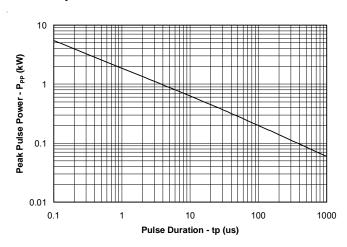
RClamp3304NA

Absolute Maximum Rating

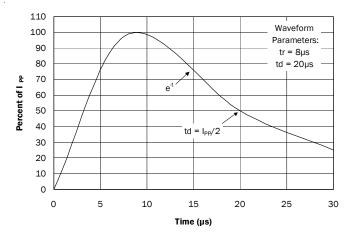
SEMTECH

Rating	Symbol	Value	Units
Peak Pulse Power (tp = $8/20\mu s$)	P _{pk}	450	Watts
Peak Pulse Current (tp = 8/20µs)	I _{PP}	25	А
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	25 15	kV
Operating Temperature	T,	-55 to +125	°C
Storage Temperature	T _{stg}	-55 to +150	°C

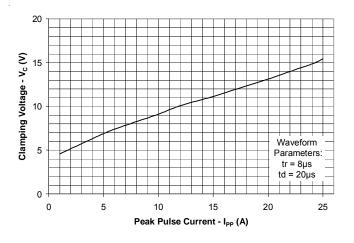
Electrical Characteristics (T=25°C)

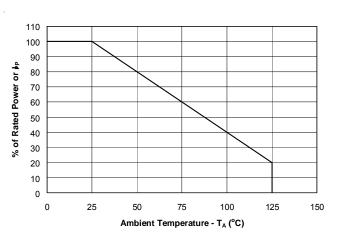

RClamp3304NA								
Parameter	Symbol	Conditions	Minimum	Typical Maximum		Units		
Reverse Stand-Off Voltage	V _{RWM}				3.3	V		
Punch-Through Voltage	V _{PT}	Ι _{ΡΤ} = 5μΑ	3.5			V		
Snap-Back Voltage	V _{SB}	I _{sb} = 50mA	2.8			V		
Reverse Leakage Current	I _R	V _{RWM} = 3.3V, T=25°C			0.5	μA		
Clamping Voltage	V _c	$I_{pp} = 1A, t_p = 8/20\mu s$			5.5	V		
Clamping Voltage	V _c	$I_{pp} = 10A, t_p = 8/20\mu s$			10.5	V		
Clamping Voltage	V _c	$I_{pp} = 25A, t_p = 8/20\mu s$			18	V		
Junction Capacitance	C _j	Between I/O pins and Ground V _R = 0V, f = 1MHz		3.8	5	pF		
		Between I/O pins V _R = OV, f = 1MHz		2.0		pF		

Note 1: I/O pins are pin 1, 3, 7, and 9

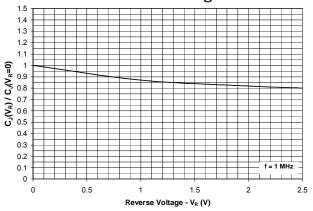


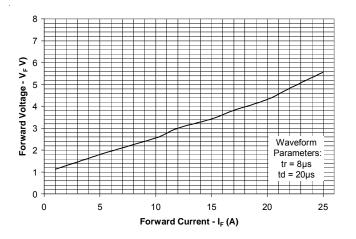

Typical Characteristics


Non-Repetitive Peak Pulse Power vs. Pulse Time



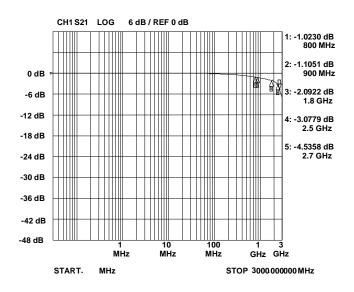
Pulse Waveform

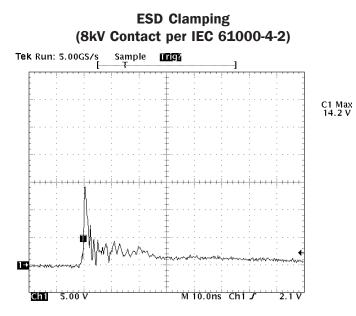




Power Derating Curve

Normalized Junction Capacitance vs. Reverse Voltage


Clamping Voltage vs. Peak Pulse Current I/O to I/O



RClamp3304NA

Insertion Loss S21 (I/O to Ground)

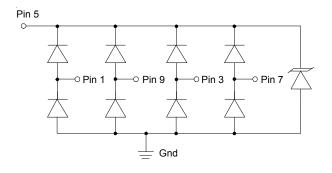
Note: Data is taken with a 10x attenuator

Applications Information

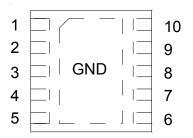
Device Connection Options for Protection of Four High-Speed Data Lines

These devices are designed to protect low voltage data lines operating at 3.3 volts. When the voltage on the protected line exceeds the reference voltage the steering diodes are forward biased, conducting the transient current away from the sensitive circuitry. Data lines are connected at pins 1, 3, 7 and 9. The center pin should be connected directly to a ground plane. The path length is kept as short as possible to minimize parasitic inductance. Pins 2, 4, 6, 8, and 10 are not connected.

Note that pin 5 is connected internally to the cathode of the low voltage TVS. It is not recommended that these pins be directly connected to a DC source greater than the snap-back voltage (V_{SB}) as the device can latch on as described below.


EPD TVS Characteristics

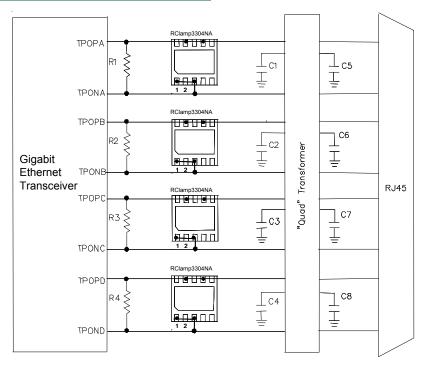
These devices are constructed using Semtech's proprietary EPD technology. By utilizing the EPD technology, the RClamp3304NA can effectively operate at 3.3V while maintaining excellent electrical characteristics.


The EPD TVS employs a complex nppn structure in contrast to the pn structure normally found in traditional silicon-avalanche TVS diodes. Since the EPD TVS devices use a 4-layer structure, they exhibit a slightly different IV characteristic curve when compared to conventional devices. During normal operation, the device represents a high-impedance to the circuit up to the device working voltage (V_{RWM}). During an ESD event, the device will begin to conduct and will enter a low impedance state when the punch through voltage (V_{PT}) is exceeded. Unlike a conventional device, the low voltage TVS will exhibit a slight negative resistance characteristic as it conducts current. This characteristic aids in lowering the clamping voltage of the device, but must be considered in applications where DC voltages are present.

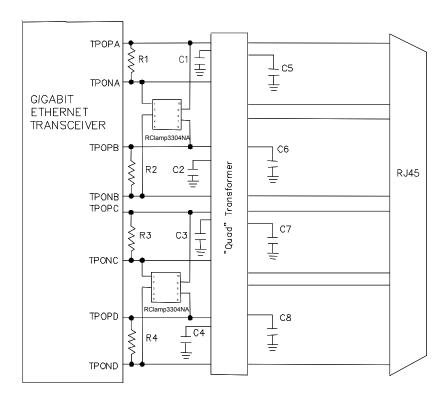
When the TVS is conducting current, it will exhibit a slight "snap-back" or negative resistance characteristics due to its structure. This point is defined on the curve by the snap-back voltage (V_{sp})

Circuit Diagram

Pin Configuration (Top Side View)

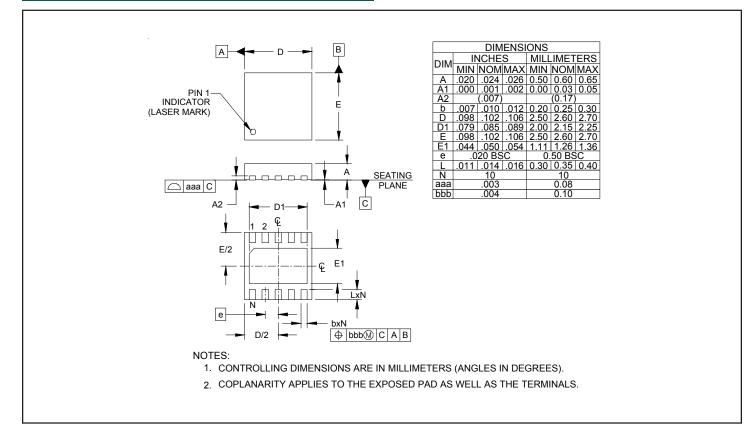


Pin	Identification
1, 3, 7, 9	Input/Output Lines
2, 4, 6, 8, 10	No Connect
5	No Connect (Do not connect this pin to a DC supply)
Center Tab	Ground

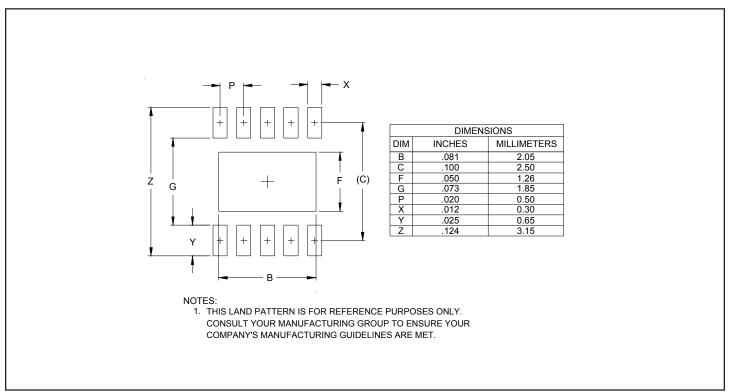

and snap-back current (I_{SB}). To return to a nonconducting state, the current through the device must fall below the I_{SB} (approximately <50mA) and the voltage must fall below the V_{SB} (normally 2.8 volts for a 3.3V device). If a 3.3V TVS is connected to 3.3V DC source, it will never fall below the snap-back voltage of 2.8V and will therefore stay in a conducting state.

Applications Information

Schematic Diagram for Gigabit Ethernet Telcordia GR-1089 Intra-Building Protection



Schematic Diagram for Gigabit Ethernet ESD Protection



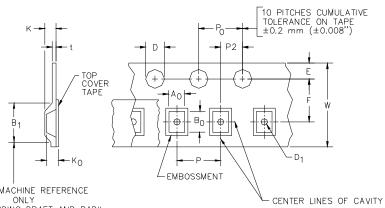
Outline Drawing - SLP2626P10

Land Pattern - SLP2626P10

RClamp3304NA

PROTECTION PRODUCTS

Marking


Part Number	Working Voltage	Qty per Reel	Reel Size	
RClamp3304NATCT	3.3 Volts	3,000	7 Inch	

RailClamp and RClamp are trademarks of Semtech Corporation

Ordering Information

YYWW = Date Code

Tape and Reel Specification

USER DIRECTION OF FEED

Pin 1 Location

FOR MACHINE REFERENCE ONLY INCLUDING DRAFT AND RADII CONCENTRIC AROUND B₀

User Direction of feed

Device Orientation in Tape

AO	В0	ко		
2.77 +/-0.10 mm	2.77 +/-0.10 mm	0.80 +/-0.10 mm		

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Ρ	PO	P2	T(MAX)	w
8 mm	4.2 mm (.165)	1.5 + 0.1 mm - 0.0 mm	1.0 mm ±0.05	1.750±.10 mm	3.5±0.05 mm	2.4 mm	4.0±0.1 mm	4.0±0.1 mm	2.0±0.05 mm	0.4 mm	8.0 mm + 0.3 mm - 0.1 mm

Contact Information

Semtech Corporation **Protection Products Division** 200 Flynn Rd., Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804