Voltage ΔBV _{DSS} Breakdow ΔT,j Temperatu DSS Zero Gate GSS Gate-Body On Characteristic Gate Thre ΔT,j Temperatu ΔT,j Static Drai On-Resist On-Resist OFS Forward T Dynamic Charact Case Coss Output Capa Coss Output Capa Crss Reverse T RG Gate Res Switching Charact Case	ource Breakdown own Voltage rature Coefficient ate Voltage Drain ody Leakage stics (Note 2) meshold Voltage rature Coefficient Orain-Source	$\begin{array}{l} V_{\rm GS} = 0 \ V, \\ V_{\rm GS} = 0 \ V, \\ I_{\rm D} = -250 \ \mu {\rm A}, \ {\rm Refe} \\ I_{\rm D} = 250 \ \mu {\rm A}, \ {\rm Refe} \\ V_{\rm DS} = -16 \ V, \\ V_{\rm DS} = 16 \ V, \\ V_{\rm DS} = 16 \ V, \\ V_{\rm GS} = \pm 12 \ V, \\ V_{\rm GS} = \pm 12 \ V, \\ V_{\rm GS} = 0 \ {\rm A}, \ {\rm Refe} \\ I_{\rm D} = -250 \ \mu {\rm A}, \ {\rm Refe} \\ I_{\rm D} = -250 \ \mu {\rm A}, \ {\rm Refe} \\ V_{\rm GS} = -4.5 \ V, \\ V_{\rm GS} = -4.5 \ V, \ {\rm I}_{\rm D} = 0 \\ V_{\rm GS} = 4.5 \ V, \ {\rm I}_{\rm D} = 5 \\ V_{\rm GS} = -5 \ V, \\ V_{\rm DS} = -5 \ V, \\ \end{array}$	$I_{D} = 250 \ \mu \dot{A}$ erenced to 25°C $V_{GS} = 0 \ V$ $V_{GS} = 0 \ V$ $V_{DS} = 0 \ V$ $V_{DS} = 0 \ V$ $V_{DS} = 0 \ V$ $I_{D} = -250 \ \mu A$ $I_{D} = 250 \ \mu A$ erenced to 25°C $I_{D} = -4.2 \ A$ $I_{D} = -3.4 \ A$ $-4.2 \ A \ T_{L} = 125°C$	Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2	-20 20 -0.6 0.6	-14 12 -1.0 1.0 3	-1 1 <u>+100</u> <u>+100</u> -1.5 1.5	V mV/°C μA nA
Voltage ΔBVDSS Breakdow ΔT,j Temperatu DSS Zero Gate GSS Gate-Body On Characteristic Gate Thre ΔT,j Gate Thre ΔT,j Temperatu (GS(th)) Gate Thre ΔT,j Temperatu ΔT,j Temperatu ΔT,j Temperatu ΔT,j Static Draid On-Resist On-Resist ØFS Forward T Dynamic Charact Case Cross Output Case Cross Output Case Cross Gate Res Switching Charact Gate Res Switching Charact Turn-On D	bown Voltage rature Coefficient ate Voltage Drain body Leakage stics (Note 2) mreshold Voltage rature Coefficient brain-Source sistance	$\begin{array}{l} V_{GS} = 0 \ V, \\ I_D = -250 \ \mu\text{A}, \ \text{Refe} \\ I_D = 250 \ \mu\text{A}, \ \text{Refe} \\ V_{DS} = -16 \ V, \\ V_{DS} = 16 \ V, \\ V_{GS} = \pm 12 \ V, \\ V_{GS} = \pm 12 \ V, \\ V_{GS} = V_{GS}, \\ I_D = -250 \ \mu\text{A}, \ \text{Refe} \\ I_D = 250 \ \mu\text{A}, \ \text{Refe} \\ V_{GS} = -4.5 \ V, \\ V_{GS} = -2.5 \ V, \\ V_{GS} = -4.5 \ V, \\ V_{GS} = 2.5 \ V, \\ V_{GS} = 2.5 \ V, \\ V_{GS} = 2.5 \ V, \\ V_{GS} = 4.5 \ V, \\ V_{GS} = 2.5 \ V, \\ V_{GS} = 4.5 \ V, \\ V_{GS} = 2.5 \ V, \\ V_{GS} = 4.5 \ V, \ I_D = 5 \\ \end{array}$	$I_{D} = 250 \ \mu \dot{A}$ erenced to 25°C $V_{GS} = 0 \ V$ $V_{GS} = 0 \ V$ $V_{DS} = 0 \ V$ $V_{DS} = 0 \ V$ $V_{DS} = 0 \ V$ $I_{D} = -250 \ \mu A$ $I_{D} = 250 \ \mu A$ erenced to 25°C $I_{D} = -4.2 \ A$ $I_{D} = -3.4 \ A$ $-4.2 \ A \ T_{L} = 125°C$	Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2	20	12 -1.0 1.0	1 <u>+</u> 100 <u>+</u> 100 -1.5	mV/°C μA nA
ABVDSS ΔTJ Breakdow Temperatu Temperatu SS DSS Zero Gate Current GSS Gate-Body On Characteristic (GS(th)) Gate Thre ATJ VGS(th) Gate Thre ATJ Cos(th) Gate Thre ATJ PSS Forward T On-Resist On-Resist Orss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D	own Voltage rature Coefficient ate Voltage Drain ody Leakage stics (Note 2) mreshold Voltage rature Coefficient Orain-Source istance	$\begin{split} I_{\rm D} &= -250 \; \mu\text{A}, \; \text{Refe} \\ I_{\rm D} &= 250 \; \mu\text{A}, \; \text{Refe} \\ V_{\rm DS} &= -16 \; \text{V}, \\ V_{\rm DS} &= 16 \; \text{V}, \\ V_{\rm GS} &= \pm 12 \; \text{V}, \\ V_{\rm GS} &= \pm 12 \; \text{V}, \\ V_{\rm GS} &= V_{\rm GS}, \\ V_{\rm DS} &= V_{\rm GS}, \\ I_{\rm D} &= -250 \; \mu\text{A}, \; \text{Refe} \\ I_{\rm D} &= 250 \; \mu\text{A}, \; \text{Refe} \\ V_{\rm GS} &= -4.5 \; \text{V}, \\ V_{\rm GS} &= -2.5 \; \text{V}, \\ V_{\rm GS} &= -4.5 \; \text{V}, \\ V_{\rm GS} &= 4.5 \; \text{V}, \\ V_{\rm GS} &= 4.5 \; \text{V}, \\ V_{\rm GS} &= 2.5 \; \text{V}, \\ V_{\rm GS} &= 2.5 \; \text{V}, \\ V_{\rm GS} &= 4.5 \; \text{V}, \\ I_{\rm D} &= 5 \; \text{C}, \\ V_{\rm SS} &= 4.5 \; \text{V}, \\ V_{\rm SS} &= 4.5 \; \text{V}, \\ V_{\rm GS} &= 4.5 \; \text{V}, \\ V_{\rm SS} &= 4.5 \; \text{V}, \\ V$	erenced to 25°C enced to 25°C V _{GS} = 0 V V _{GS} = 0 V V _{DS} = 0 V Enced to 25°C enced to 25°C I _D = -4.2 A I _D = -3.4 A -4.2 A, T ₁ = 125°C	Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2	-0.6	12 -1.0 1.0	1 <u>+</u> 100 <u>+</u> 100 -1.5	μA nA
∆T_j Temperature DSS Zero Gate GSS Gate-Body On Characteristic Gate Thre ∆GS(th) Gate Thre ∆T_j Temperature RDS(on) Static Draid On-Resist On-Resist ØFS Forward T Dynamic Charact Cass Coss Output Cast Crss Reverse T RG Gate Res Switching Charact Turn-On D	rature Coefficient ate Voltage Drain ody Leakage etics (Note 2) mreshold Voltage rature Coefficient orain-Source istance	$\begin{split} & I_{D} = 250 \ \mu\text{A}, \ \text{Refe} \\ & V_{DS} = -16 \ \text{V}, \\ & V_{DS} = 16 \ \text{V}, \\ & V_{GS} = \pm 12 \ \text{V}, \\ & V_{GS} = \pm 12 \ \text{V}, \\ & V_{GS} = V_{GS}, \\ & V_{DS} = V_{GS}, \\ & I_{D} = -250 \ \mu\text{A}, \ \text{Refe} \\ & I_{D} = 250 \ \mu\text{A}, \ \text{Refe} \\ & V_{GS} = -4.5 \ \text{V}, \\ & V_{GS} = -4.5 \ \text{V}, \\ & V_{GS} = -4.5 \ \text{V}, \\ & V_{GS} = 4.5 \ \text{V}, \\ & V_{GS} = 2.5 \ \text{V}, \\ & V_{GS} = 4.5 \ \text{V}, \\ & I_{D} = 5 \ \text{V}, \\ & V_{GS} = 4.5 \ \text$	enced to 25° C $V_{GS} = 0 V$ $V_{GS} = 0 V$ $V_{DS} = 0 V$ $V_{DS} = 0 V$ $V_{DS} = 0 V$ $I_D = -250 \mu A$ $I_D = 250 \mu A$ erenced to 25° C $I_D = -4.2 A$ $I_D = -3.4 A$ $-4.2 A T_1 = 125^{\circ}$ C	Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2		12 -1.0 1.0	1 <u>+</u> 100 <u>+</u> 100 -1.5	μA nA
Diss Zero Gate Current GSS Gate-Body On Characteristic Gate-Body Ørs Gate Thre MGS(th) Gate Thre ΔTJ Temperatu RDS(on) Static Draid Ørs Forward T Dynamic Charact Cass Output Cass Output Cass Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D	ate Voltage Drain ody Leakage stics (Note 2) mreshold Voltage rature Coefficient Drain-Source istance	$\begin{array}{l} V_{DS} = -16 \ V, \\ V_{DS} = 16 \ V, \\ V_{GS} = 12 \ V, \\ V_{GS} = \pm 12 \ V, \\ V_{GS} = 12 \ V, \\ \end{array}$	$V_{GS} = 0 V$ $V_{GS} = 0 V$ $V_{DS} = 0 V$ $V_{DS} = 0 V$ $V_{DS} = 0 V$ $I_{D} = 250 \mu A$ In the prediction of the second to 25°C enced to 25°C enced to 25°C In the second to 25°C In the second to 25°C and the second to 25°C A the secon	Q2 Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2		1.0	1 <u>+</u> 100 <u>+</u> 100 -1.5	nA
Gass Gate-Body On Characteristic Gate Thre /GS(th) Gate Thre \AT_J Temperatu \AT_J Static Draid On-Resist On-Resist \Great Forward T Dynamic Charact Coss Output Ca Coss Coss Output Ca Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D	ody Leakage tics (Note 2) meshold Voltage meshold Voltage rature Coefficient orain-Source istance	$\begin{array}{l} V_{GS} = \pm 12 \text{ V}, \\ \hline V_{DS} = V_{GS}, \\ V_{DS} = V_{GS}, \\ \hline I_D = -250 \ \mu\text{A}, \ \text{Refe} \\ \hline V_{GS} = -4.5 \ \mu\text{A}, \ \text{Refe} \\ \hline V_{GS} = -4.5 \ V, \\ \hline V_{GS} = -4.5 \ V, \\ \hline V_{GS} = 4.5 \ V, \\ \hline V_{GS} = 2.5 \ V, \\ \hline V_{GS} = 2.5 \ V, \\ \hline V_{GS} = 4.5 \ V, \\ \hline V_{GS} = $	$V_{DS} = 0 V$ $I_D = -250 \mu A$ $I_D = 250 \mu A$ erenced to 25°C $I_D = -4.2 A$ $I_D = -3.4 A$ $-4.2 A T_1 = 125°C$	Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2		1.0	<u>+100</u> +100	
On Characteristic √GS(th) Gate Thre ∆T_J Temperatu RDS(on) Static Draid ØFS Forward T Dynamic Charact Cass Coss Output Cast Crss Reverse T RG Gate Res Switching Charact Charact Grund Turn-On D	tics (Note 2) mreshold Voltage mreshold Voltage rature Coefficient brain-Source iistance	$\begin{array}{l} V_{GS} = \pm 12 \text{ V}, \\ \hline V_{DS} = V_{GS}, \\ V_{DS} = V_{GS}, \\ \hline I_D = -250 \ \mu\text{A}, \ \text{Refe} \\ \hline V_{GS} = -4.5 \ \mu\text{A}, \ \text{Refe} \\ \hline V_{GS} = -4.5 \ V, \\ \hline V_{GS} = -4.5 \ V, \\ \hline V_{GS} = 4.5 \ V, \\ \hline V_{GS} = 2.5 \ V, \\ \hline V_{GS} = 2.5 \ V, \\ \hline V_{GS} = 4.5 \ V, \\ \hline V_{GS} = $	$V_{DS} = 0 V$ $I_D = -250 \mu A$ $I_D = 250 \mu A$ erenced to 25°C $I_D = -4.2 A$ $I_D = -3.4 A$ $-4.2 A T_1 = 125°C$	Q2 Q1 Q2 Q1 Q2		1.0	<u>+</u> 100	
^V GS(th) ^Δ T _J ^Δ Temperatu ^Δ On-Resist ^Δ On-Resist ^Δ On-Resist	nreshold Voltage nreshold Voltage rature Coefficient Drain-Source sistance	$\begin{array}{l} V_{\rm DS} = V_{\rm GS}, \\ V_{\rm DS} = V_{\rm GS}, \\ I_{\rm D} = -250 \ \mu {\rm A}, \ {\rm Refe} \\ I_{\rm D} = 250 \ \mu {\rm A}, \ {\rm Refe} \\ V_{\rm GS} = -4.5 \ V, \\ V_{\rm GS} = -4.5 \ V, \\ V_{\rm GS} = 4.5 \ V, \\ V_{\rm GS} = 2.5 \ V, \\ V_{\rm GS} = 2.5 \ V, \\ V_{\rm GS} = 2.5 \ V, \\ V_{\rm GS} = 4.5 \ V, \ I_{\rm D} = 5 \ V, \\ V_{\rm GS} = 4.5 \ V, \ I_{\rm D} = 5 \ V, \\ V_{\rm GS} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 4.5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm S} = 5 \ V, \\ V_{\rm S} = 5 \ V, \ V_{\rm $	$I_D = -250 \ \mu A$ $I_D = 250 \ \mu A$ erenced to 25°C $I_D = -4.2 \ A$ $I_D = -3.4 \ A$ $-4.2 \ A.T_1 = 125°C$	Q1 Q2 Q1 Q2		1.0	-1.5	V
^V GS(th) ^Δ T _J ^Δ Temperatu ^Δ Temperatu	nreshold Voltage nreshold Voltage rature Coefficient Drain-Source sistance	$\begin{array}{l} V_{DS} = V_{GS}, \\ I_{D} = -250 \ \mu\text{A}, \ \text{Refe} \\ I_{D} = 250 \ \mu\text{A}, \ \text{Refe} \\ V_{GS} = -4.5 \ \text{V}, \\ V_{GS} = -2.5 \ \text{V}, \\ V_{GS} = -4.5 \ \text{V}, \ I_{D} = \\ V_{GS} = 4.5 \ \text{V}, \\ V_{GS} = 2.5 \ \text{V}, \\ V_{GS} = 2.5 \ \text{V}, \\ V_{GS} = 4.5 \ \text{V}, \ I_{D} = 5 \end{array}$	$\frac{I_{D} = 250 \ \mu A}{P}$ erenced to 25°C enced to 25°C $I_{D} = -4.2 A$ $I_{D} = -3.4 A$ $-4.2 A T_{J} = 125°C$	Q2 Q1 Q2		1.0		V
WGS(th) Gate Thre ∆T_J Temperatu BDS(on) Static Draid FS Forward T Dynamic Charact Crass Pres Input Capa Crass Output Capa Crass Gate Res Switching Charact Charact Switching Charact Charact Item Construct Charact Turn-On D Turn-On D	arreshold Voltage rature Coefficient Drain-Source sistance	$\begin{array}{l} V_{DS} = V_{GS}, \\ I_{D} = -250 \ \mu\text{A}, \ \text{Refe} \\ I_{D} = 250 \ \mu\text{A}, \ \text{Refe} \\ V_{GS} = -4.5 \ \text{V}, \\ V_{GS} = -2.5 \ \text{V}, \\ V_{GS} = -4.5 \ \text{V}, \ I_{D} = \\ V_{GS} = 4.5 \ \text{V}, \\ V_{GS} = 2.5 \ \text{V}, \\ V_{GS} = 2.5 \ \text{V}, \\ V_{GS} = 4.5 \ \text{V}, \ I_{D} = 5 \end{array}$	$\frac{I_{D} = 250 \ \mu A}{P}$ erenced to 25°C enced to 25°C $I_{D} = -4.2 A$ $I_{D} = -3.4 A$ $-4.2 A T_{J} = 125°C$	Q2 Q1 Q2		1.0		•
ATJ Temperature RDS(on) Static Draid On-Resist IFS Forward T Dynamic Charact Class Input Capa Coss Output Capa Crass Reverse T RG Gate Res Switching Charact Id(on) Turn-On D	rature Coefficient Drain-Source Distance	$\begin{split} I_{\rm D} &= -250 \; \mu \text{A}, \; \text{Refe} \\ I_{\rm D} &= 250 \; \mu \text{A}, \; \text{Refe} \\ V_{\rm GS} &= -4.5 \; \text{V}, \\ V_{\rm GS} &= -2.5 \; \text{V}, \\ V_{\rm GS} &= -4.5 \; \text{V}, \; I_{\rm D} = \\ V_{\rm GS} &= 4.5 \; \text{V}, \\ V_{\rm GS} &= 2.5 \; \text{V}, \\ V_{\rm GS} &= 2.5 \; \text{V}, \\ V_{\rm GS} &= 4.5 \; \text{V}, \; I_{\rm D} = 5 \end{split}$	erenced to 25°C enced to 25°C $I_D = -4.2 \text{ A}$ $I_D = -3.4 \text{ A}$ $-4.2 \text{ A}.T_1 = 125°C$	Q2		3		
Roson Static Drain On-Resist DFS Forward T Dynamic Charact Crass Input Capa Crass Output Ca Crass Reverse T RG Gate Res Switching Charact d(on) Turn-On D	Drain-Source Distance	$ \begin{array}{l} V_{\rm GS} = -4.5 \ V, \\ V_{\rm GS} = -2.5 \ V, \\ V_{\rm GS} = -4.5 \ V, \ I_{\rm D} = \\ \end{array} \\ \hline V_{\rm GS} = 4.5 \ V, \\ V_{\rm GS} = 2.5 \ V, \\ V_{\rm GS} = 4.5 \ V, \ I_{\rm D} = 5 \end{array} $	$I_D = -4.2 \text{ A}$ $I_D = -3.4 \text{ A}$ $-4.2 \text{ A}.T_1 = 125^{\circ}\text{C}$			-		mV/°0
IFS Forward T Dynamic Charact Diss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact Id(on) Turn-On D	istance	$V_{GS} = -2.5 V,$ $V_{GS} = -4.5 V, I_D =$ $V_{GS} = 4.5 V,$ $V_{GS} = 2.5 V,$ $V_{GS} = 4.5 V, I_D = 5$	I _D = -3.4 A -4.2 A.T ₁ =125°C	Q1		-3		
Dynamic Charact Dynamic Charact Cliss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D			–4.2 A.T. =125°C	-		45 65	55 82	mΩ
Dynamic Charact Diss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D	d Transconductance	$V_{GS} = 4.5 V,$ $V_{GS} = 2.5 V,$ $V_{GS} = 4.5 V, I_D = 5$	$I_{\rm D} = 5.9 {\rm A}$			58	73	
Dynamic Charact Diss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D	d Transconductance	V_{GS} = 4.5 V, I_{D} = 5		Q2		23	27	
Dynamic Charact Ciss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D	d Transconductance	$V_{GS} = 4.5 \text{ V}, I_D = 5$				33	39	
Dynamic Charact Ciss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact d(on) Turn-On D			$.9 \text{ A}, \text{ I}_{\text{J}} = 125^{\circ}\text{C}$	Q1		31 13	39	S
Diss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact I(on) Turn-On D		$V_{DS} = 5 V,$		Q2		23		3
Diss Input Capa Coss Output Ca Crss Reverse T RG Gate Res Switching Charact I(on) Turn-On D	acteristics							
Crss Reverse T R _G Gate Res Switching Character d(on)	apacitance	Q1:		Q1		753		pF
Crss Reverse T R _G Gate Res Switching Character d(on)		$V_{DS} = -10 V, V_{GS} =$	= 0 V,	Q2		677		
R _G Gate Res Switching Character Turn-On D	Capacitance	f = 1.0 MHz Q2:		Q1 Q2		163 171		pF
R _G Gate Res Switching Character Gate Res d(on) Turn-On D	e Transfer Capacitance		0 V,	Q2 Q1		83		pF
Switching Charac		f = 1.0 MHz		Q2		91		15
d(on) Turn-On D	esistance	V_{GS} = 15mV,	f = 1.0 MHz	Q1		8		Ω
d(on) Turn-On D				Q2		2.2		
(on) Turn-On D	acteristics							
	n Delay Time	Q1:		Q1		13	23	ns
Iurn-On F	D: T	V _{DD} = -10 V, V _{GS} = -4.5 V,	$I_{\rm D} = -1 {\rm A},$	Q2		11	20	
	n Rise Time	V _{GS} = -4.5 V, Q2:	R_{GEN} = 6 Ω	Q1 Q2		8 16	16 29	ns
d(off) Turn-Off D	ff Delay Time	$V_{DD} = 10 V,$	I _D = 1 A,	Q1		26	42	ns
	-	V _{GS} = 4.5V,	R_{GEN} = 6 Ω	Q2		18	32	
f Turn-Off F	ff Fall Time			Q1		14	52	ns
Qg Total Gate	ate Charge	Q1:		Q2 Q1		7	14 10	nC
•	-	$V_{DS} = -10 V, I_D = -$	4.2 A,V _{GS} = -4.5V	Q2		6	8	ne
Q _{gs} Gate-Sour	ourco Chargo	0.0		Q1		1.6		nC
	buice charge	Q2: V _{DS} = 10 V, I _D = 5	9 A V _{oo} = 4 5 V	Q2 Q1		1.5 1.9		nC
Q _{gd} Gate-Drain	rain Charge		071, VGS 4.0 V	Q1 Q2		1.9		IIC

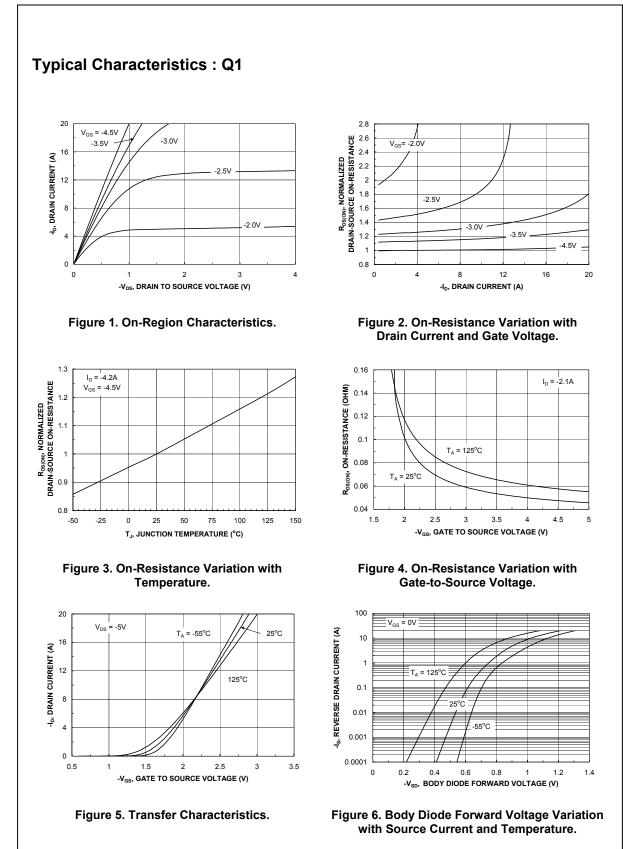
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain So	urco Diodo Charactorist	ics and Maximum Patings					
s S	n-Source Diode Characteristics and Maximum Ratings Maximum Continuous Drain-Source Diode Forward Current					-1.3	Α
5			Q2			1.3	
V _{SD}	Drain-Source Diode Forward	$V_{GS} = 0 V$, $I_{S} = -1.3 A$ (Note 2)	Q1		-0.8	-1.2	V
	Voltage	$V_{GS} = 0 V$, $I_{S} = 1.3 A$ (Note 2)	Q2		0.7	1.2	
	Diode Reverse Recovery	$I_{\rm F} = -4.2 {\rm A}, d_{\rm IF}/d_{\rm t} = 100 {\rm A}/\mu{\rm s}$	Q1		17		nS
t _{rr}	Didde Reverse Recovery	$\Pi_{\rm F} = -4.2\Lambda, \Pi_{\rm F}/\Pi_{\rm f} = 100 \Lambda/\mu_{\rm s}$					
t _{rr}	Time	$I_F = 5.9A, d_{IF}/d_t = 100 A/\mu s$	Q2		15		
t _{rr} Qrr	5				15 6		nC

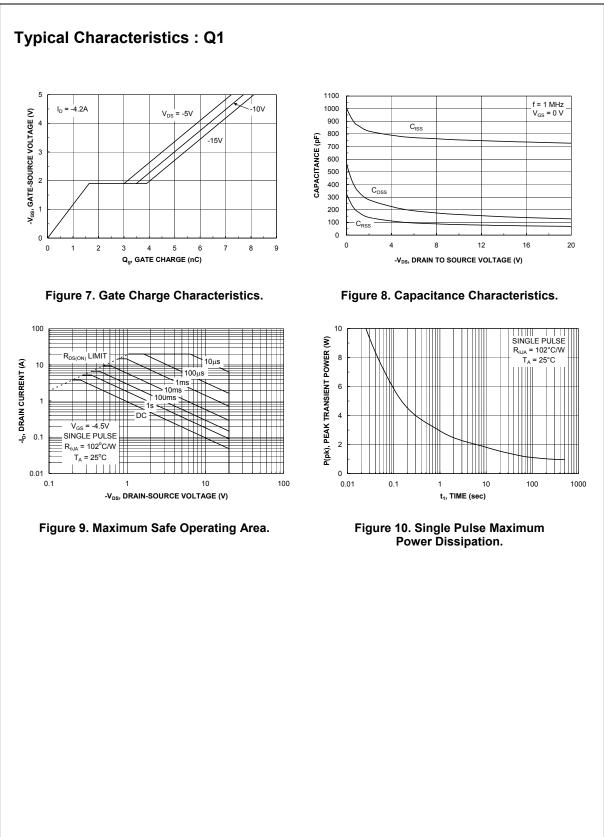
Notes:

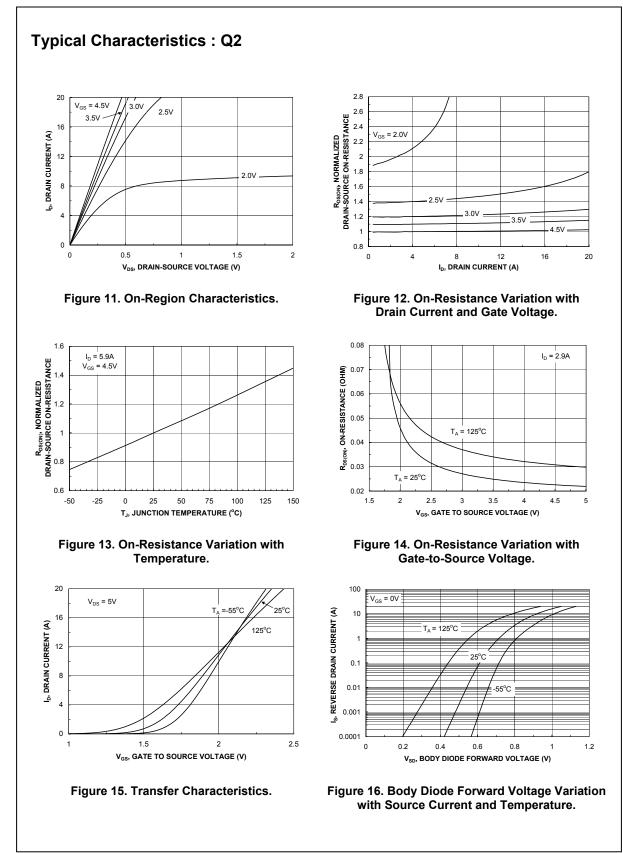
1. $R_{e,IA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{e,IC}$ is guaranteed by design while R_{eCA} is determined by the user's board design.

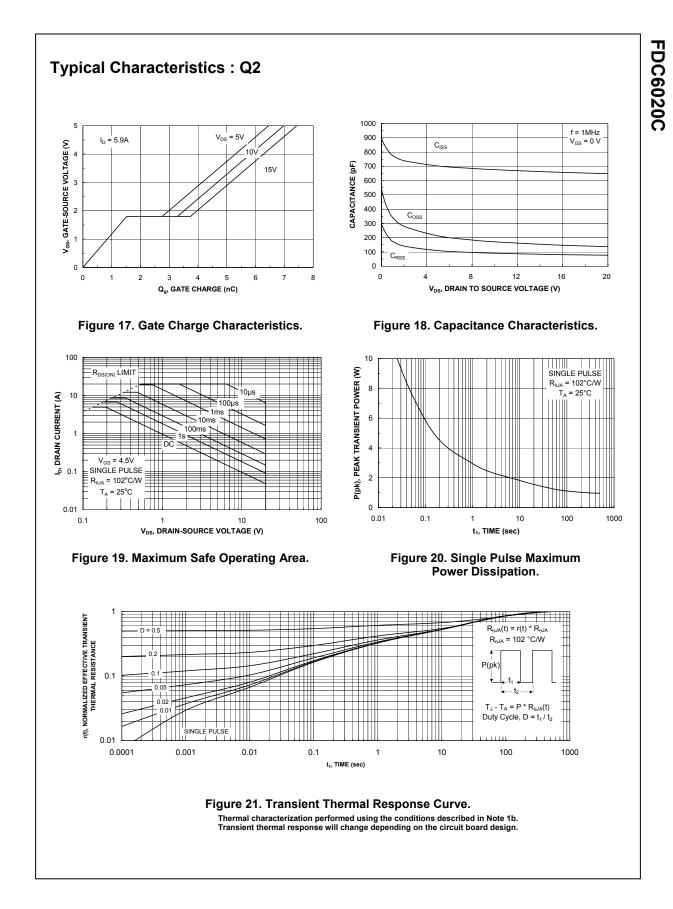
68°C/W when mounted on a 1in² pad of 2 oz copper (Single Operation).

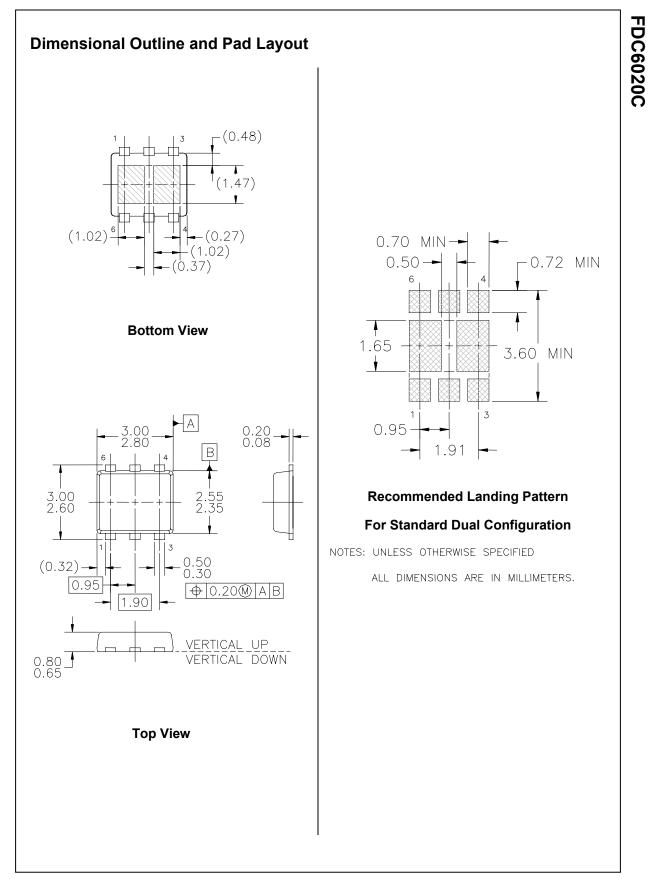
a)




b) 102°C/W when mounted on a minimum pad of 2 oz copper (Single Operation).


Scale 1 : 1 on letter size paper


2. Pulse Test: Pulse Width < 300μ s, Duty Cycle < 2.0%


FDC6020C

FDC6020C RevB (W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	LittleFET™	Power247™	SuperSOT™-6
ActiveArray™	FAST®	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FASTr™	MicroFET™	QFET [®]	SyncFET™
CoolFET™	FRFET™	MicroPak™	QS™	TinyLogic®
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
DOME™	GTO™່	MSX™	Quiet Series [™]	TruTranslation™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	UHC™
E ² CMOS [™]	I²C™	OCX™	RapidConnect™	UltraFET [®]
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	VCX™
FACT™	ISOPLANAR™	OPTOLOGIC[®]	SMART START™	
Across the boar	d. Around the world.™	OPTOPLANAR™	SPM™	
The Power Fran		PACMAN™	Stealth™	
Programmable A		POP™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production