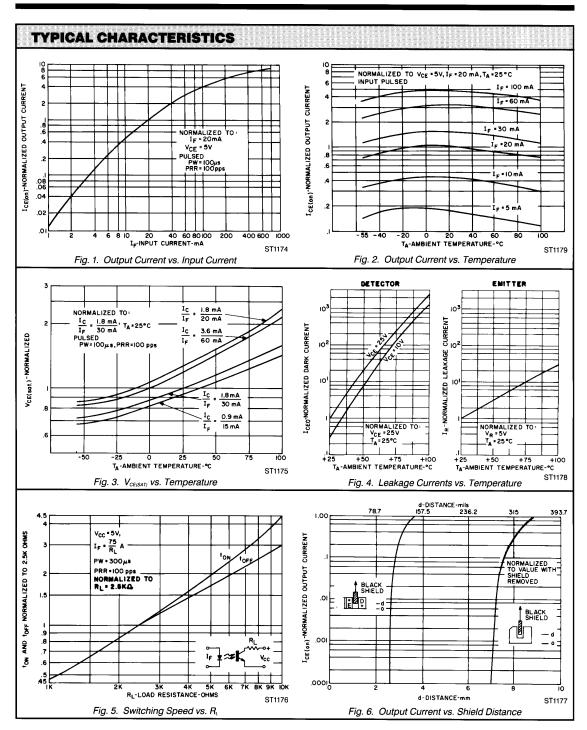


SEMICONDUCTOR

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C Unless Oth	erwise Specified)
Storage Temperature Operating Temperature	
Soldering: Lead Temperature (Iron) Lead Temperature (Flow)	240°C for 5 sec. ^(3,4,5)
INPUT DIODE Continuous Forward Current Reverse Voltage Power Dissipation	6.0 Volts
OUTPUT TRANSISTOR Collector-Emitter Voltage Emitter-Collector Voltage Power Dissipation	6 Volts

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS
INPUT DIODE						
Forward Voltage	VF			1.7	V	$I_F = 60 \text{ mA}$
Reverse Breakdown Voltage	V _R	6.0			V	$I_{R} = 10 \mu A$
Reverse Leakage Current	l _R			1.0	μA	$V_{R} = 3 V$
OUTPUT TRANSISTOR	2.5 geo. ()					
Emitter-Collector Breakdown	BVECO	6.0		_	V	$I_{E} = 100 \ \mu A, Ee = 0$
Collector-Emitter Breakdown	BV _{CEO}	30			V	$I_c = 1 \text{ mA}, \text{ Ee} = 0$
Collector-Emitter Leakage	I _{CEO}	_	125	100	nA	$V_{ce} = 25 V$, $Ee = 0$
COUPLED						1,244
On-State Collector Current	I _{C(ON)}	See page 3.		mA		
Saturation Voltage	V _{CE(SAT)}	See page 3.			V	
Turn-On Time	t _{on}		See page 3.			r.
Turn-Off Time	t _{off}	See page 3.			μS	

NOTES


Derate power dissipation linearly 1.33 mW/°C above 25°C.
 Derate power dissipation linearly 2.00 mW/°C above 25°C.
 RMA flux is recommended.

Methanol or Isopropyl alcohols are recommended as cleaning agents.
 Soldering iron tip 1/6" (1.6 mm) from housing.

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS	TERT CONDITIONS
ON-STATE COLLECTO				MAA.	UNITS	TEST CONDITIONS
H22A1		0.45				
		0.15			mA	$I_F = 5 \text{mA}, V_{CE} = 5 \text{V}$
H22A2	I _{C(ON)}	0.30			mA	$I_{\rm F}=5{ m mA},V_{\rm CE}=5{ m V}$
H22A3	I _{C(ON)}	0.60			mA	$I_F = 5mA$, $V_{CE} = 5V$
H22A1	C(ON)	1.0		_	mA	I _F = 20mA, V _{CE} = 5V
H22A2	I _{C(ON)}	2.0			mA	$I_{\rm F} = 20 {\rm mA}, V_{\rm CE} = 5 {\rm V}$
H22A3	I _{C(ON)}	4.0			mA	$I_F = 20mA$, $V_{CE} = 5V$
H22A1	I _{C(ON)}	1.9			mA	$I_{\rm F} = 30 {\rm mA}, V_{\rm CE} = 5 {\rm V}$
H22A2	I _{C(ON)}	3.0	`		mA	$I_{\rm F} = 30 {\rm mA}, V_{\rm CE} = 5 {\rm V}$
H22A3	I _{C(ON)}	5.5			mA	$I_F = 30mA, V_{CE} = 5V$
SATURATION VOLTAG	E					
H22A2	$V_{CE(SAT)}$	—		0.40	v	$I_{\rm F} = 20 {\rm mA}, I_{\rm C} = 1.8 {\rm mA}$
H22A3	$V_{\text{CE}(\text{SAT})}$		_	0.40	V	$I_{\rm F}$ = 20mA, $I_{\rm C}$ = 1.8mA
H22A1				0.40	V	$I_{\rm F} = 30 {\rm mA}, I_{\rm c} = 1.8 {\rm mA}$
Turn-On Time	t _{on}		8		μS	$V_{cc} = 5V, I_{F} = 30 \text{ mA}, R_{L} = 2.5K\Omega$
Turn-Off Time	t _{off}		50		μ5 μS	$V_{cc} = 5V, I_F = 30 \text{ mA}, R_L = 2.5KL$ $V_{cc} = 5V, I_F = 30 \text{ mA}, R_L = 2.5KL$

3-228

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

© 2000 Fairchild Semiconductor Corporation