Data Sheet

TABLE OF CONTENTS

2/2007—Rev. 0: Initial Version

Features
Applications
Functional Block Diagram
General Description
Revision History
Specifications
Dual Supply3
Single Supply4
Absolute Maximum Ratings
REVISION HISTORY
9/2017—Rev. A to Rev. B
Change to Features Section
3/2009—Rev. 0 to Rev. A
Changes to Power Requirements, IDD, Digital Inputs = 5 V
Parameter, Table 1
Changes to t_{ON} Parameter and Power Requirements, I_{DD} , Digital
Inputs = 5 V Parameter, Table 2

Thermal Resistance	
ESD Caution	6
Pin Configuration and Function Descriptions	
Terminology	8
Typical Performance Characteristics	g
Test Circuits	13
Outline Dimensions	15
Ordering Guide	15

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

	Temperature					
Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments	
ANALOG SWITCH						
Analog Signal Range			V_{DD} to V_{SS}	V		
On Resistance, Ron					$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V},$	
					$V_s = \pm 10 \text{ V}, I_s = -1 \text{ mA (see Figure 23)}$	
	120			Ωtyp		
	200	240	270	Ω max		
On Resistance Match					$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$	
Between Channels, ΔR _{ON}						
	2.5			Ω typ		
	6	10	12	Ω max		
On Resistance Flatness, R _{FLAT(ON)}					$V_S = -5 \text{ V/0 V/+5 V; } I_S = -1 \text{ mA}$	
	20			Ωtyp		
	64	76	83	Ω max		
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	
Source Off Leakage, I _s (Off)					$V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V} \text{ (see Figure 24)}$	
3	±0.002			nA typ	, , , , , , , , , , , , , , , , , , , ,	
	±0.1	±0.6	±1	nA max		
Drain Off Leakage, I _D (Off)					$V_S = \pm 10 \text{ V}, V_D = \pm 10 \text{ V} \text{ (see Figure 24)}$	
Drain on Leanage, is (on)	±0.002			nA typ	vs =10 v, vs =10 v (see rigate 2 t)	
	±0.1	±0.6	±1	nA max		
Channel On Leakage, ID, IS (On)		±0.0	±1	IIIIII	$V_S = V_D = \pm 10 \text{ V}$ (see Figure 25)	
Charmer On Leakage, 1D, 15 (OH)	±0.01			nA typ	Vs = VD = ±10 V (see Figure 25)	
	±0.01	±0.6	±1	nA max		
DIGITAL INPUTS	10.2	10.0	Δ1	IIA IIIax		
			2.0	V min		
Input High Voltage, V _{INH}			2.0			
Input Low Voltage, V _{INL}			0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005				$V_{IN} = V_{INL} \text{ or } V_{INH}$	
	0.005		. 0.1	μA typ		
			±0.1	μA max		
Digital Input Capacitance, C _{IN}	2.5			pF typ		
DYNAMIC CHARACTERISTICS ¹						
ton					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$	
					(see Figure 26)	
	130			ns typ		
	170	210	240	ns max		
toff					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 10 V$	
					(see Figure 26)	
	85			ns typ		
	105	130	140	ns max		
Break-Before-Make Time Delay					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{51} = V_{52} = 10 V$	
(ADG1223 Only), t _{BBM}	100				(see Figure 27)	
	40		10	ns typ		
			10	ns min	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Charge Injection, Q _{INJ}	0.1			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$ (see Figure 28	
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$	
					(see Figure 29)	

		Temperatu	ıre			
Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments	
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$ (see Figure 30)	
Total Harmonic Distortion + Noise, THD + N	0.15			% typ	$R_L = 10 \text{ k}\Omega$, 5 V rms, $f = 20 \text{ Hz}$ to 20 kHz	
–3 dB Bandwidth	960			MHz typ	$R_L = 50 \Omega$, $C_L = 1 pF$ (see Figure 31)	
C _s (Off)					$V_S = 0 \text{ V, } f = 1 \text{ MHz}$	
	1.7			pF typ		
	2.2			pF max		
C _D (Off)					$V_S = 0 V, f = 1 MHz$	
	1.7			pF typ		
	2.2			pF max		
C_D , C_S (On)					$V_S = 0 V, f = 1 MHz$	
	3			pF typ		
	4			pF max		
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$	
I _{DD}						
	0.001			μA typ	Digital inputs = 0 V or V _{DD}	
			1.0	μA max	Digital inputs = 0 V or V _{DD}	
	140			μA typ	Digital inputs = 5 V	
			190	μA max	Digital inputs = 5 V	
Iss					Digital inputs = 0 V , 5 V , or V_{DD}	
	0.001			μA typ		
			1.0	μA max		
V_{DD}/V_{SS}			±5/±16.5	V min/max	GND = 0 V	

 $^{^{\}rm 1}$ Guaranteed by design, not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V ± 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

		Temperature				
Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments	
ANALOG SWITCH						
Analog Signal Range			$0V$ to V_{DD}	V		
On Resistance, R _{ON}					$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}, V_S = 0 \text{ V} \text{ to } 10 \text{ V}, I_S = -1 \text{ mA (see Figure 23)}$	
	300			Ω typ		
	475	567	625	Ω max		
On Resistance Match Between Channels, ΔR _{ON}					$V_S = 0 \text{ V to } 10 \text{ V}, I_S = -1 \text{ mA}$	
	4.5			Ω typ		
	16	26	27	Ω max		
On Resistance Flatness, R _{FLAT(ON)}	60			Ω typ	$V_S = 3 \text{ V}/6 \text{ V}/9 \text{ V}, I_S = -1 \text{ mA}$	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$	
Source Off Leakage, Is (Off)					$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}$	
					(see Figure 24)	
	±0.002			nA typ		
	±0.1	±0.6	±1	nA max		

		Temperatu	ıre			
Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments	
Drain Off Leakage, I _D (Off)					$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}$ (see Figure 24)	
	±0.002			nA typ		
	±0.1	±0.6	±1	nA max		
Channel On Leakage, ID, Is (On)					$V_S = V_D = 1 \text{ V or } 10 \text{ V (see Figure 25)}$	
_	±0.01			nA typ		
	±0.2	±0.6	±1	nA max		
DIGITAL INPUTS						
Input High Voltage, V _{INH}			2.0	V min		
Input Low Voltage, V _{INL}			0.8	V max		
Input Current, I _{INL} or I _{INH}					$V_{IN} = V_{INL} \text{ or } V_{INH}$	
	0.001			μA typ		
			±0.1	μA max		
Digital Input Capacitance, C _{IN}	3			pF typ		
DYNAMIC CHARACTERISTICS ¹						
ton					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$ (see Figure 26)	
	190			ns typ		
	250	300	345	ns max		
t _{OFF}					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$ (see Figure 26)	
	120			ns typ		
	150	190	225	ns max		
Break-Before-Make Time Delay (ADG1223 Only), t _{BBM}					$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{51} = V_{52} = 8 V$ (see Figure 27)	
	70			ns typ		
			10	ns min		
Charge Injection, Q _{INJ}	0.2			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}$ (see Figure 28)	
Off Isolation	75			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$ (see Figure 29)	
Channel-to-Channel Crosstalk	90			dB typ	$R_L = 50 \Omega$, $C_L = 1 pF$, $f = 1 MHz$ (see Figure 30)	
–3 dB Bandwidth Cs (Off)	550			MHz typ	$R_L = 50 \Omega$, $C_L = 1 pF$ (see Figure 31) $V_S = 6 V$, $f = 1 MHz$	
	2.1			pF typ		
	2.6			pF max		
C _D (Off)					$V_S = 6 V, f = 1 MHz$	
	2.1			pF typ		
	2.6			pF max		
C_D , C_S (On)					$V_S = 6 V, f = 1 MHz$	
	3.8			pF typ		
	4.6			pF max		
POWER REQUIREMENTS					V _{DD} = 13.2 V	
I _{DD}	0.001			μA typ	Digital inputs = 0 V or V_{DD}	
			1.0	μA max	Digital inputs = 0 V or V_{DD}	
	140			μA typ	Digital inputs = 5 V	
			190	μA max	Digital inputs = 5 V	
V_{DD}			5/16.5	V min/max	$V_{SS} = 0 \text{ V, GND} = 0 \text{ V}$	

 $^{^{\}rm 1}$ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

1 4010 51	
Parameter	Rating
V _{DD} to V _{SS}	35 V
V_{DD} to GND	–0.3 V to +25 V
V_{SS} to GND	+0.3 V to −25 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND $- 0.3 \text{ V}$ to $\text{V}_{DD} + 0.3 \text{ V}$ or 30 mA, whichever occurs first
Peak Current, S or D	100 mA (pulsed at 1 ms, 10% duty cycle max)
Continuous Current per Channel, S or D	30 mA
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150°C
Reflow Soldering Peak Temperature, Pb free	260°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 4. Thermal Resistance

Package Type	θја	θιс	Unit
10-Lead MSOP (4-Layer Board)	206	44	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

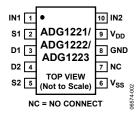


Figure 3. 10-Lead MSOP Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	S1	Source Terminal. Can be an input or output.
3	D1	Drain Terminal. Can be an input or output.
4	D2	Drain Terminal. Can be an input or output.
5	S2	Source Terminal. Can be an input or output.
6	V _{SS}	Most Negative Power Supply Potential.
7	NC	No Connect.
8	GND	Ground (0 V) Reference.
9	V_{DD}	Most Positive Power Supply Potential.
10	IN2	Logic Control Input.

Table 6. ADG1221/ADG1222 Truth Table

ADG1221 INx	ADG1222 INx	Switch Condition
1	0	On
0	1	Off

Table 7. ADG1223 Truth Table

ADG1223 INx	Switch 1 Condition	Switch 2 Condition
0	Off	On
1	On	Off

TERMINOLOGY

 I_{DD}

The positive supply current.

 \mathbf{I}_{SS}

The negative supply current.

 $V_D(V_S)$

The analog voltage on Terminal D and Terminal S.

Ron

The ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off)

The source leakage current with the switch off.

I_D (Off)

The drain leakage current with the switch off.

 I_D , I_S (On)

The channel leakage current with the switch on.

 V_{INL}

The maximum input voltage for Logic 0.

 \mathbf{V}_{INH}

The minimum input voltage for Logic 1.

 $I_{\rm INL} \left(I_{\rm INH} \right)$

The input current of the digital input.

Cs (Off)

The off switch source capacitance, measured with reference to ground.

C_D (Off)

The off switch drain capacitance, measured with reference to ground.

CD, Cs (On)

The on switch capacitance, measured with reference to ground.

 C_{IN}

The digital input capacitance.

ON

The delay between applying the digital control input and the output switching on (see Figure 26).

 t_{OFF}

The delay between applying the digital control input and the output switching off (see Figure 26).

 t_{BBM}

Off time or on time measured between the 90% points of both switches, when switching from one address state to another (ADG1223 only).

Q_{INJ} (Charge Injection)

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

-3 dB Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

THD + N (Total Harmonic Noise Plus Distortion)

The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

ACPSRR (AC Power Supply Rejection Ratio)

Measures the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

TYPICAL PERFORMANCE CHARACTERISTICS

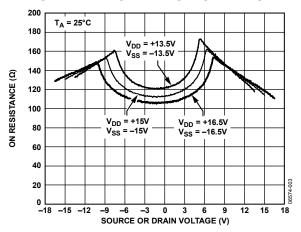


Figure 4. On Resistance as a Function of $V_S(V_D)$, Dual Supply

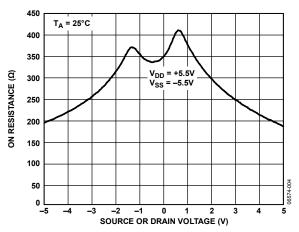


Figure 5. On Resistance as a Function of $V_S(V_D)$, Dual Supply

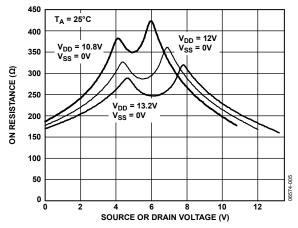


Figure 6. On Resistance as a Function of $V_S(V_D)$, Single Supply

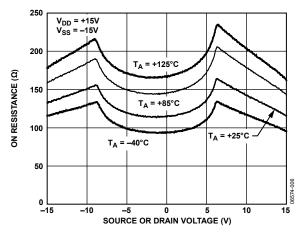


Figure 7. On Resistance as a Function of $V_S(V_D)$ for Different Temperatures, Dual Supply

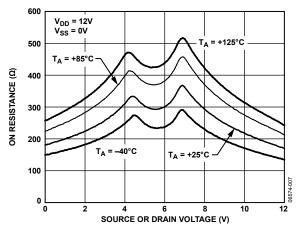


Figure 8. On Resistance as a Function of $V_S(V_D)$ for Different Temperatures, Single Supply

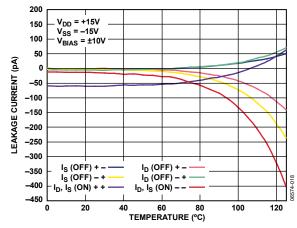


Figure 9. Leakage Current as a Function of Temperature, Dual Supply



Figure 10. Leakage Current as a Function of Temperature, Dual Supply

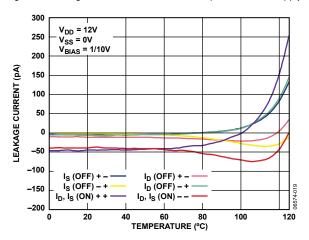


Figure 11. Leakage Current as a Function of Temperature, Single Supply

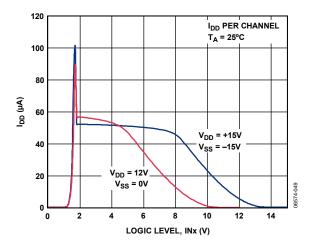


Figure 12. IDD vs. Logic Level

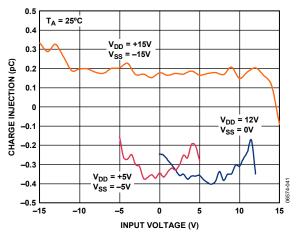


Figure 13. Charge Injection vs. Input Voltage

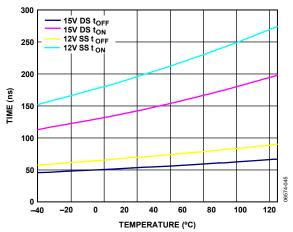


Figure 14. t_{ON}/t_{OFF} vs. Temperature

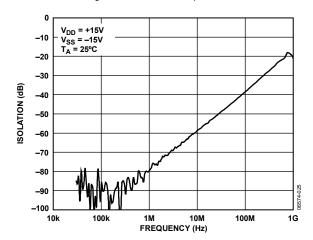


Figure 15. Off Isolation vs. Frequency

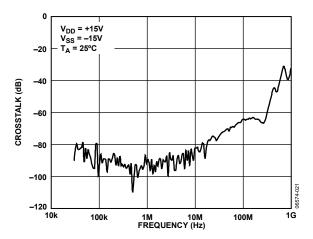


Figure 16. Crosstalk vs. Frequency

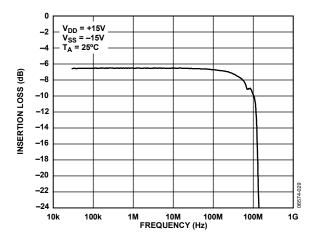


Figure 17. Insertion Loss vs. Frequency

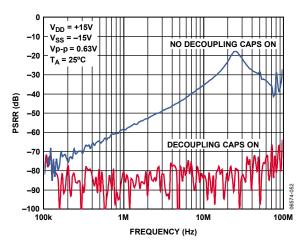


Figure 18. ACPSRR vs. Frequency

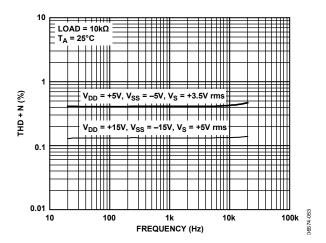


Figure 19. THD + N vs. Frequency

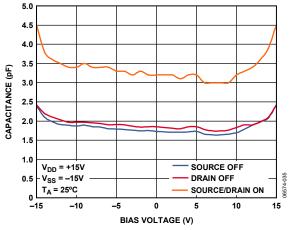


Figure 20. Capacitance vs. Bias Voltage

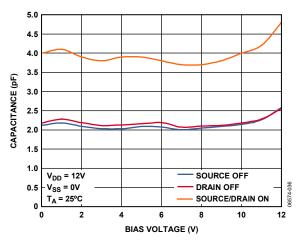


Figure 21. Capacitance vs. Bias Voltage

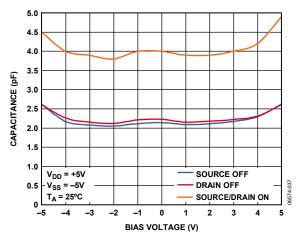


Figure 22. Capacitance vs. Bias Voltage

TEST CIRCUITS

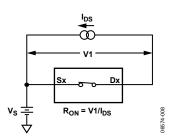


Figure 23. Test Circuit 1—On Resistance

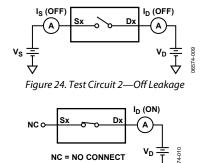


Figure 25. Test Circuit 3—On Leakage

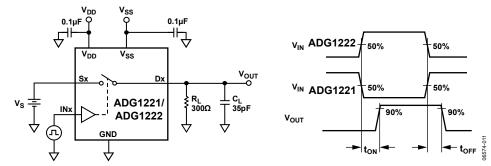


Figure 26. Test Circuit 4—Switching Times

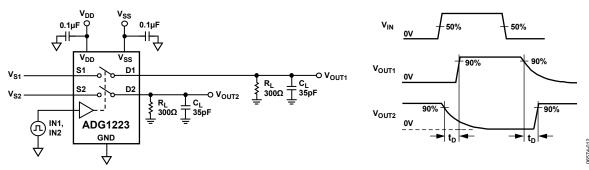


Figure 27. Test Circuit 5—Break-Before-Make Time Delay

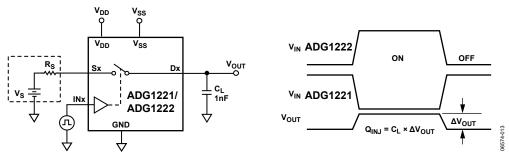


Figure 28. Test Circuit 6—Charge Injection

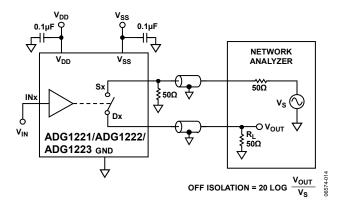


Figure 29. Test Circuit 7—Off Isolation

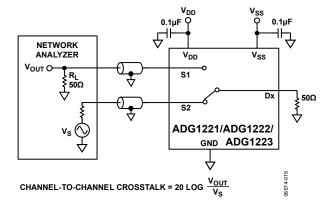


Figure 30. Test Circuit 8—Channel-to-Channel Crosstalk

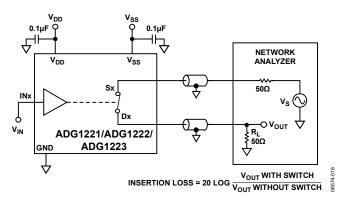


Figure 31. Test Circuit 9—Bandwidth

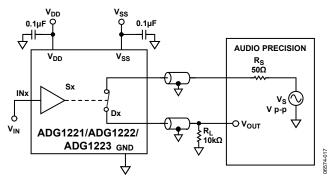
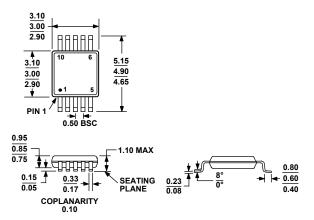



Figure 32. Test Circuit 10—Total Harmonic Distortion + Noise

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-187-BA

Figure 33. 10-Lead Mini Small Outline Package [MSOP] (RM-10) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG1221BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S27
ADG1221BRMZ-REEL7	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S27
ADG1222BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S28
ADG1222BRMZ-REEL7	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S28
ADG1223BRMZ	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S2J
ADG1223BRMZ-REEL7	-40°C to +125°C	10-Lead Mini Small Outline Package (MSOP)	RM-10	S2J

 $^{^{1}}$ Z = Pb-free part.

NOTES