PIN DESCRIPTIONS

PIN (DIP & SOIC)	SYMBOL	FUNCTION	DESCRIPTION
1	VDDA	power supply	+3.3 volt power for transceiver A
2	BUSA	analog	MIL-STD-1533 bus driver A, positive signal
3	BUSA	analog	MIL-STD-1553 bus driver A, negative signal
4	RXENA	digital input	Receiver A enable. If low, forces RXA and RXA low (HI-1573) or High (HI-1574)
5	GNDA	power supply	Ground for transceiver A
6	VDDB	power supply	+3.3 volt power for transceiver B
7	BUSB	analog	MIL-STD-1533 bus driver B, positive signal
8	BUSB	analog	MIL-STD-1553 bus driver B, negative signal
9	RXENB	digital input	Receiver B enable. If low, forces RXB and RXB low (HI-1573) or High (HI-1574)
10	GNDB	power supply	Ground for transceiver B
11	RXB	digital output	Receiver B output, inverted
12	RXB	digital output	Receiver B output, non-inverted
13	TXINHB	digital input	Transmit inhibit, bus B. If high BUSB, BUSB disabled
14	TXB	digital input	Transmitter B digital data input, non-inverted
15	TXB	digital input	Transmitter B digital data input, inverted
16	RXA	digital output	Receiver A output, inverted
17	RXA	digital output	Receiver A output, non-inverted
18	TXINHA	digital input	Transmit inhibit, bus A. If high BUSA, BUSA disabled
19	TXA	digital input	Transmitter A digital data input, non-inverted
20	TXA	digital input	Transmitter A digital data input, inverted

FUNCTIONAL DESCRIPTION

The HI-1573 family of data bus transceivers contains differential voltage source drivers and differential receivers. They are intended for applications using a MIL-STD-1553 A/B data bus. The device produces a trapezoidal output waveform during transmission.

TRANSMITTER

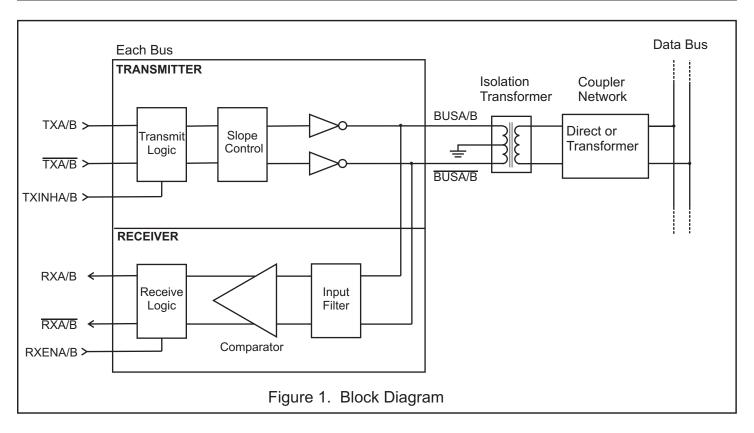
Data input to the device's transmitter section is from the complementary CMOS inputs TXA/B and $\overline{\text{TXA}}/\overline{\text{B}}$. The transmitter accepts Manchester II bi-phase data and converts it to differential voltages on BUSA/B and $\overline{\text{BUSA}}/\overline{\text{B}}$. The transceiver outputs are either direct- or transformer-coupled to the MIL-STD-1553 data bus. Both coupling methods produce a nominal voltage on the bus of 7.5 volts peak to peak.

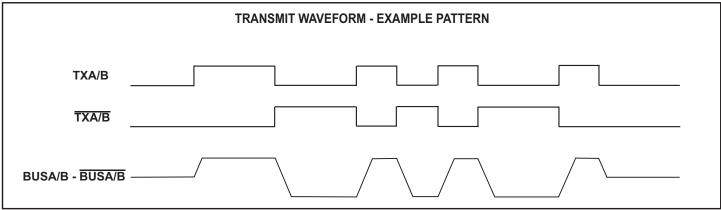
The transmitter is automatically inhibited and placed in the high impedance state when both TXA/B and $\overline{TXA/B}$ are driven with the same logic state. A logic "1" applied to the TXINHA/B input will force the transmitter to the high impedance state, regardless of the state of TXA/B and $\overline{TXA/B}$.

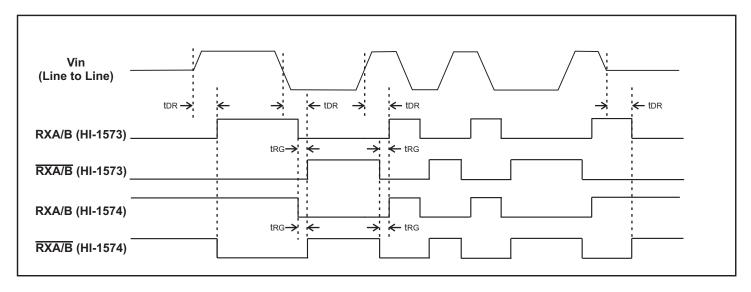
RECEIVER

The receiver accepts bi-phase differential data from the MIL-STD-1553 bus through the same direct- or transformer-coupled interface as the transmitter.

The receiver's differential input stage drives a filter and threshold comparator that produces CMOS data at the RXA/B and RXA/B output pins. When the MIL-STD-1553 bus is idle and RXENA or RXENB are high, RXA/B will be logic "0" on HI-1573 and logic "1" on HI-1574.


The receiver outputs are forced to the bus idle state (logic "0" on HI-1573 or logic "1" on HI-1574) when RXENA or RXENB is low.


MIL-STD-1553 BUS INTERFACE


A direct-coupled interface (see Figure 2) uses a 1:2.5 ratio isolation transformer and two 55 ohm isolation resistors between the transformer and the bus. The primary centertap of the isolation transformer must be connected to GND.

In a transformer-coupled interface (see Figure 2), the transceiver is connected to a 1:1.79 isolation transformer which in turn is connected to a 1:1.4 coupling transformer. The transformer-coupled method also requires two coupling resistors equal to 75% of the bus characteristic impedence (Zo) between the coupling transformer and the bus.

Figure 3 and Figure 4 show test circuits for measuring electrical characteristics of both direct- and transformer-coupled interfaces respectively. (See electrical characteristics on the following pages).

ABSOLUTE MAXIMUM RATINGS

RECOMMENDED OPERATING CONDITIONS

Supply voltage (VDD)	-0.3 V to +5 V
Logic input voltage range	-0.3 V dc to +3.6 V
Receiver differential voltage	50 Vp-p
Driver peak output current	+1.0 A
Power dissipation at 25°C ceramic DIL, derate	1.0 W 7mW/°C
Solder Reflow Temperature	260°C
Junction Temperature	175°C
Storage Temperature	-65°C to +150°C

Supply Voltage
VDD 3.3V ±5%
Temperature Range
Industrial40°C to +85°C Extended55°C to +125°C

NOTE: Stresses above absolute maximum ratings or outside recommended operating conditions may cause permanent damage to the device. These are stress ratings only. Operation at the limits is not recommended.

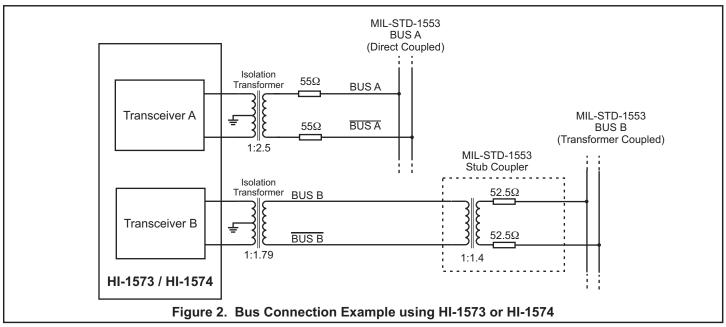
DC ELECTRICAL CHARACTERISTICS

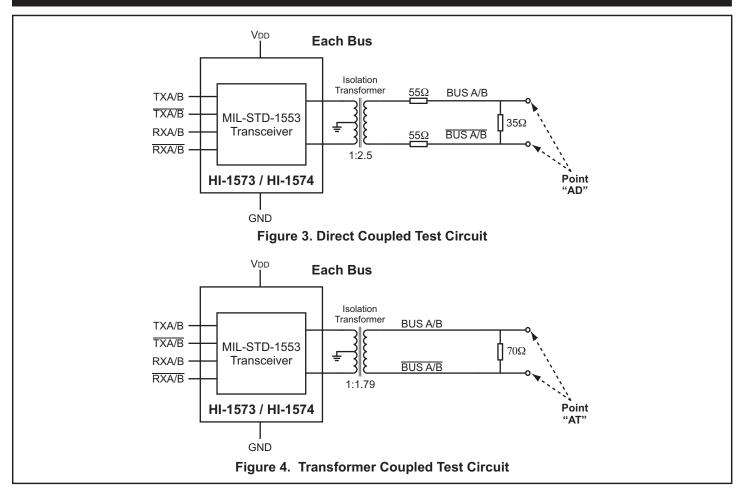
VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Operating Voltage	VDD		3.15	3.30	3.45	V
Total Supply Current	ICC1	Not Transmitting		10	17	mA
	ICC2	Transmit one bus @ 50% duty cycle		210	225	mA
	ICC3	Transmit one bus @ 100% duty cycle		420	450	mA
Power Dissipation	PD1	Not Transmitting		0.033	0.060	W
	PD2	Transmit one bus @ 100% duty cycle		0.475	0.55	W
Min. Input Voltage (HI)	Vih	Digital inputs	70%			VDD
Max. Input Voltage (LO)	VIL	Digital inputs			30%	VDD
Min. Input Current (HI)	Іін	Digital inputs			20	μA
Max. Input Current (LO)	lıL	Digital inputs	-20			μA
Min. Output Voltage (HI)	Voн	louт = -1.0mA, Digital outputs	90%			VDD
Max. Output Voltage (LO)	Vін	louт = 1.0mA, Digital outputs			10%	VDD
RECEIVER (Measured at Point "AD" in F	igure 3 unles	s otherwise specified)				
Input resistance	Rın	Differential (at chip pins)	20			Kohm
Input capacitance	Cin	Differential			5	pF
Common mode rejection ratio	CMRR		40			dB
Input Level	VIN	Differential			9	Vp-p
Input common mode voltage	VICM		-5.0		5.0	V-pk
Threshold Voltage - Direct-coupled Detect	Vтно	1 Mhz Sine Wave Measured at Point "Ap" in Figure 3 RXA/B, RXA/B pulse width >70 ns	1.15			Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.28	Vp-p
Theshold Voltage - Transformer-coupled Detect	VTHD	1 MHz Sine Wave Measured at Point "Ar" in Figure 4 RXA/B, RXA/B pulse width >70 ns	0.86			Vp-p
No Detect	VTHND	No pulse at RXA/B, RXA/B			0.20	Vp-p

DC ELECTRICAL CHARACTERISTICS (cont.)

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).


PARAMETER		SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
TRANSMITTER	(Measured at Point "AD" in Fi	gure 3 unless	otherwise specified)				
Output Voltage	Direct coupled	Vouт	35 ohm load (Measured at Point "Ap" in Figure 3)	6.0		9.0	Vp-p
	Transformer coupled	Vоит	70 ohm load (Measured at Point "At" in Figure 4)	18.0		27.0	Vp-p
Output Noise		Von	Differential, inhibited			10.0	mVp-p
Output Dynamic (Offset Voltage Direct coupled	Vdyn	35 ohm load (Measured at Point "Ap" in Figure 3)	-90		90	mV
Transformer coupled		Vdyn	70 ohm load (Measured at Point "Ατ" in Figure 4)	-250		250	mV
Output resistance	Э	Rout	Differential, not transmitting	10			Kohm
Output Capacitar	nce	Соит	1 MHz sine wave			15	pF


AC ELECTRICAL CHARACTERISTICS

VDD = 3.3 V, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).

PARAMETER SYMBOL		TEST CONDITIONS	MIN	TYP	MAX	UNITS
RECEIVER (Measured at Point "AT"		in Figure 4)				
Receiver Delay	tor	From input zero crossing to RXA/B or RXA/B			500	ns
					Note 3	
Receiver gap time	trg	Spacing between RXA/B and RXA/B pulses	60		430	ns
			Note 1		Note 2	
Receiver Enable Delay	tren	From RXENA/B rising or falling edge to		40	ns	
		RXA/B or RXA/B			40	113
TRANSMITTER (Measured	at Point "AD"	in Figure 3)				
Driver Delay	tот	TXA/B, TXA/B to BUSA/B, BUSA/B			150	ns
Rise time	tr	35 ohm load	100		300	ns
Fall Time tf		35 ohm load	100		300	ns
Inhibit Delay	tDI-H	Inhibited output			100	ns
	tDI-L	Active output			150	ns

- Note 1. Measured using a 1 MHz sinusoid, 20 V peak to peak, line to line at point "AT" (Guaranteed but not tested).
- Note 2. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT" (100% tested).
- Note 3. Measured using a 1 MHz sinusoid, 860 mV peak to peak, line to line at point "AT". Measured from input zero crossing point.

HEAT SINK - ESOIC PACKAGE

Both the HI-1573PSI/T/M and HI-1574PSI/T/M use a 20-pin **APPLICATIONS NOTE** thermally enhanced SOIC package. The HI-1573PCI/T/M and HI-1574PCI/T/M use a plastic chip-scale package (QFN). These packages include a metal heat sink located on the bottom surface of the device. This heat sink should be soldered down to the printed circuit board for optimum thermal dissipation.

& CHIP-SCALE The heat sink is electrically isolated and may be soldered to any convenient power or ground plane.

Holt Applications Note AN-500 provides circuit design notes regarding the use of Holt's family of MIL-STD-1553 transceivers. Layout considerations, as well as recommended interface and protection components are included.

THERMAL CHARACTERISTICS

PART NUMBER	PACKAGE STYLE	CONDITION	Ø	JUNCTION TEMPERATURE			
PART NOWIDER	PACKAGE STILE	CONDITION	Ø _{JA}	T _A =25°C	T _A =85°C	T _A =125°C	
HI-1573PSI / T / M	20-pin Thermally enhanced plastic SOIC	Heat sink unsoldered	54°C/W	52°C	112°C	152°C	
HI-1574PSI / T / M	(ESOIC)	Heat sink soldered	47°C/W	49°C	109°C	149°C	
HI-1573CDI / T / M	20-pin Ceramic	Socketed	62°C/W	56°C	116°C	156°C	
HI-1574CDI / T / M	side-brazed DIP	Socketed	02 C/VV	30 C	110 C	130 C	
HI-1573PCI / T / M	44-pin Plastic chip-	Heat sink	49°C/W	50°C	110°C	150°C	
HI-1574PCI / T / M	scale package (QFN)	unsoldered	49 C/VV	30 C	110 C	130 C	

Data taken at VDD=3.3V, continuous transmission at 1Mbit/s, single transmitter enabled.

ORDERING INFORMATION

HI - <u>157x xx x x</u> (Plastic)

PART NUMBER	PACKAGE DESCRIPTION	
Blank	Tin / Lead (Sn / Pb) Solder	
F 100% Matte Tin (Pb-free RoHS complian		

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN
I	-40°C TO +85°C	I	No
Т	-55°C TO +125°C	Т	No
M -55°C TO +125°C		М	Yes

PART NUMBER	PACKAGE DESCRIPTION
PC	44 PIN PLASTIC CHIP-SCALE PACKAGE QFN (44PCS)
PS	20 PIN PLASTIC ESOIC, Thermally Enhanced Wide SOIC w/Heat Sink (20HWE)

PART	RXEI	0 = A	RXENB = 0		
NUMBER	RXA	RXA	RXB	RXB	
1573	0	0	0	0	
1574	1	1	1	1	

HI - 157xCD x (Ceramic)

PART NUMBER	TEMPERATURE RANGE	FLOW	BURN IN	LEAD FINISH
I	-40°C TO +85°C	Ι	No	Gold (Pb-free, RoHS compliant)
Т	-55°C TO +125°C	Т	No	Gold (Pb-free, RoHS compliant)
М	-55°C TO +125°C	М	Yes	Tin / Lead (Sn / Pb) Solder

PART	RXENA = 0		RXENB = 0		PACKAGE
NUMBER	RXA	RXA	RXB	RXB	DESCRIPTION
1573	0	0	0	0	20 PIN CERAMIC SIDE BRAZED DIP (20C)
1574	1	1	1	1	20 PIN CERAMIC SIDE BRAZED DIP (20C)

RECOMMENDED TRANSFORMERS

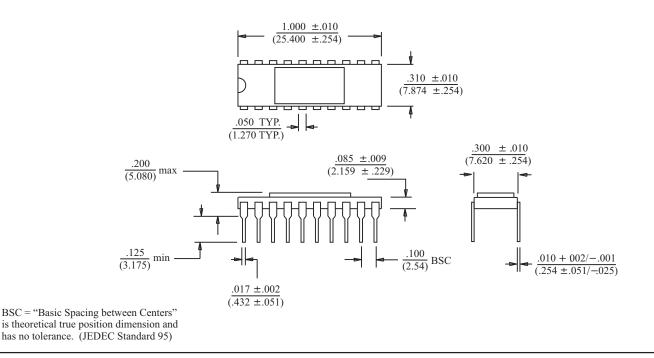
The HI-1573 and HI-1574 transceivers have been characterized for compliance with the electrical requirements of MIL-STD-1553 when used with the following

transformers. Holt recommends the Premier Magnetics parts as offering the best combination of electrical performance, low cost and small footprint.

MANUFACTURER	PART NUMBER	APPLICATION	TURNS RATIO(S)	DIMENSIONS
Premier Magnetics	PM-DB2725EX	Isolation	Dual ratio 1:1.79, 1:2.5	0.4 x 0.4 x 0.242 inches
Premier Magnetics	PM-DB2702	Stub coupling	1:1.4	.625 x .625 x .250 inches
Premier Magnetics	PM-DB-2791S	Isolation	1:2.5	0.4 x 0.4 x 0.185 inches
Premier Magnetics	PM-DB-2795S	Isolation	1:1.79	0.4 x 0.4 x 0.185 inches
Premier Magnetics	PM-DB-2798S	Isolation	Dual ratio 1:1.79, 1:2.5	0.4 x 0.4 x 0.185 inches
Premier Magnetics	PM-DB-2762	Isolation	Dual core 1:2.5	0.4 x 0.4 x 0.320 inches
Premier Magnetics	PM-DB-2766	Isolation	Dual core 1:1.79	0.4 x 0.4 x 0.320 inches

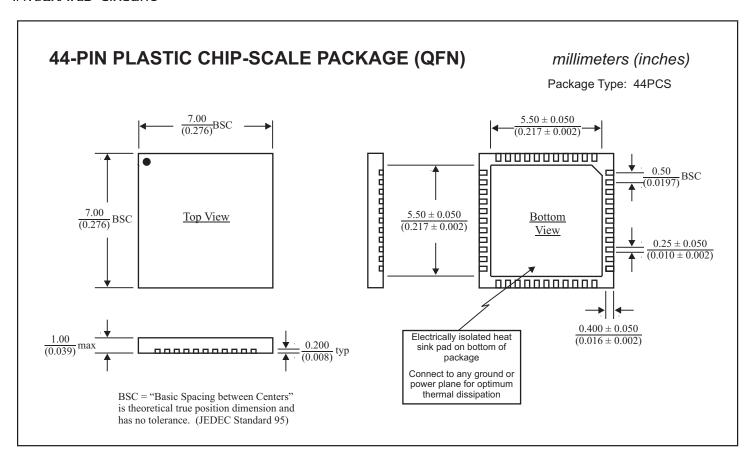
REVISION HISTORY

Document	Rev.	Date	Description of Change
DS1573	DS1573 L 09/26/08		Clarification of transmitter and receiver functions in Description, clarification of available temperature ranges, and corrected a dimension in Recommended Transformers table.
	M	04/13/09	Add 'M' Flow option to chip-scale package (QFN). Clarify nomenclature of chip-scale package as QFN.
	Ν	07/24/09	Correct typographical errors in package dimensions.
	0	10/13/09	Clarified status of RXA/B and $\overline{RXA}/\overline{B}$ pins in bus idle state when RXENA or RXENB are high (logic "1").
	Р	01/26/12	Fix typos in tRG and tDT descriptions in AC characteristics table. Added latest Premier Magnetics transformer recommendations. Remove Technotrol transformer recommendations.
	Q	06/20/13	Updated functional description text for clarity. Revised figures 2,3, and 4. Updated package drawings.
	R	05/21/14	Updated Figure 2 and package drawings.
	S	04/09/15	Correct Figures 2 and 3. Other minor clarifications.
	Т	06/06/17	Update Power Dissipation and Power Supply Current parameters.


PACKAGE DIMENSIONS

20-PIN PLASTIC SMALL OUTLINE (ESOIC) - WB millimeters (inches) (Wide Body, Thermally Enhanced) Package Type: 20HWE 0.215 ± 0.115 (0.008 ± 0.005) $\frac{12.80}{(0.504)}$ BSC — (0.295 ± 0.015) A A A A A A A A A A A A'A A A A A A'A A $\frac{10.33}{(0.407)}$ BSC 5.335 ± 0.385 $\frac{7.50}{(0.295)}$ BSC **Bottom** Top View (0.210 ± 0.015) View 888888888 See Detail A 0.419 ± 0.109 (0.016 ± 0.004) Electrically isolated heat 2.181 ± 0.131 sink pad on bottom of (0.086 ± 0.005) Connect to any ground or power plane for optimum thermal dissipation 0.200 ± 0.100 0.835 ± 0.435 (0.033 ± 0.017) BSC = "Basic Spacing between Centers" Detail A is theoretical true position dimension and has no tolerance. (JEDEC Standard 95)

20-PIN CERAMIC SIDE-BRAZED DIP


inches (millimeters)

Package Type: 20C

PACKAGE DIMENSIONS

