9
Table 7.	Logic inputs	
Table 8.	Protections and diagnostic	10
Table 9.	Current sense (8 V < V _{CC} < 18 V)	11
Table 10.	Open-load detection (8 V < V _{CC} < 18 V, V _{DE} = 5 V)	12
Table 11.	Truth table	16
Table 12.	Electrical transient requirements (part 1)	17
Table 13.	Electrical transient requirements (part 2)	
Table 14.	Electrical transient requirements (part 3)	17
Table 15.	Thermal parameter	30
Table 16.	PowerSO-10 mechanical data	33
Table 17.	Device summary	35
Table 18	Document revision history	36

List of figures VN5E006ASP-E

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Configuration diagram (top view)	. 6
Figure 3.	Current and voltage conventions	. 7
Figure 4.	Current sense delay characteristics	13
Figure 5.	Open load Off-state delay timing	13
Figure 6.	Switching characteristics	
Figure 7.	Delay response time between rising edge of output current and rising edge of current ser	ıse
	(CS enabled)	
Figure 8.	Output voltage drop limitation	14
Figure 9.	I _{OUT} /I _{SENSE} vs I _{OUT}	15
Figure 10.	Maximum current sense ratio drift vs load current	15
Figure 11.	Normal operation	18
Figure 12.	Overload or short to GND	18
Figure 13.	Intermittent overload	
Figure 14.	OFF-state open load with external circuitry	19
Figure 15.	Short to V _{CC}	
Figure 16.	T _i evolution in overload or short to GND	20
Figure 17.	Off-state output current	
Figure 18.	High level input current	
Figure 19.	Input clamp voltage	
Figure 20.	Input high level	
Figure 21.	Input low level	
Figure 22.	Input hysteresis voltage	
Figure 23.	On-state resistance vs T _{case}	
Figure 24.	On state resistance vs V _{CC}	22
Figure 25.	Undervoltage shutdown	
Figure 26.	I _{LIMH} vs T _{case}	
Figure 27.	Turn-on voltage slope	
Figure 28.	Turn-off voltage slope	
Figure 29.	DE clamp voltage	
Figure 30.	Low level DE voltage	
Figure 31.	High level DE voltage	
Figure 32.	Application schematic	
Figure 33.	Current sense and diagnostics	
Figure 34.	Maximum turn-off current versus inductance	
Figure 35.	PowerSO-10 PC board	
Figure 36.	R _{thj-amb} vs PCB copper area in open box free air condition (one channel on)	28
Figure 37.	PowerSO-10 thermal impedance junction ambient single pulse (one channel on)	
Figure 38.	Thermal fitting model of a single channel HSD in PowerSO-10	
Figure 39.	PowerSO-10 package dimensions	
Figure 40.	PowerSO-10 suggested pad layout and tube shipment (no suffix)	
Figure 41.	PowerSO-10 tape and reel shipment (suffix "TR")	34

Block diagram and pin description 1

Reverse Battery Undervoltage Control & Diagnostic IN V_{ON} Limitation Current Limitation OFF State Open load V_{SENSEH} Current Sense OUT OVERLOAD PROTECTION LOGIC (ACTIVEPOWERLIMITATION) GND GAPGCFT00255

Figure 1. Block diagram

Table 1. Pin function

Name	Function
V _{CC}	Battery connection.
OUTPUT	Power output.
GND	Ground connection.
INPUT	Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state.
CURRENT SENSE	Analog current sense pin, delivers a current proportional to the load current.
DE	Active high diagnostic enable pin.

GND 5 Output 6 Input _____ 7 4 Ultput Output CURSENSE _____ 3 8 Ullim Output DE 9 2 UIII Output _____ Output Nc 10 $^{\sim}V_{CC}$ GAPGCFT00256

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

					_
Connection / pin	Current sense	N.C.	Output	Input	DE
Floating	Not allowed	Х	Х	X	Х
To ground	Through 1KΩ resistor	Х	Not allowed	Through 10KΩ resistor	Through 10KΩ resistor

57

2 Electrical specifications

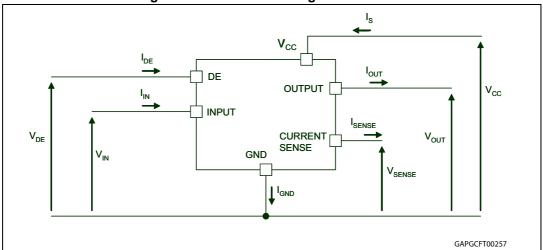


Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the ratings listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in this section for extended periods may affect device reliability.

Symbol Unit **Parameter** Value DC supply voltage ٧ V_{CC} 28 Transient supply voltage (T < 400 ms, $R_{LOAD} > 0.5 \Omega$) 41 ٧ V_{CCPK} -V_{CC} Reverse DC supply voltage 16 ٧ DC output current Internally limited Α I_{OUT} Reverse DC output current 60 Α -l_{OUT} DC input current -1 to 10 mΑ I_{IN} DC diagnostic enable input current -1 to 10 mΑ I_{DE} V_{CC}-41 ٧ Current sense maximum voltage **V_{CSENSE}** ٧ +V_{CC} Maximum switching energy (single pulse) 600 mJ E_{MAX} (L = 1.4 mH; $R_L = 0 \Omega$; $V_{bat} = 13.5 V$; $T_{istart} = 150 °C$; $I_{OUT} = I_{limL}(Typ.)$ Electrostatic discharge V_{ESD} 2000 (Human Body Model: $R = 1.5 \text{ K}\Omega$; C = 100 pF) ٧ Charge device model (CDM-AEC-Q100-011) 750 ٧ V_{ESD}

Table 3. Absolute maximum ratings

DocID17753 Rev 9 7/38

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
T _j	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Maximum value	Unit
R _{thj-case}	Thermal resistance junction-case (one channel ON)	0.45	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	See Figure 36 in the thermal section	°C/W

2.3 Electrical characteristics

8 V < V $_{CC}$ < 28 V; -40 °C < T $_{j}$ < 150 °C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{CC}	Operating supply voltage		4.5	13	28	V
V _{USD}	Undervoltage shutdown			3.5	4.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		٧
R _{ON}		I _{OUT} = 10 A; T _j = 25 °C		4.5		
	ON state resistance	I _{OUT} = 10 A; T _j = 150 °C			9	mΩ
Oiv		$I_{OUT} = 10 \text{ A}; V_{CC} = 5 \text{ V};$ $T_j = 25 \text{ °C}$			28	11122
R _{ON REV}	Reverse battery on state resistance	$V_{CC} = -13 \text{ V; } I_{OUT} = -10 \text{ A;}$ $T_j = 25 \text{ °C}$			6	mΩ
V _{clamp}	Clamp voltage	I _S = 20 mA	41	46	52	V
		Disable $V_{DE} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}; V_{IN} = x;$ $V_{OUT} = V_{SENSE} = 0 \text{ V}$		2	5	
I _S	Supply current	Off state; $V_{CC} = 13 \text{ V}$; $V_{DE} = 5 \text{ V}$; $T_j = 25 \text{ °C}$; $V_{IN} = V_{OUT} = V_{SENSE} = 0 \text{ V}$		10 ⁽¹⁾	13 28 3.5 4.5 0.5 4.5 0.5 4.5 9 r 6 6 r 46 52 2 5 0(1) 15(1) 2 4 r 1.01 3	μΑ
		On state; $V_{CC} = 13 \text{ V}$; $V_{DE} = 5 \text{ V}$; $V_{IN} = 5 \text{ V}$; $I_{OUT} = 0 \text{ A}$		2	4	mA
I	Off state output current (2)	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$	0	0.01	3	шА
I _{L(off1)}	On State output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125 \text{ °C}$	0		13 28 3.5 4.5 0.5 4.5 9 6 6 6 46 52 2 5 10 ⁽¹⁾ 15 ⁽¹⁾ 2 4 0.01 3	μA

^{1.} PowerMOS leakage included.

Table 6. Switching ($V_{CC} = 13 \text{ V}; T_j = 25 ^{\circ}\text{C}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 1.3 \Omega$ (see <i>Figure 6</i>)	_	30	_	μs
t _{d(off)}	Turn-off delay time	$R_L = 1.3 \Omega$ (see <i>Figure 6</i>)	_	30	_	μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	$R_L = 1.3 \Omega$	_	See Figure 27	_	V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	$R_L = 1.3 \Omega$	_	See Figure 28	_	V/µs
W _{ON}	Switching energy losses during twon	$R_L = 1.3 \Omega$ (see <i>Figure 6</i>)	_	3	_	mJ
W _{OFF}	Switching energy losses during twoff	$R_L = 1.3 \Omega$ (see <i>Figure 6</i>)	_	1.5	_	mJ

DocID17753 Rev 9

^{2.} For each channel.

Table 7. Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IL}	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V _{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.25			V
V	Innut clamp valtage	I _{IN} = 1 mA	5.5		7	V
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V
V _{DEL}	DE low level voltage				0.9	V
I _{DEL}	DE low level current	V _{IN} = 0.9 V	1			μΑ
V_{DEH}	DE high level voltage		2.1			V
I _{DEH}	DE high level current	V _{IN} = 2.1 V			10	μΑ
V _{DE(hyst)}	DE hysteresis voltage		0.25			V
M	DE olomo voltago	I _{DE} = 1 mA	5.5		7	V
V _{DECL}	DE clamp voltage	I _{DE} = -1 mA		-0.7		V

Table 8. Protections and diagnostic⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
,	Short circuit current	V _{CC} = 13 V	63.5	90	127	Α
l _{limH}	Short circuit current	5 V < V _{CC} < 24 V			127	A
I _{limL}	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V}; T_R < T_j < T_{TSD}$		25		Α
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		T _{RS} +	T _{RS} + 5		°C
T _{RS}	Thermal reset of status		135			°C
T _{HYST}	Thermal hysteresis (T _{TSD} -T _R)			7		°C
V _{DEMAG}	Turn-off output voltage clamp	I _{OUT} = 2 A; V _{IN} = 0; L = 6 mH	V _{CC} - 28	V _{CC} - 31	V _{CC} - 35	V
V _{ON}	Output voltage drop limitation	I_{OUT} = 1.2 A; T_j = -40 °C150 °C (see <i>Figure 8</i>)		25		mV

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

577

Table 9. Current sense (8 V < V_{CC} < 18 V)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
Κ ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 5 A; V _{SENSE} = 0.5 V; V _{DE} = 5 V; T _j = -40 °C150 °C	7350	10700	14590	
$dK_0/K_0^{(1)}$	Current sense ratio drift	$I_{OUT} = 5 \text{ A}; V_{SENSE} = 0.5 \text{ V};$ $V_{DE} = 5 \text{ V}; T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	-12		12	%
К ₁	lout/Isense	$I_{OUT} = 10 \text{ A; } V_{SENSE} = 4 \text{ V}$ $V_{DE} = 5 \text{ V}$ $T_j = -40 \text{ °C}150 \text{ °C}$ $T_j = 25 \text{ °C}150 \text{ °C}$	7490 8240	10500 10500	13930 12815	
dK ₁ /K ₁ ⁽¹⁾	Current sense ratio drift	$I_{OUT} = 10 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{DE} = 5 \text{ V}; T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	-12		12	%
K ₂	I _{OUT} /I _{SENSE}	$I_{OUT} = 15 \text{ A}; V_{SENSE} = 4 \text{ V}$ $V_{DE} = 5 \text{ V}$ $T_j = -40 \text{ °C}150 \text{ °C}$ $T_j = 25 \text{ °C}150 \text{ °C}$	8340 8680	10400 10400	12760 12070	
dK ₂ /K ₂ ⁽¹⁾	Current sense ratio drift	$I_{OUT} = 15 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{DE} = 5 \text{ V}; T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-8		8	%
К ₃	I _{OUT} /I _{SENSE}	$I_{OUT} = 25 \text{ A; } V_{SENSE} = 4 \text{ V}$ $V_{DE} = 5 \text{ V}$ $T_j = -40 \text{ °C}150 \text{ °C}$ $T_j = 25 \text{ °C}150 \text{ °C}$	8785 8965	10300 10300	11950 11545	
dK ₃ /K ₃ ⁽¹⁾	Current sense ratio drift	$I_{OUT} = 25 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{DE} = 5 \text{ V}; T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$	-6		6	%
		$I_{OUT} = 0 \text{ A}; V_{SENSE} = 0 \text{ V};$ $V_{DE} = 0 \text{ V}; V_{IN} = 0 \text{ V};$ $T_j = -40 \text{ °C}150 \text{ °C}$	0		1	
I _{SENSE0}	Analog sense leakage current	$I_{OUT} = 0 \text{ A}; V_{DE} = 5 \text{ V}; V_{IN} = 5 \text{ V}; V_{SENSE} = 0 \text{ V} $ $T_j = -40 \text{ °C150 °C}$	0		2	μΑ
		$I_{OUT} = 10 \text{ A}; V_{DE} = 0 \text{ V};$ $V_{SENSE} = 0 \text{ V}; V_{IN} = 5 \text{ V};$	0		1	
I _{OL}	Open-load on state current detection threshold	$V_{IN} = 0 \text{ V}, 8 \text{ V} < V_{CC} < 18 \text{ V};$ $I_{SENSE} = 5 \mu\text{A}$	10		100	mA
V _{SENSE}	Max analog sense output voltage	I_{OUT} = 25 A; V_{DE} = 5 V; R _{SENSE} = 3.9 K Ω	5			V
V _{SENSEH} ⁽²⁾	Analog sense output voltage in fault conditions	V_{CC} = 13 V; R_{SENSE} = 10 K Ω		8		V
I _{SENSEH} ⁽¹⁾	Analog sense output current in fault conditions	V _{CC} = 13 V; V _{SENSE} = 5 V		9		mA

DocID17753 Rev 9

Table 9. Current sense (8 V < V_{CC} < 18 V) (continued)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{DSENSE1H}	Delay response time from falling edge of DE pin	V _{SENSE} < 4 V, 5 A < I _{out} < 25 A I _{SENSE} = 90 % of I _{SENSE max} (see <i>Figure 4</i>)		50	100	μs
t _{DSENSE1L}	Delay response time from rising edge of DE pin	V _{SENSE} < 4 V, 5 A < I _{out} < 25 A I _{SENSE} = 10 % of I _{SENSE max} (see <i>Figure 4</i>)		5	20	μs
t _{DSENSE2H}	Delay response time from rising edge of INPUT pin	V _{SENSE} < 4 V, 5 A < I _{out} < 25 A I _{SENSE} = 90 % of I _{SENSE max} (see <i>Figure 4</i>)		200	600	μs
Δt _{DSENSE2} H	Delay response time between rising edge of output current and rising edge of current sense	V _{SENSE} < 4 V, I _{SENSE} = 90 % of I _{SENSEMAX} , I _{OUT} = 90 % of I _{OUTMAX} I _{OUTMAX} = 25 A (see <i>Figure 7</i>)			200	μs
t _{DSENSE2L}	Delay response time from falling edge of INPUT pin	V _{SENSE} < 4 V, 5 A < I _{out} < 25 A I _{SENSE} = 10 % of I _{SENSE max} (see <i>Figure 4</i>)		100	250	μs

^{1.} Parameter guaranteed by design; it is not tested.

Table 10. Open-load detection (8 V < V_{CC} < 18 V, V_{DE} = 5 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{OL}	Open-load off state voltage detection threshold	V _{IN} = 0 V; V _{DE} = 5 V; See <i>Figure 5</i>	2	_	4	V
t _{DSTKON}	Output short circuit to V _{CC} detection delay at turn off	V _{DE} = 5 V; See <i>Figure 5</i>	180	_	1200	μs
I _{L(off2)r}	Off-state output current at V _{OUT} = 4V	$V_{IN} = 0 \text{ V}; V_{SENSE} = 0 \text{ V}$ $V_{DE} = 5 \text{ V};$ V_{OUT} rising from 0V to 4 V	-120		90	μΑ
I _{L(off2)f}	Off-state output current at V _{OUT} = 2V	$V_{IN} = 0 \text{ V}; V_{SENSE} = V_{SENSEH}$ $V_{DE} = 5 \text{ V};$ V_{OUT} falling from V_{CC} to 2 V	-50	_	90	μΑ
td_vol	Delay response from output rising edge to V _{SENSE} rising edge in open load	$V_{OUT} = 4 \text{ V}; V_{IN} = 0 \text{ V}$ $V_{DE} = 5 \text{ V};$ $V_{SENSE} = 90 \% \text{ of } V_{SENSEH}$		_	20	μs
td_voh	Delay response from output falling edge to V _{SENSE} falling edge in open-load	$V_{OUT} = 2 \text{ V}; V_{IN} = 0 \text{ V}$ $V_{DE} = 5 \text{ V};$ $V_{SENSE} = 10 \% \text{ of } V_{SENSEH}$		_	20	μs

^{2.} Fault conditions include: power limitation, overtemperature and open load OFF state detection.

INPUT DE LOAD CURRENT SENSE CURRENT t_{DSENSE2H} t_{DSENSE1L} t_{DSENSE1H} t_{DSENSE2L} GAPGCFT00258

Figure 4. Current sense delay characteristics

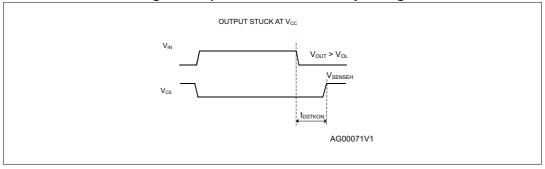
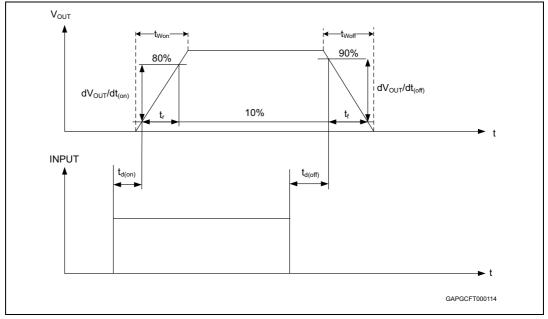
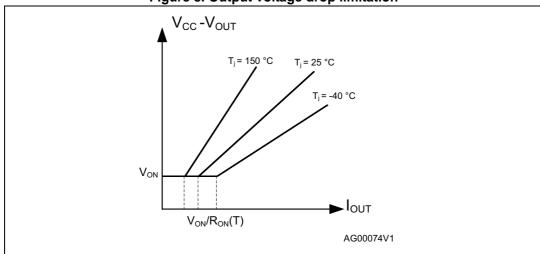



Figure 6. Switching characteristics

DocID17753 Rev 9

IOUT
IOUT
IOUTMAX


90% IOUTMAX

t

GAPGCFT000115

Figure 7. Delay response time between rising edge of output current and rising edge of current sense (CS enabled)

577

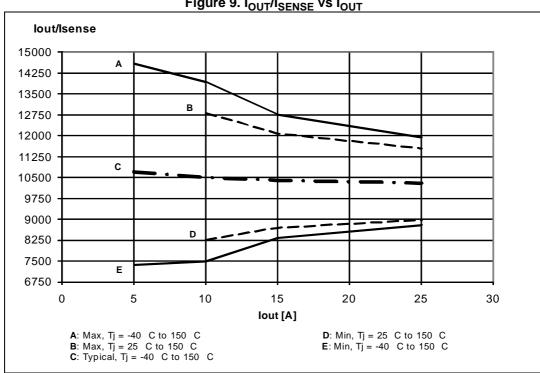
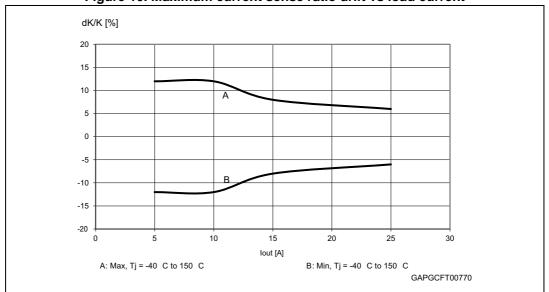



Figure 9. I_{OUT}/I_{SENSE} vs I_{OUT}

DocID17753 Rev 9

Table 11. Truth table

Conditions	Enable	Input	Output	Sense (V _{DE} = 5 V) ⁽¹⁾
Normal operation	Н	L	L	0
Normal operation	Н	Н	Н	Nominal
Overtemperature	Н	L	L	0
Overtemperature	Н	Н	L	V_{SENSEH}
I la dom rolta do	Н	L	L	0
Undervoltage	Н	Н	L	0
	Н	Н	Х	Nominal
Overload			(no power limitation)	Nominal
Overload	Н	Н	Cycling	V _{SENSEH}
			(power limitation)	* SENSEH
Short circuit to GND	Н	L	L	0
(Power limitation)	Н	Н	L	V_{SENSEH}
Open load OFF State	Н	L	Н	V
(with external pull up)	11	L	11	V _{SENSEH}
Short circuit to V _{CC}	Н	ı	Н	V _{SENSEH}
(external pull up	н	H	Н	< Nominal
disconnected)	11	11	11	< Norminal
Negative output voltage	Н	L	L	0
clamp	••	_	_	•

^{1.} If the V_{DE} is low, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit.

ISO 7637-2:	Test le	evels ⁽¹⁾	Number of	Burst cycle/pulse		Delays and	
2004(E) Test Pulse	III	IV	pulses or test times		on time	impedance	
1	-75 V	-100 V	5000 pulses	0.5 s	5 s	2 ms, 10 Ω	
2a	+37 V	+50 V	5000 pulses	0.2 s	5 s	50 μs, 2 Ω	
3a	-100 V	-150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
3b	+75 V	+100 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
4	-6 V	-7 V	1 pulse			100 ms, 0.01 Ω	
5b ⁽²⁾	+65 V	+87 V	1 pulse			400 ms, 2 Ω	

Table 12. Electrical transient requirements (part 1)

Table 13. Electrical transient requirements (part 2)

ISO 7637-2: 2004(E) test pulse	Test level	results ⁽¹⁾
	Ш	IV
1	С	С
2a	С	С
3a	С	С
3b	С	С
4	С	С
5b ^{(2) (3)}	С	С

^{1.} The above test levels must be considered referred to V_{CC} = 13.5V except for pulse 5b.

Table 14. Electrical transient requirements (part 3)

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the

DocID17753 Rev 9

^{1.} The above test levels must be considered referred to V_{CC} = 13.5V except for pulse 5b.

^{2.} Valid in case of external load dump clamp: 40V maximum referred to ground. The protection strategy allows PowerMOS to be cyclically switched on during load dump, so distributing the load dump energy along the time and to transfer a part of it to the load.

Valid in case of external load dump clamp: 40V maximum referred to ground. The protection strategy allows PowerMOS to be cyclically switched on during load dump, so distributing the load dump energy along the time and to transfer a part of it to the load.

^{3.} Suppressed load dump (pulse 5b) is withstood with a minimum load connected as specified in *Table 3.:* Absolute maximum ratings.

2.4 Waveforms

Figure 11. Normal operation

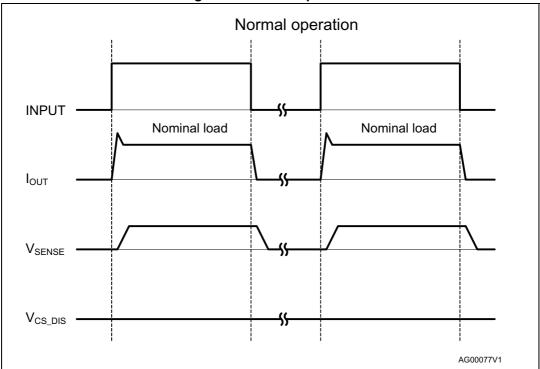
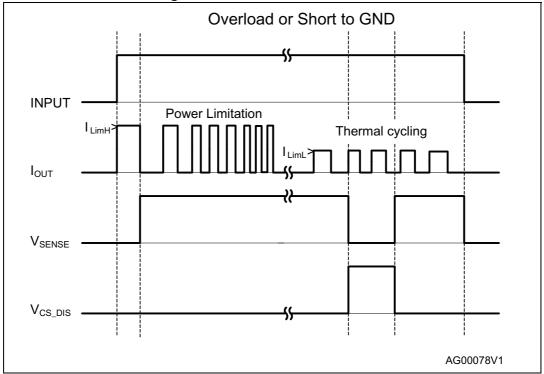



Figure 12. Overload or short to GND

577

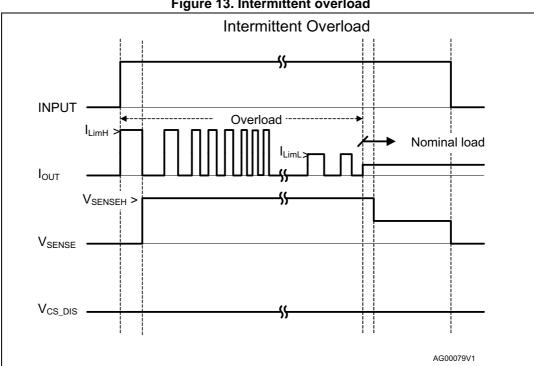
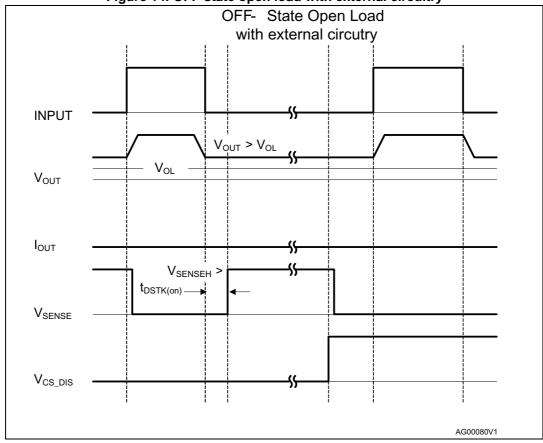
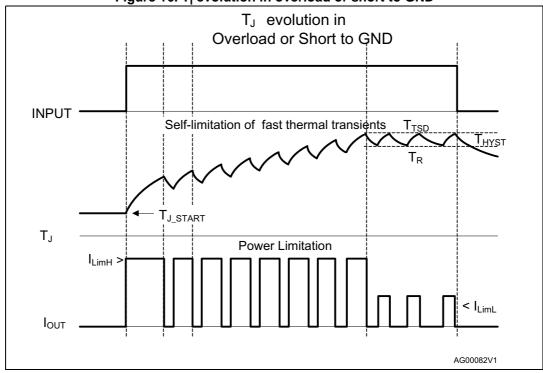
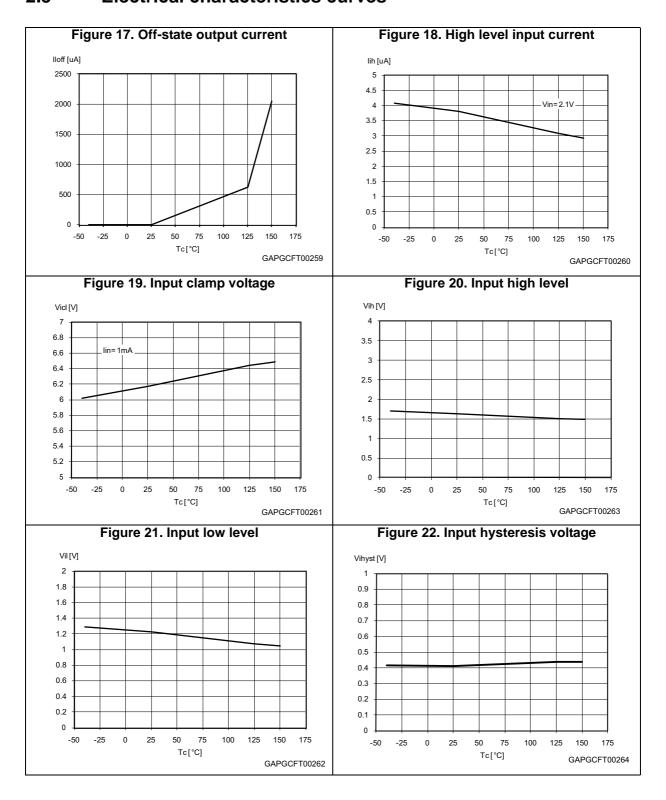
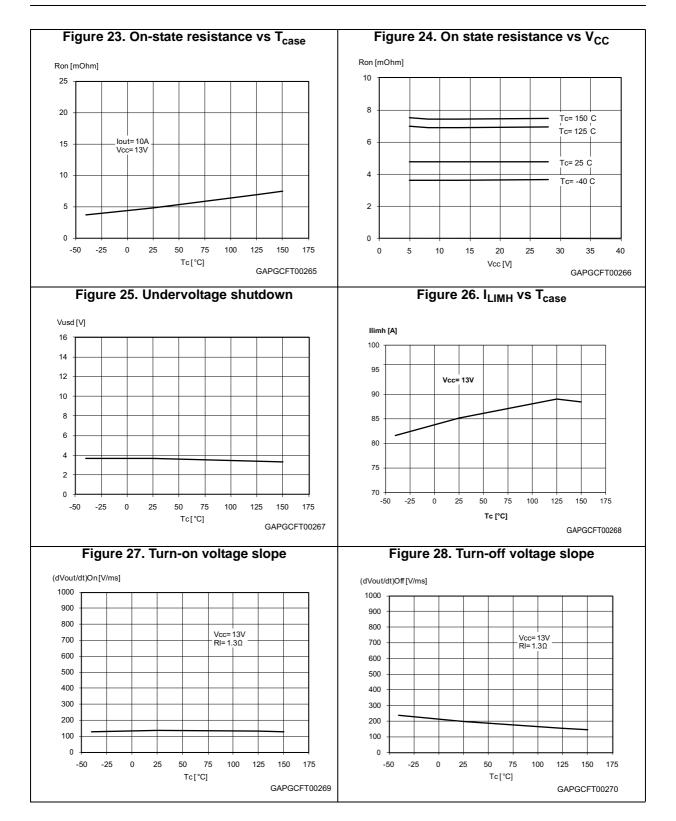



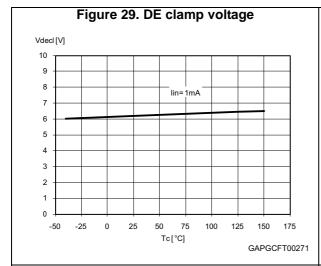
Figure 13. Intermittent overload



DocID17753 Rev 9


AG00081V1


Figure 15. Short to V_{CC} Short to V_{CC} Resistive Short to V_{CC} Short to V_{CC} Vout $V_{OUT} > V_{OL}$ $V_{OUT} > V_{OL}$ $V_{DSTK(on)} \rightarrow V_{DSTK(on)} \rightarrow V_{DSTK(on)} \rightarrow V_{CS_DIS}$



2.5 Electrical characteristics curves

47/

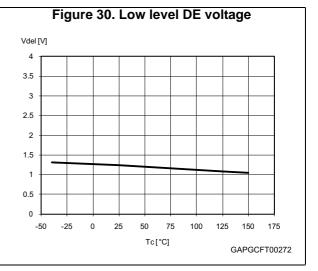
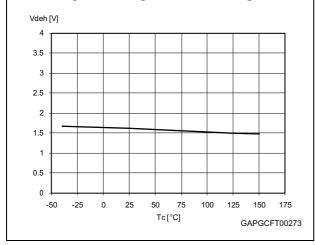



Figure 31. High level DE voltage

3 Application information

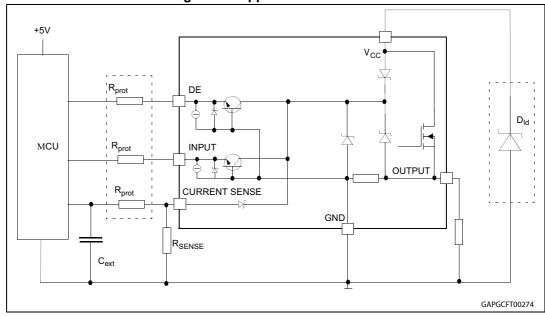


Figure 32. Application schematic

3.1 MCU I/Os protection

When negative transients are present on the V_{CC} line, the control pins are pulled negative to approximately -1.5V.

ST suggests the insertion of resistors (R_{prot}) in the lines to prevent the microcontroller I/O pins from latching up.

The values of these resistors provide a compromise between the leakage current of the microcontroller, the current required by the HSD I/Os (input levels compatibility) and the latch-up limit of the microcontroller I/Os.

$$-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}) / I_{IHmax}$$

Calculation example:

For
$$V_{CCpeak}$$
= -1.5 V and $I_{latchup} \ge 20$ mA; $V_{OHuC} \ge 4.5$ V

$$75 \Omega \le R_{prot} \le 240 kΩ$$
.

Recommended values: $R_{prot} = 10 \text{ k}\Omega$, $C_{EXT} = 10 \text{ nF}$

3.2 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CCPK} max rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO 7637-2: 2004(E) table.

57/

3.3 Current sense and diagnostic

The current sense pin performs a double function (see *Figure 33: Current sense and diagnostics*):

- Current mirror of the load current in normal operation, delivering a current proportional to the load one according to a known ratio K_X. The current I_{SENSE} can be easily converted to a voltage V_{SENSE} by means of an external resistor R_{SENSE}. Linearity between I_{OUT} and V_{SENSE} is ensured up to 5V minimum (see parameter V_{SENSE} in Table 9: Current sense (8 V < V_{CC} < 18 V)). The current sense accuracy depends on the output current (refer to current sense electrical characteristics Table 9: Current sense (8 V < V_{CC} < 18 V)).</p>
- Diagnostic flag in fault conditions, delivering a fixed voltage V_{SENSEH} up to a maximum current I_{SENSEH} in case of the following fault conditions (refer to *Truth table*):
 - Power limitation activation
 - Overtemperature
 - Short to V_{CC} in OFF-state
 - Open-load in OFF-state with additional external components.

A logic level low on DE pin sets at the same time all the current sense pins of the device in a high impedance state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of sense resistance and ADC line among different devices.

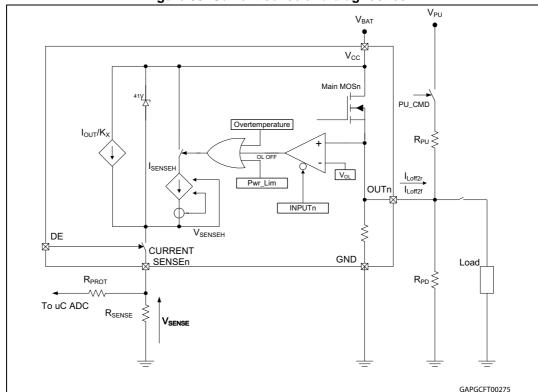


Figure 33. Current sense and diagnostics

5

DocID17753 Rev 9

3.3.1 Short to V_{CC} and off-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off state. Small or no current is delivered by the current sense during the on state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

An external pull down resistor R_{PD} connected between output and GND is mandatory to avoid misdetection in case of floating outputs in off-state (see *Figure 33: Current sense and diagnostics*).

 R_{PD} must be selected in order to ensure $V_{OUT} < V_{OLmin}$ unless pulled up by the external circuitry:

$$V_{OUT}|_{Pull-up_OFF} = R_{PD} \cdot I_{L(off2)f} < V_{OLmin} = 2V$$

 $R_{PD} \le 22 \text{ K}\Omega$ is recommended.

For proper open load detection in off state, the external pull-up resistor must be selected according to the following formula:

$$V_{OUT}\big|_{Pull-up_ON} = \frac{R_{PD} \cdot V_{PU} - R_{PU} \cdot R_{PD} \cdot I_{L(off2)r}}{R_{PU} + R_{PD}} > V_{OLmax} = 4V$$

For the values of V_{OLmin} , V_{OLmax} , $I_{L(off2)r}$ and $I_{L(off2)f}$ see *Table 10: Open-load detection* (8 $V < V_{CC} < 18 \ V$, $V_{DE} = 5 \ V$).

577

3.4 Maximum demagnetization energy ($V_{CC} = 13.5 \text{ V}$)

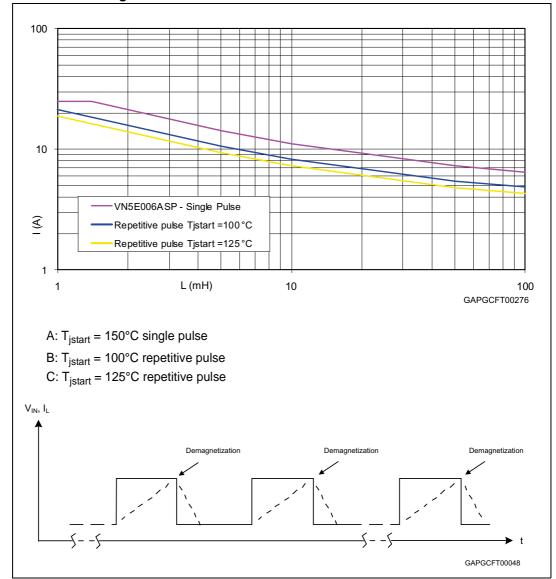
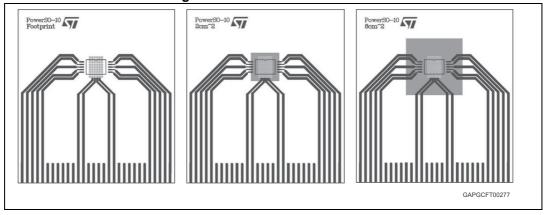


Figure 34. Maximum turn-off current versus inductance

Note:

Values are generated with $R_L = 0 \Omega$.


In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

577

4 Package and PCB thermal data

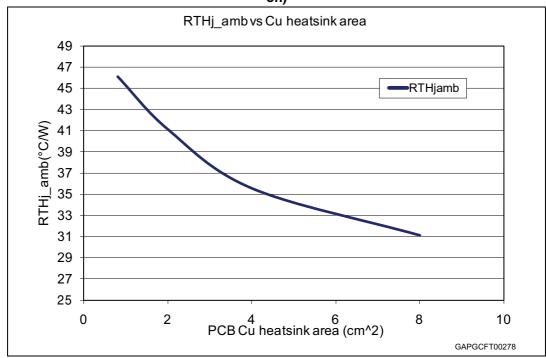

4.1 PowerSO-10 thermal data

Figure 35. PowerSO-10 PC board

Layout condition of R_{th} and Z_{th} measurements (Board finish thickness 1.6 mm +/- 10%; Board double layer; Board dimension 77x86; Board Material FR4; Cu thickness 0.070mm (front and back side); Thermal vias separation 1.2 mm; Thermal via diameter 0.3 mm +/- 0.08 mm; Cu thickness on vias 0.025 mm).

Figure 36. R_{thj-amb} vs PCB copper area in open box free air condition (one channel on)

47/

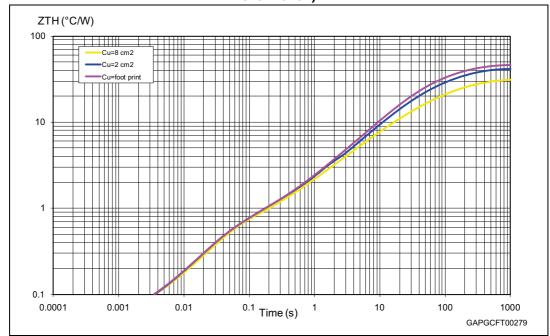
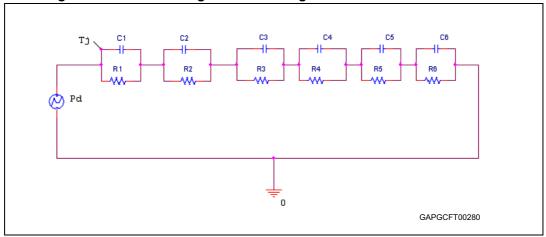



Figure 37. PowerSO-10 thermal impedance junction ambient single pulse (one channel on)

Figure 38. Thermal fitting model of a single channel HSD in PowerSO-10

 The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Equation 1: pulse calculation formula

$$\begin{split} & \textbf{Z}_{TH\delta} = \textbf{R}_{TH} \cdot \boldsymbol{\delta} + \textbf{Z}_{THtp} (\textbf{1} - \boldsymbol{\delta}) \\ & \text{where} \quad \boldsymbol{\delta} = t_p / T \end{split}$$

DocID17753 Rev 9

Table 15. Thermal parameter

Area/island (cm ²)	Footprint	2	8
R1 (°C/W)	0.05		
R2 (°C/W)	0.6		
R3 (°C/W)	1.5		
R4 (°C/W)	7		
R5 (°C/W)	13	12	8
R6 (°C/W)	24	20	14
C1 (W.s/°C)	0.1		
C2 (W.s/°C)	0.08		
C3 (W.s/°C)	0.8		
C4 (W.s/°C)	2		
C5 (W.s/°C)	3	4	8
C6 (W.s/°C)	6	8	14

5 Package information

5.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

DocID17753 Rev 9 31/38

Package information VN5E006ASP-E

5.2 PowerSO-10 mechanical data

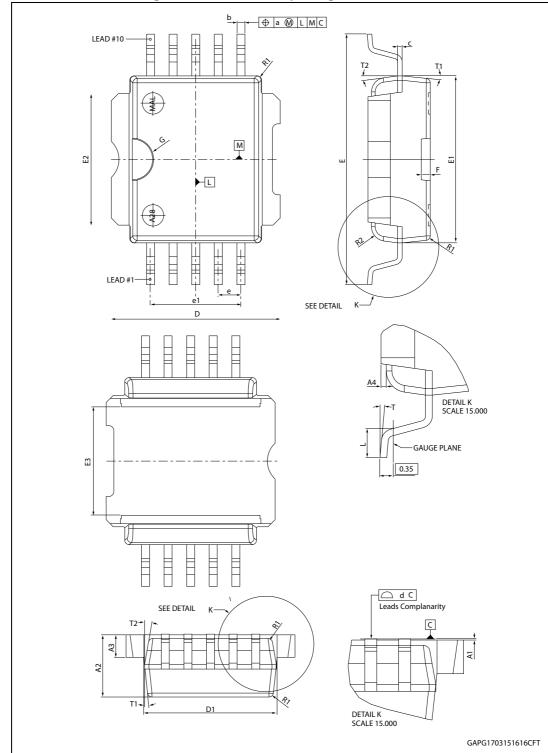


Figure 39. PowerSO-10 package dimensions

_y/

Table 16. PowerSO-10 mechanical data

Occupation I		Millimeters	
Symbol	Min.	Тур.	Max.
A1	0	0.05	0.10
A2	3.40	3.50	3.60
А3	1.20	1.30	1.40
A4	0.15	0.20	0.25
а		0.20	
b	0.37	0.45	0.53
С	0.23	0.27	0.32
D	9.40	9.50	9.60
D1	7.40	7.50	7.60
d	0	0.05	0.10
E	13.85	14.10	14.35
E1 ⁽¹⁾	9.30	9.40	9.50
E2	7.30	7.40	7.50
E3	5.90	6.10	6.30
е		1.27	
e1		5.08	
F		0.50	
G		1.20	
L	0.80	1.00	1.10
R1			0.25
R2		0.80	
Т	20	5°	80
T1		6°	
T2		10°	

^{1.} Resin protrusions not included (max value: 0.15 mm per side).

Package information VN5E006ASP-E

5.3 **Packing information**

Figure 40. PowerSO-10 suggested pad layout and tube shipment (no suffix)

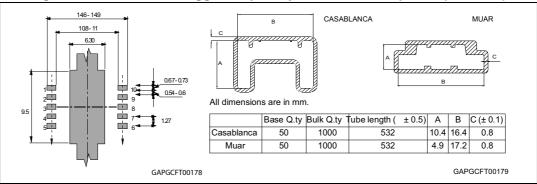
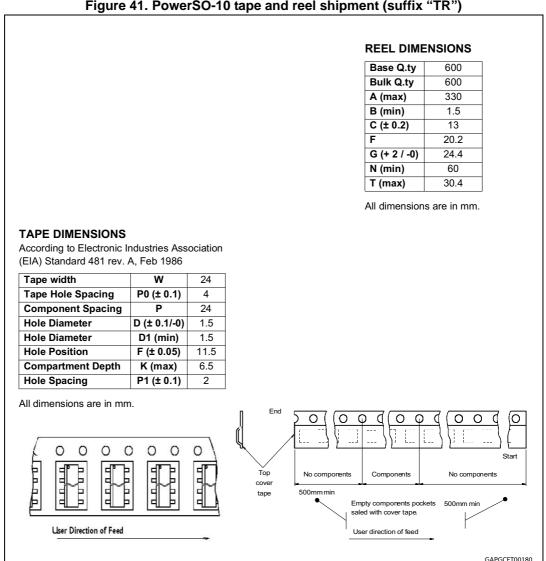



Figure 41. PowerSO-10 tape and reel shipment (suffix "TR")

VN5E006ASP-E Order codes

6 Order codes

Table 17. Device summary

Package	Order codes		
rackage	Tube	Tape and reel	
PowerSO-10	VN5E006ASP-E	VN5E006ASPTR-E	

Revision history VN5E006ASP-E

7 Revision history

Table 18. Document revision history

Date	Revision	Changes
01-Sep-2010	1	Internal release.
13-Sep-2010	2	Updated document with diagnostic enable pin insertion. Figure 2: Configuration diagram (top view) - changed pinout Changed Figure 4: Current sense delay characteristics Table 3: Absolute maximum ratings E _{MAX} : updated paramenters and value Table 4: Thermal data - R _{thj-case} : updated maximum value Table 5: Power section - R _{ON} : updated typical and maximum values - I _S : replaced V _{CE} = 0 V with V _{DE} = 0 V for test conditions, changed typ/max value (first row), replaced V _{CE} = 5 V with V _{DE} = 5 V for test conditions, changed typ/max value (second and third row) Table 6: Switching (V _{CC} = 13 V; T _j = 25 °C) - t _{q(on)} , t _{q(off)} , W _{ON} , W _{OFF} : updated typical value Table 9: Current sense (8 V < V _{CC} < 18 V) - I _{OL} : added new row - K ₁ ,dK ₂ /K ₁ : changed V _{SENSE} value (from 0.5 V to 4 V) for test conditions - K ₀ , K ₁ , K ₂ , K ₃ : added V _{DE} = 5 V for test conditions - dK ₀ /K ₀ , dK ₁ /K ₁ , dK ₂ /K ₂ , dK ₃ /K ₃ : replaced V _{CSD} = 0 V with V _{DE} = 5 V for test conditions - K ₀ , K ₁ , K ₂ , K ₃ : updated minimum, typical and maximum values - dK ₀ /K ₀ , dK ₁ /K ₁ , dK ₂ /K ₂ , dK ₃ /K ₃ : updated minimum and maximum values - l _{SENSE0} : replaced V _{CSD} = 5 V with V _{DE} = 0 V (first row), replaced V _{CSD} = 0 V with V _{DE} = 5 V, added I _{OUT} = 0 A, added V _{SENSE} = 0 V (second row), replaced V _{CSD} = 5 V with V _{DE} = 5 V, added R _{SENSE} for test conditions - V _{SENSE} : replaced V _{CSD} = 0 V with V _{DE} = 5 V, added R _{SENSE} for test conditions - V _{SENSE} : replaced V _{CSD} = 0 V with V _{DE} = 5 V, added R _{SENSE} for test conditions - V _{SENSE} : replaced V _{CSD} = 0 V with V _{DE} = 5 V, added R _{SENSE} for test conditions - t _{DSENSE1H} , t _{DSENSE1L} , t _{DSENSE2L} , t _{DSENSE2L} : changed typ/max values - Δt _{DSENSE2H} : changed maximum value Table 10: Open-load detection (8 V < V _{CC} < 18 V, V _{DE} = 5 V) - V _{OL} : updated typical value - td_voh: updated maximum value Updated Figure 9: l _{OUT} /l _{SENSE} V l _{OUT} Updated Figure 10: Maximum current sense ratio drift vs load current

VN5E006ASP-E Revision history

Table 18. Document revision history (continued)

Date	Revision	Changes
13-Sep-2010	2	Changed Figure 11: Normal operation Changed Figure 12: Overload or short to GND Changed Figure 13: Intermittent overload Changed Figure 14: OFF-state open load with external circuitry Changed Figure 15: Short to V _{CC} Updated Chapter 4: Package and PCB thermal data Updated Chapter 5.1: ECOPACK® packages
29-Sep-2010	3	Table 3: Absolute maximum ratings: I _{OUT} : updated value - V _{CCPK} : updated parameter Table 9: Current sense (8 V < V _{CC} < 18 V): - K ₀ , K ₁ , K ₂ , K ₃ : updated minimum, typical and maximum values - Δt _{DSENSE2H} : updated test condition Updated Figure 9: I _{OUT} /I _{SENSE} vs I _{OUT}
20-Dec-2010	4	Added Section 3.4: Maximum demagnetization energy ($V_{CC} = 13.5 \text{ V}$) Table 3: Absolute maximum ratings: - E_{MAX} : updated value Table 8: Protections and diagnostic - I_{limH} : updated minimum, typical and maximum values Table 9: Current sense (8 V < V_{CC} < 18 V) - K_0 , K_1 , K_2 , K_3 : updated minimum, typical and maximum values Updated Figure 9: I_{OUT}/I_{SENSE} vs I_{OUT}
20-Apr-2011	5	Updated Table 17: Device summary
18-May-2012	6	Updated Figure 26: I _{LIMH} vs T _{case}
19-Sep-2013	7	Updated Disclaimer.
25-Oct-2013	8	Updated footnote 2 into the <i>Table 12: Electrical transient</i> requirements (part 1) and <i>Table 13: Electrical transient</i> requirements (part 2).
18-Mar-2015	9	Updated Section 5.2: PowerSO-10 mechanical data

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

 $\overline{\mathbf{M}}$