Contents

1	Block	diagram and pin description6
2	Electr	rical specification
	2.1	Absolute maximum ratings
	2.2	Thermal data
	2.3	Main electrical characteristics 10
	2.4	Waveforms
	2.5	Electrical characteristics curves
3	Prote	ctions
	3.1	Power limitation
	3.2	Thermal shutdown
	3.3	Current limitation
	3.4	Negative voltage clamp
4	Applie	cation information
	4.1	GND protection network against reverse battery
		4.1.1 Diode (DGND) in the ground line
	4.2	Immunity against transient electrical disturbances
	4.3	MCU I/Os protection
	4.4	Multisense - analog current sense
		4.4.1 Principle of Multisense signal generation
		4.4.2 T_{CASE} and V_{CC} monitor
		4.4.3 Short to VCC and OFF-state open-load detection
	4.5	Maximum demagnetization energy ($V_{CC} = 16 \text{ V}$)
5	Packa	age and PCB thermal data 40
	5.1	PowerSSO-16 thermal data 40
6	Packa	age information
	6.1	ECOPACK [®]
	6.2	PowerSSO-16 package information 43

7	Order codes	45
8	Revision history	46

List of tables

Table 1.	Pin functions
Table 1.	Suggested connections for unused and not connected pins
Table 2. Table 3.	
	Absolute maximum ratings
Table 4.	Thermal data9
Table 5.	Power section
Table 6.	Switching (VCC = 13 V; -40°C < T_i < 150°C, unless otherwise specified)
Table 7.	Logic Inputs (7 V < V_{CC} < 28 V; -40°C < T _i < 150°C)
Table 8.	Protections (7 V < V_{CC} < 18 V; -40°C < T_i < 150°C)
Table 9.	MultiSense (7 V < V_{CC} < 18 V; -40°C < T_i < 150°C)
Table 10.	Truth table
Table 11.	MultiSense multiplexer addressing
Table 12.	ISO 7637-2 - electrical transient conduction along supply line
Table 13.	MultiSense pin levels in off-state
Table 14.	PCB properties
Table 15.	Thermal parameters
Table 16.	PowerSSO-16 mechanical data
Table 17.	Device summary
Table 18.	Document revision history

List of figures

Figure 1.	Block diagram	. 6
Figure 2.	Configuration diagram (top view)	. 7
Figure 3.	Current and voltage conventions	. 8
Figure 4.	I _{OUT} /I _{SENSE} versus I _{OUT}	18
Figure 5.	Current sense precision vs. I _{OUT}	
Figure 6.	Switching time and Pulse skew	19
Figure 7.	MultiSense timings (current sense mode)	19
Figure 8.	Multisense timings (chip temperature and VCC sense mode)	20
Figure 9.	T _{DSKON}	20
Figure 10.	Latch functionality - behavior in hard short circuit condition (T _{AMB} << T _{TSD})	23
Figure 11.	Latch functionality - behavior in hard short circuit condition	23
Figure 12.	Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)	24
Figure 13.	Standby mode activation	24
Figure 14.	Standby state diagram	25
Figure 15.	OFF-state output current	26
Figure 16.	Standby current	26
Figure 17.	I _{GND(ON)} vs. I _{out}	26
Figure 18.	Logic Input high level voltage	
Figure 19.	Logic Input low level voltage	
Figure 20.	High level logic input current.	
Figure 21.	Low level logic input current	27
Figure 22.	Logic Input hysteresis voltage	
Figure 23.	FaultRST Input clamp voltage	
Figure 24.	Undervoltage shutdown	
Figure 25.	On-state resistance vs. T _{case}	
Figure 26.	On-state resistance vs. V _{CC}	
Figure 27.	Turn-on voltage slope	
Figure 28.	Turn-off voltage slope	
Figure 29.	Won vs. T _{case}	
Figure 30.	Woff vs. T _{case}	
Figure 31.	I _{LIMH} vs. T _{case}	
Figure 32.	OFF-state open-load voltage detection threshold.	28
Figure 33.	V _{sense} clamp vs. T _{case}	
Figure 34.	V _{senseh} vs. T _{case}	
Figure 35.	Application diagram	
Figure 36.	Simplified internal structure	
Figure 37.	Multisense and diagnostic – block diagram	
Figure 38.	Multisense block diagram	
Figure 39.	Analogue HSD – open-load detection in off-state	
Figure 40.	Open-load / short to VCC condition	
Figure 41.	GND voltage shift	
Figure 42.	Maximum turn off current versus inductance	
Figure 43.	PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 44.	PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 45.	PowerSSO-16 R _{thi-amb} vs PCB copper area in open box free air condition	
Figure 46.	PowerSSO-16 thermal impedance junction ambient single pulse	
Figure 47.	Thermal fitting model for PowerSSO-16.	
Figure 48.	PowerSSO-16 package dimensions	
-		

1 Block diagram and pin description

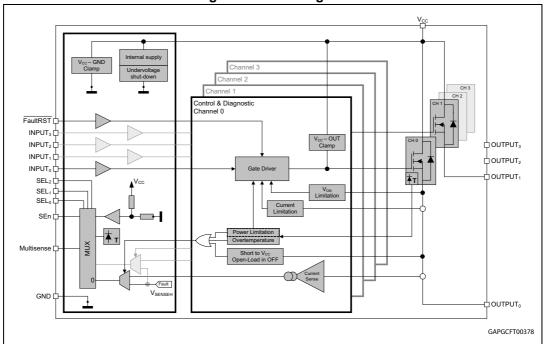
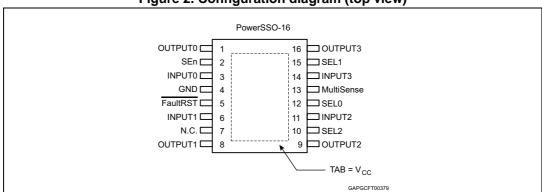
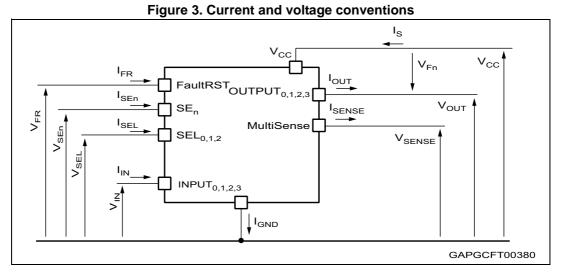



Figure 1. Block diagram

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection.
OUTPUT _{0,1,2,3}	Power output.
GND	Ground connection. Must be reverse battery protected by an external diode / resistor network.
INPUT _{0,1,2,3}	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.
SEL _{0,1,2}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer.
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.

Figure 2. Configuration diagram (top view)


Table 2. Suggested connections for	unused and not connected pins
------------------------------------	-------------------------------

Connection / pin	MultiSense	N.C.	Output	Input	SEn, SELxFaultRST
Floating	Not allowed	X ⁽¹⁾	Х	Х	Х
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor

1. X: do not care.

2 Electrical specification

Note:

 $V_{Fn} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	38	v
-V _{CC}	Reverse DC supply voltage	0.3	v
V _{CCPK}	Maximum transient supply voltage (ISO 16750-2:2010 Test B clamped to 40V; R _L = 4 Ω)	40	V
V _{CCJS}	Maximum jump start voltage for single pulse short circuit protection	28	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	OUTPUT _{0,1,2,3} DC output current	Internally limited	А
-I _{OUT}	Reverse DC output current	4	
I _{IN}	INPUT _{0,1,2,3} DC input current		
I _{SEn}	SEn DC input current	-1 to 10	mA
I _{SEL}	I _{SEL} SEL _{0,1,2} DC input current		ШA
I _{FR}	FaultRST DC input current		
V _{FR}	FaultRST DC input voltage	7.5	V

Table 3.	Absolute	maximum	ratings
----------	----------	---------	---------

8/48

Symbol	Parameter	Value	Unit
I _{SENSE}	MultiSense pin DC output current ($V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$)	10	mA
	MultiSense pin DC output current in reverse ($V_{CC} < 0 V$)	-20	
E _{MAX}	Maximum switching energy (single pulse) (T _{DEMAG} = 0.4 ms; T _{jstart} = 150 °C)	10	mJ
	Electrostatic discharge (JEDEC 22A-114F)		
	– INPUT _{0,1,2,3}	4000	V
V _{ESD}	– MultiSense	2000	V
	– SEn, SEL _{0,1,2} , FaultRST	4000	V
	– OUTPUT _{0,1,2,3}	4000	V
	- V _{CC}	4000	V
V_{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Тj	Junction operating temperature	-40 to 150	ംറ
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) $^{(1)(2)}$	7.7	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) $^{(1)(3)}$	61	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾⁽²⁾	26.8	

1. One channel ON.

2. Device mounted on four-layers 2s2p PCB.

3. Device mounted on two-layers 2s0p PCB with 2 cm^2 heatsink copper trace.

2.3 Main electrical characteristics

7 V < V_{CC} < 28 V; -40°C < T_j < 150°C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4	13	28	
V _{USD}	Undervoltage shutdown				4	1
V _{USDReset}	Undervoltage shutdown reset				5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		
		I _{OUT} = 1 A; T _j = 25°C		140		
R _{ON}	On-state resistance ⁽¹⁾	I _{OUT} = 1 A; T _j = 150°C			280	mΩ
		$I_{OUT} = 1 \text{ A}; V_{CC} = 4 \text{ V}; T_j = 25^{\circ}\text{C}$			210	
V.	Clamp voltage	$I_{S} = 20 \text{ mA}; T_{j} = -40^{\circ}\text{C}$	38			V
V _{clamp}	Clamp voltage	I _S = 20 mA; 25°C < T _j < 150°C	41	46	52	ľ
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V}; \text{ T}_{j} = 25^{\circ}\text{C}$			0.5	μΑ
I _{STBY}	I_{STBY} Supply current in standby at V _{CC} = 13 V ⁽²⁾				0.5	μA
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEn} = 0 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V};$ T _j = 125°C			3	μA
t _{D_STBY}	Standby mode blanking time	$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEL0,1,2} = 0 \text{ V};$ $V_{SEn} = 5 \text{ V to 0 V}$	60	300	550	μs
I _{S(ON)}	Supply current	$V_{CC} = 13 \text{ V};$ $V_{SEn} = V_{FR} = V_{SEL0,1,2} = 0 \text{ V};$ $V_{IN0,1,2,3} = 5 \text{ V}; I_{OUT0,1,2,3} = 0 \text{ A}$		10	16	mA
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.				20	mA
1.60	, Off-state output current at	$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V;$ $T_j = 25^{\circ}C$	0	0.01	0.5	μA
I _{L(off)}	V _{CC} = 13 V ⁽¹⁾	$V_{IN} = V_{OUT} = 0 V; V_{CC} = 13 V;$ $T_j = 125^{\circ}C$	0		3	μ
V _F	Output - V _{CC} diode voltage ⁽¹⁾	I _{OUT} = -1 A; T _j = 150°C			0.7	V

Т	b	ما	5	D,	014	or	60	ction	
	aIJ	ie	э.		Uw	er	Se	CLION	

1. For each channel.

2. PowerMOS leakage included.

3. Parameter specified by design; not subject to production test.

					-	
Symbol Parameter		Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} ⁽¹⁾	Turn-on delay time at T _j = 25°C	R _I = 13 Ω	10	70	120	
t _{d(off)} ⁽¹⁾	Turn-off delay time at T _j = 25°C	$K_{L} = 13.32$	10	40	100	μs
$(dV_{OUT}/dt)_{on}^{(1)}$	Turn-on voltage slope at $T_j = 25^{\circ}C$	R _I = 13 Ω	0.1	0.29	0.7	V/µs
$(dV_{OUT}/dt)_{off}^{(1)}$	Turn-off voltage slope at $T_j = 25^{\circ}C$	$K_{L} = 13.32$	0.1	0.35	0.7	v/µs
W _{ON}	Switching energy losses at turn-on (t_{won})	R _L = 13 Ω	_	0.15	0.2 ⁽²⁾	mJ
W _{OFF}	Switching energy losses at turn-off (t_{woff})	R _L = 13 Ω	_	0.1	0.18 ⁽²⁾	mJ
t _{SKEW} ⁽¹⁾	Differential Pulse skew (t _{PHL} - t _{PLH})	R _L = 13 Ω	-90	-40	10	μs

Table 6. Switching (V_{CC} = 13 V; -40°C < T_j < 150°C, unless otherwise specified)

1. See Figure 6: Switching time and Pulse skew.

2. Parameter guaranteed by design and characterization; not subject to production test.

	Table 7. Logic Inputs (7		T 1	1		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
INPUT _{0,1,2,3}	characteristics					
V _{IL}	Input low level voltage				0.9	V
Ι _{ΙL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{I(hyst)}	Input hysteresis voltage		0.2			V
V		l _{IN} = 1 mA	5.3		7.2	v
V _{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		v
FaultRST c	haracteristics					
V _{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA
V _{FR(hyst)}	Input hysteresis voltage		0.2			V
M	Input domp voltage	I _{IN} = 1 mA	5.3		7.5	v
V _{FRCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		v
SEL _{0,1,2} ch	aracteristics (7 V < V _{CC} < 18 V)				
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{SELH}	Input high level voltage		2.1			V
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μA

Table 7. Logic Inputs (7 V < V_{CC} < 28 V; -40°C < T_i < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V	
Varia	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
V _{SELCL}	input clamp voltage	I _{IN} = -1 mA		-0.7		v	
SEn charact	eristics (7 V < V _{CC} < 18 V)						
V _{SEnL}	Input low level voltage				0.9	V	
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μA	
V _{SEnH}	Input high level voltage		2.1			V	
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μA	
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V	
. Maria		I _{IN} = 1 mA	5.3		7.2	V	
V _{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		v	

Table 7. Logic Inputs (7 V < V_{CC} < 28 V; -40°C < T_i < 150°C) (continued)

Table 8. Protections (7 V < V_{CC} < 18 V; -40°C < T_i < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	DC abort singuit surrant	V _{CC} = 13 V	8	12	16	
ILIMH	DC short circuit current	$4 \text{ V} < \text{V}_{\text{CC}} < 18 \text{ V}^{(1)}$			16	А
I _{LIML}	Short circuit current during thermal cycling	V _{CC} = 13 V; T _R < T _j < T _{TSD}		4		
T _{TSD}	Shutdown temperature		150	175	200	
Τ _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7		
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C
T _{HYST}	Thermal hysteresis (T _{TSD} - T _R) ⁽¹⁾			7		
ΔT_{J_SD}	Dynamic temperature	$T_j = -40^{\circ}C; V_{CC} = 13 V$		60		К
t _{LATCH_RST} ⁽¹⁾	Fault reset time for output unlatch	$V_{FR} = 5 V \text{ to } 0 V;$ $V_{SEn} = 5 V$ $- \text{ E.g. Ch}_{0}$ $V_{IN0} = 5 V;$ $V_{SEL0,1,2} = 0 V$	3	10	20	μs
M	Turn-off output voltage	I _{OUT} = 1 A; L = 6 mH; T _j = -40°C	V _{CC} - 38			V
V _{DEMAG}	clamp	I _{OUT} = 1 A; L = 6 mH; T _j = 25°C to 150°C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.07 A		20		mV

1. Parameter guaranteed by design and characterization; not subject to production test.

Table 9. MultiSense (7 V < V _{CC} < 18 V; -40°C < T _j < 150°C)									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
Ma	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V			
$V_{SENSE_{CL}}$	voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		v			
Current Sense cha	aracteristics								
K _{OL}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	330						
$\mathrm{dK_{cal}}/\mathrm{K_{cal}}^{(1)(2)}$	Current sense ratio drift at calibration point	$ I_{OUT} = 0.01 \text{ A to } 0.025 \text{ A}; \\ I_{cal} = 17.5 \text{ mA}; \text{ V}_{SENSE} = 0.5 \\ \text{V}; \text{ V}_{SEn} = 5 \text{ V} $	-30		30	%			
K _{LED}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.025 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	330	580	830				
$dK_{LED}/K_{LED}^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.025 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%			
K ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.070 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	375	550	720				
dK ₀ /K ₀ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.070 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20		20	%			
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 0.15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	365	520	675				
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-15		15	%			
K ₂	I _{OUT} /I _{SENSE}	$I_{OUT} = 0.7 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{SEn} = 5 \text{ V}$	380	475	570				
$dK_2/K_2^{(1)(2)}$	Current sense ratio drift	$I_{OUT} = 0.7 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{SEn} = 5 \text{ V}$	-10		10	%			
K ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 2 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	420	470	520				
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 2 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	%			

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_i < 150°C)

Symbol	Parameter	$\frac{CC}{CC} < 10^{\circ} , -40^{\circ} C < 1_{j} < 150^{\circ}$ Test conditions	Min.	Тур.	Max.	Unit
		MultiSense disabled: V _{SEn} = 0 V	0		0.5	
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	
I _{SENSE0}	MultiSense leakage current	$\label{eq:second} \begin{split} & \text{MultiSense enabled:} \\ & \text{V}_{\text{SEn}} = 5 \text{ V All channels ON;} \\ & \text{I}_{\text{OUTX}} = 0 \text{ A;} \\ & \text{Ch}_{\text{X}} \text{ diagnostic selected:} \\ & - \text{ E.g. Ch}_0\text{:} \\ & \text{V}_{\text{IN0,1,2,3}} = 5 \text{ V;} \\ & \text{V}_{\text{SEL0}} = 0 \text{ V;} \text{ V}_{\text{SEL1,2}} = 0 \text{ V;} \\ & \text{I}_{\text{OUT0}} = 0 \text{ A;} \text{ I}_{\text{OUT1,2,3}} = 1 \text{ A} \end{split}$	0		2	μΑ
		$\label{eq:second} \begin{split} & \text{MultiSense enabled:} \\ & \text{V}_{\text{SEn}} = 5 \text{ V; } \text{Ch}_{X} \text{ OFF;} \\ & \text{Ch}_{X} \text{ diagnostic selected:} \\ & - \text{ E.g. Ch}_{0}\text{:} \\ & \text{V}_{\text{IN0}} = 0 \text{ V; } \text{V}_{\text{IN1,2,3}} = 0 \text{ V;} \\ & \text{V}_{\text{SEL0}} = 5 \text{V; } \text{V}_{\text{SEL1,2}} = 0 \text{ V;} \\ & \text{I}_{\text{OUT1,2,3}} = 1 \text{ A} \end{split}$	0		2	
V _{OUT_MSD} ⁽¹⁾	Output Voltage for MultiSense shutdown			5		V
V _{SENSE_SAT}	Multisense saturation voltage		5			V
I _{SENSE_SAT} ⁽¹⁾	CS saturation current		4			mA
I _{OUT_SAT} ⁽¹⁾	Output saturation current		2.2			A
OFF-state diagnos	stic					
V _{OL}	OFF-state open-load voltage detection threshold	$V_{SEn} = 5 \text{ V}; \text{ Ch}_X \text{ OFF}; \text{ Ch}_X$ diagnostic selected - E.g: Ch ₀ $V_{IN0} = 0 \text{ V}; \text{ V}_{SEL0,1,2} = 0 \text{ V}$	2	3	4	V
I _{L(off2)}	OFF-state output sink current		-100		-15	μA

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
^t dstkon	OFF-state diagnostic delay time from falling edge of INPUT (see <i>Figure 9</i>)	$V_{SEn} = 5 \text{ V}; \text{ Ch}_X \text{ ON to OFF}$ transition; Ch _X diagnostic selected: - E.g: Ch ₀ V _{IN0} = 5 V to 0 V; V _{SEL0,1,2} = 0 V; V _{OUT0} = 4 V; I _{OUT0} = 0 A	100	350	700	μs
t _{D_OL_V}	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn				60	μs
t _{D_VOL}	OFF-state diagnostic delay time from rising edge of V _{OUT}	$\begin{split} & V_{SEn} = 5 \; V; \; Ch_{X} \; OFF; \\ & Ch_{X} \; diagnostic \; selected; \\ & - E.g: \; Ch_{0} \\ & V_{IN0} = 0 \; V; \; V_{SEL0,1,2} = 0 \; V; \\ & V_{OUT0} = 0 \; V \; to \; 4 \; V \end{split}$		5	30	μs
Chip temperature	analog feedback					
		$ \begin{split} & V_{SEn} = 5 \; V; \; V_{SEL0} = 0 \; V; \\ & V_{SEL1,2} = 5 \; V; \\ & V_{IN0,1,2,3} = 0 \; V; \\ & R_{SENSE} = 1 \; k\Omega; \; T_j = -40^\circ C \end{split} $	2.325	2.41	2.495	V
V _{SENSE_TC}	MultiSense output voltage proportional to chip temperature all channels off	$ \begin{split} & V_{SEn} = 5 \ V; \ V_{SEL0} = 0 \ V; \\ & V_{SEL1,2} = 5 \ V; \\ & V_{IN0,1,2,3} = 0 \ V; \\ & R_{SENSE} = 1 \ k\Omega; \ T_j = 25^\circ C \end{split} $	1.985	2.07	2.155	V
		$ \begin{split} & V_{SEn} = 5 \; V; \; V_{SEL0} = 0 \; V; \\ & V_{SEL1,2} = 5 \; V; \\ & V_{IN0,1,2,3} = 0 \; V; \\ & R_{SENSE} = 1 \; k\Omega; \; T_j = 125^\circ C \end{split} $	1.435	1.52	1.605	V
$dV_{SENSE_{TC}}/dT^{(1)}$	Temperature coefficient	T _j = -40 °C to 150 °C		-5.5		mV/K
Transfer function	V _{SENSE_TC} ($T) = V_{SENSE_{TC}} (T_0) + dV_{SENSE}$	_{=_TC} / d	T * (T	- T ₀)	
V _{CC} supply voltage	e analog feedback					
V _{SENSE_VCC}	MultiSense output voltage proportional to V_{CC} supply voltage		3.16	3.23	3.3	V
Transfer function ⁽³⁾		$V_{SENSE_VCC} = V_{CC} / 4$				

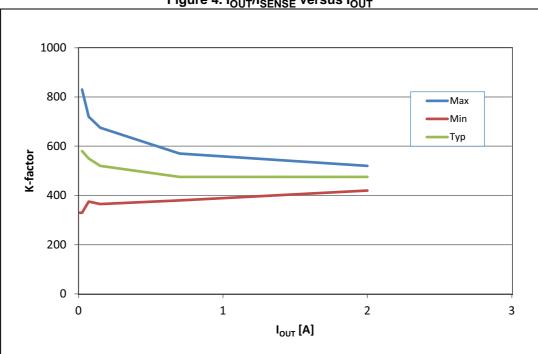
Table 9. MultiSense (7 V < V _{CC} < 18 V; -40°C < T _i < 150°C) (continued)	

Parameter	Test conditions	Min.	Тур.	Max.	Unit
feedback (see Table 10)				
MultiSense output voltage in fault condition	$\begin{split} & V_{CC} = 13 \text{ V}; \text{ R}_{SENSE} = 1 \text{ k}\Omega \\ & - \text{ E.g. Ch}_0 \text{ in open load} \\ & V_{IN0} = 0 \text{ V}; \text{ V}_{SEn} = 5 \text{ V}; \\ & V_{SEL0,1,2} = 0 \text{ V}; \\ & I_{OUT0} = 0 \text{ A}; \text{ V}_{OUT0} = 4 \text{ V} \end{split}$	5		6.6	V
MultiSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA
ngs (current sense mod	le - see <i>Figure 7</i>)				
Current sense settling time from rising edge of SEn	$V_{\text{IN}} = 5 \text{ V}; V_{\text{SEn}} = 0 \text{ V to } 5 \text{ V};$ $R_{\text{SENSE}} = 1 \text{ k}\Omega; R_{\text{L}} = 13 \Omega$			60	μs
Current sense disable delay time from falling edge of SEn	V_{IN} = 5 V; V_{SEn} = 0 V to 5 V; R_{SENSE} = 1 k Ω ; R_L = 13 Ω		5	20	μs
Current sense settling time from rising edge of INPUT			100	250	μs
Current sense settling time from rising edge of I_{OUT} (dynamic response to a step change of I_{OUT})	$\label{eq:VIN} \begin{array}{l} V_{IN} = 5 \ V; \ V_{SEn} = 5 \ V; \\ R_{SENSE} = 1 \ k\Omega; \\ I_{SENSE} = 90 \ \% \ of \ I_{SENSEMAX}; \\ R_L = 13 \ \Omega \end{array}$			100	μs
Current sense turn- off delay time from falling edge of INPUT	V_{IN} = 5 V to 0 V; V_{SEn} = 5 V; R _{SENSE} = 1 kΩ; R _L = 13 Ω		50	250	μs
ngs (chip temperature s	sense mode - see <i>Figure 8</i>)				
V _{SENSE_TC} settling time from rising edge of SEn				60	μs
V _{SENSE_TC} disable delay time from falling edge of SEn				20	μs
ngs (V _{CC} voltage sense	mode - see Figure 8)				
V _{SENSE_VCC} settling time from rising edge of SEn				60	μs
V _{SENSE_VCC} disable delay time from falling edge of SEn	$V_{SEn} = 5 V \text{ to } 0 V;$ $V_{SEL0,1,2} = 5 V;$ $R_{SENSE} = 1 k\Omega$			20	μs
	feedback (see Table 10 MultiSense output voltage in fault condition MultiSense output current in fault condition multiSense output current in fault condition musterse settling time from rising edge of SEn Current sense settling time from rising edge of SEn Current sense settling time from rising edge of INPUT Current sense settling time from rising edge of INPUT Current sense settling time from rising edge of IOUT (dynamic response to a step change of IOUT) Current sense turn- off delay time from falling edge of INPUT of delay time from falling edge of SEn VSENSE_TC Settling time from rising edge of SEn VSENSE_TC disable delay time from falling edge of SEn VSENSE_TC disable delay time from falling edge of SEn VSENSE_VCC settling time from rising edge of SEn VSENSE_VCC disable delay time from	feedback (see Table 10)MultiSense output voltage in fault condition $V_{CC} = 13 \text{ V}; \text{ R}_{SENSE} = 1 \Omega \Omega$ - E.g: Ch ₀ in open load $V_{IN0} = 0 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V};$ $I_{OUT0} = 0 \text{ A}; V_{OUT0} = 4 \text{ V}$ MultiSense output current in fault condition $V_{CC} = 13 \text{ V}; V_{SENSE} = 5 \text{ V}$ orgs (current sense settling time from rising edge of SEn $V_{IN} = 5 \text{ V}; V_{SEn} = 0 \text{ V to } 5 \text{ V};$ $R_{SENSE} = 1 \Omega; R_{L} = 13 \Omega$ Current sense disable delay time from falling edge of SEn $V_{IN} = 5 \text{ V}; V_{SEn} = 0 \text{ V to } 5 \text{ V};$ $R_{SENSE} = 1 \Omega; R_{L} = 13 \Omega$ Current sense settling time from rising edge of INPUT $V_{IN} = 0 \text{ V to } 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 R\Omega; R_{L} = 13 \Omega$ Current sense settling time from rising edge of INPUT $V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 R\Omega; R_{L} = 13 \Omega$ Current sense settling time from rising edge of IOUT (dynamic response to a step change of IOUT) $V_{IN} = 5 \text{ V to } 0 \text{ V}; V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 R\Omega; R_{L} = 13 \Omega$ Current sense turn- off delay time from falling edge of SEn $V_{IN} = 5 \text{ V to } 0 \text{ V}; V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 R\Omega; R_{L} = 13 \Omega$ VSENSE_TC settling time from rising edge of SEn $V_{SEn} = 0 \text{ V to } 5 \text{ V};$ $V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 R\Omega$ VSENSE_VCC settling time from rising edge of SEn $V_{SEn} = 5 \text{ V to } 0 \text{ V};$ $V_{SEL0} = 0 \text{ V}; V_{SEL0} = 5 \text{ V};$ $R_{SENSE} = 1 R\Omega$ VSE	feedback (see Table 10)MultiSense output voltage in fault condition $V_{CC} = 13 \text{ V}; \text{ R}_{SENSE} = 1 \text{ k}\Omega$ $- \text{ E.g. } Ch_0 \text{ in open load}$ $V_{NO} = 0 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V};$ $V_{OUTO} = 4 \text{ V}$ MultiSense output current in fault condition $V_{CC} = 13 \text{ V}; V_{SENSE} = 5 \text{ V}$ $V_{CC} = 13 \text{ V}; V_{SENSE} = 5 \text{ V}$ 7multiSense output current in fault condition $V_{CC} = 13 \text{ V}; V_{SENSE} = 5 \text{ V}$ $V_{CC} = 13 \text{ V}; V_{SENSE} = 5 \text{ V}$ 7multiSense output current sense modition $V_{IN} = 5 \text{ V}; V_{SEn} = 0 \text{ V to 5 V};$ $R_{SENSE} = 1 \text{ k}\Omega; \text{ R}_L = 13 \Omega$ Current sense disable delay time from falling edge of SEn $V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega; \text{ R}_L = 13 \Omega$ Current sense settling time from rising edge of IOPUT (dynamic response to a step change of IOUT) $V_{IN} = 5 \text{ V}; \text{ V}_{SEn} = 5 \text{ V};$ $R_{SENSE} = 90 \% of I_{SENSEMAX};$ $R_L = 13 \Omega$ Current sense turn- off delay time from falling edge of Sen $V_{IN} = 5 \text{ V to 0 V}; V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega; \text{ R}_L = 13 \Omega$ The temperature sense mode - see Figure 8) V_{SENSE_TC} settling $V_{SEL0} = 0 \text{ V; V}_{SEL1,2} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$ V_SENSE_TC disable delay time from falling edge of SEn $V_{SEn} = 0 \text{ V to 5 V};$ $V_{SEL0} = 0 \text{ V; V}_{SEL1,2} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ K}\Omega$ USV_SENSE_VCC settling time from rising edge of SEn $V_{SEN} = 0 \text{ V to 5 V};$ $V_{SEL0} = 0 \text{ V; V}_{SEL1,2} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ K}\Omega$ USV_SENSE_VCC disable time fr	feedback (see Table 10)feedback (see Table 10)MultiSense output voltage in fault condition $V_{CC} = 13 \text{ V}; \text{ R}_{SENSE} = 1 \Omega$ $- E.g: Ch_0 in open loadV_{IN0} = 0 $	feedback (see Table 10)MultiSense output voltage in fault condition $V_{CC} = 13 \ V; \ R_{SENSE} = 1 \ K\Omega$ $- E.g: Ch_0 in open loadV_{INC} = 5 \ V; \ V_{SEL0,1,2} = 0 \ V; \ V_{SEL0,1,2} = 13 \ \Omega60Current sense mode - see Figure 7)Current sense mode - see Figure 7)Current sensedisable delay time fromrising edge of SEnV_{IN} = 5 \ V; \ V_{SEn} = 0 \ V \ to 5 \ V; \ R_{SENSE} = 1 \ R\Omega; \ R_L = 13 \ \Omega60Current sensedisable delay time fromrising edge of INPUTV_{IN} = 5 \ V; \ V_{SEn} = 0 \ V \ to 5 \ V; \ R_{SENSE} = 1 \ R\Omega; \ R_L = 13 \ \Omega100Current sensesettling time fromrising edge of INPUTVIN = 5 V; V_{SEn} = 5 \ V; \ R_{SENSE} = 1 \ R\Omega; \ R_L = 13 \ \OmegaCurrent sensesettling time fromrising edge of IOUTrising edge of IOUT(dynamic responseto a step change oflout in efformfalling edge ofINPUTV_{IN} = 5 \ V \ to 0 \ V; \ V_{SEn} = 5 \ V; \ R_{SENSE} = 1 \ R\Omega; \ R_L = 13 \ \Omega100Current sense turn-off delay time fromfalling edge of SEnVIN = 5 V to 0 V; V_{SEn} = 5 \ V; \ R_{SENSE} = 1 \ R\Omega; \$

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_i < 150°C) (continued)

16/48

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
MultiSense timing	MultiSense timings (multiplexer transition times) ⁽⁴⁾						
t _{D_XtoY}	$\begin{array}{c} \text{MultiSense transition} \\ \text{delay from } \text{Ch}_X \text{ to} \\ \text{Ch}_Y \end{array}$	$ \begin{split} & V_{IN0} = 5 \; V; \; V_{IN1} = 5 \; V; \\ & V_{SEn} = 5 \; V; \; V_{SEL1,2} = 0 \; V; \\ & V_{SEL0} = 0 \; V \; to \; 5 \; V; \\ & I_{OUT0} = 0 \; A; \; I_{OUT1} = 1 A; \\ & R_{SENSE} = 1 \; k\Omega \end{split} $			20	μs	
t _{D_CStoTC}	MultiSense transition delay from current sense to T _C sense				60	μs	
t _{D_TCto} CS	MultiSense transition delay fromT _C sense to current sense	$\begin{split} V_{IN0} &= 5 \ V; \ V_{SEn} = 5 \ V; \\ V_{SEL0,1} &= 0 \ V; \\ V_{SEL2} &= 5 \ V \ to \ 0 \ V; \\ I_{OUT0} &= 0.5 \ A; \\ R_{SENSE} &= 1 \ k\Omega \end{split}$			20	μs	
t _{D_CStoVCC}	MultiSense transition delay from current sense to V _{CC} sense				60	μs	
t _{D_VCCto} Cs	MultiSense transition delay from V _{CC} sense to current sense to	$\begin{split} V_{IN3} &= 5 \ V; \ V_{SEn} = 5 \ V; \\ V_{SEL0,1} &= 5 \ V; \\ V_{SEL2} &= 5 \ V \ to \ 0 \ V; \\ I_{OUT3} &= 0.5 \ A; \\ R_{SENSE} &= 1 \ k\Omega \end{split}$			20	μs	
^t D_TCtoVCC	MultiSense transition delay from T_{C} sense to V_{CC} sense				20	μs	
^t D_VCCtoTC	MultiSense transition delay from V_{CC} sense to T_{C} sense				20	μs	
^t D_CStoVSENSEH	$\begin{array}{l} \mbox{MultiSense transition} \\ \mbox{delay from stable} \\ \mbox{current sense on} \\ \mbox{Ch}_X \mbox{ to } V_{\mbox{SENSEH}} \mbox{on} \\ \mbox{Ch}_Y \end{array}$	$\begin{split} V_{IN0} &= 5 \text{ V}; \ V_{IN1} &= 0 \text{ V}; \\ V_{SEn} &= 5 \text{ V}; \ V_{SEL1,2} &= 0 \text{ V}; \\ V_{SEL0} &= 0 \text{ V} \text{ to } 5 \text{ V}; \\ I_{OUT0} &= 1 \text{ A}; \ V_{OUT1} &= 4 \text{ V}; \\ R_{SENSE} &= 1 \Omega \end{split}$			20	μs	


1. Parameter specified by design; not subject to production test.

2. All values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

3. $\,\,V_{CC}$ sensing and T_{C} sensing are referred to GND potential.

4. Transition delays are measured up to +/- 10% of final conditions.

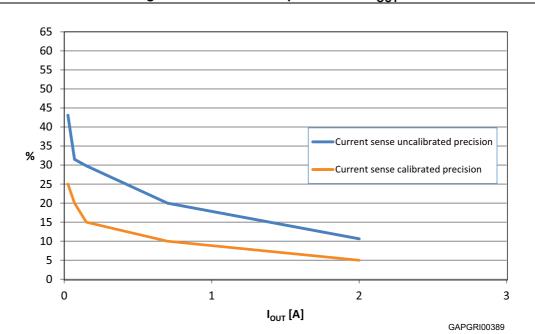
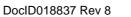
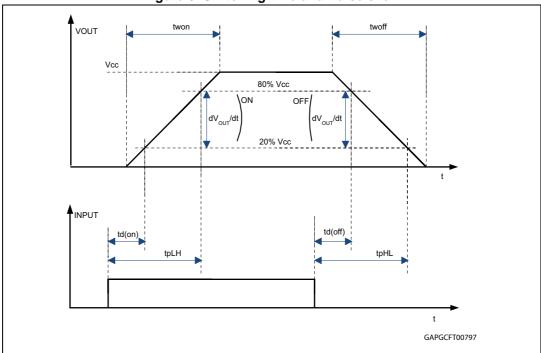
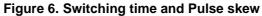





Figure 5. Current sense precision vs. I_{OUT}

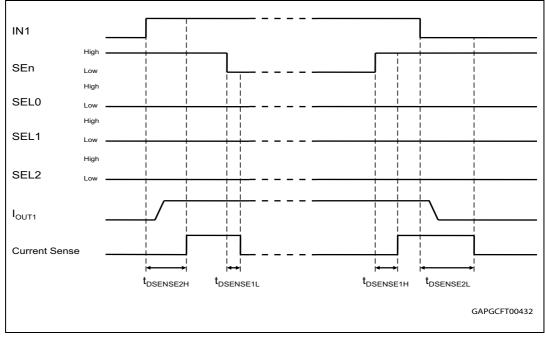


Figure 7. MultiSense timings (current sense mode)

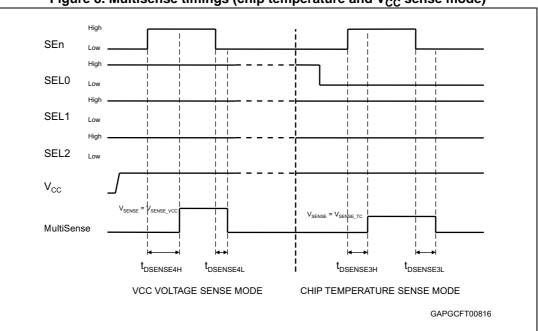
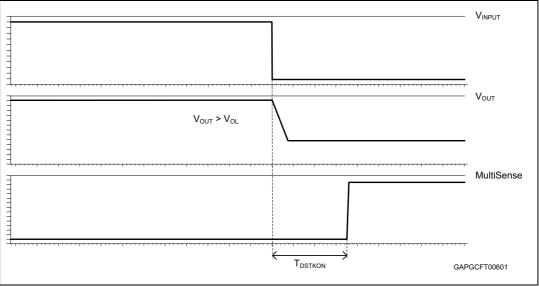



Figure 8. Multisense timings (chip temperature and V_{CC} sense mode)

Figure 9. T_{DSKON}

						0		
Mode	Conditions	IN _X	FR	SEn	SEL_X	OUT _X	MultiSense	Comments
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption
		L	Х			L		
Normal	Nominal load connected;	н	L		Refer to Table 11		Refer to Table 11	Outputs configured for auto-restart
T _j < 150°C	н	Н					Outputs configured for Latch-off	
	Overload or	L	Х			L		
Overload	short to GND	н	L	Refer to <i>Table 11</i>	Н	Refer to Table 11	Output cycles with temperature hysteresis	
	$\Delta T_j > \Delta T_{j_SD}$	Н	Н			L		Output latches-off
Under- voltage	V _{CC} < V _{USD} (falling)	x	х	х	х	L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)
OFF-state	Short to V _{CC}	L	Х	Ref	er to	Н	Refer to	
diagnostics	Open-load	L	Х	Tab	Table 11		Table 11	External pull-up
Negative output voltage	Inductive loads turn-off	L	х	-	er to le 11	< 0 V	Refer to <i>Table 11</i>	

Table 10. Truth table

				мих		MultiSens	e output	
SEn	SEL ₂	SEL ₁	SEL ₀	channel	Nomal mode	Overload	OFF-state diag. ⁽¹⁾	Negative output
L	Х	Х	Х		Hi-Z			
н	L	L	L	Channel 0 diagnostic	I _{SENSE} = 1/K * I _{OUT0}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z
н	L	L	н	Channel 1 diagnostic	I _{SENSE} = 1/K * I _{OUT1}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z
н	L	Н	L	Channel 2 diagnostic	I _{SENSE} = 1/K * I _{OUT2}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z
н	L	Н	н	Channel 3 diagnostic	I _{SENSE} = 1/K * I _{OUT3}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z
Н	Н	L	L	T _{CHIP} Sense	e V _{SENSE} = V _{SENSE_TC}			
Н	Н	L	Н	V _{CC} Sense	V _{SENSE} = V _{SENSE_VCC}			
Н	Н	Н	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}			
Н	Н	Н	Н	V _{CC} Sense		V _{SENSE} = V _S	SENSE_VCC	

Table 11. MultiSense multiplexer addressing

1. In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; $IN_0 = 0$; $OUT_0 = L$ (latched); MUX channel = channel 0 diagnostic; Mutisense = 0 Example 2: FR = 1; $IN_0 = 0$; $OUT_0 = latched$, $V_{OUT0} > V_{OL}$; MUX channel = channel 0 diagnostic; Mutisense = V_{SENSEH}

2.4 Waveforms

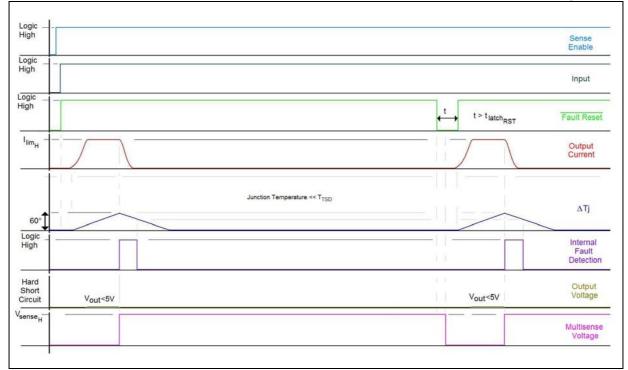
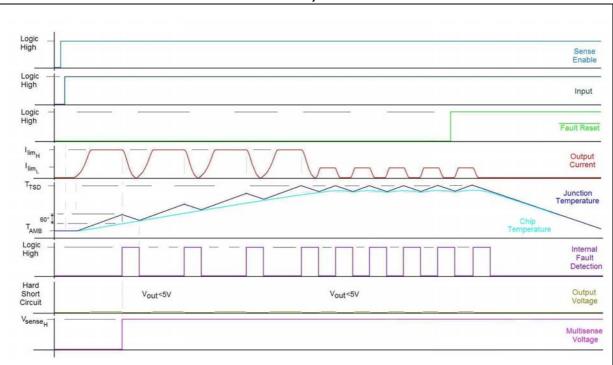
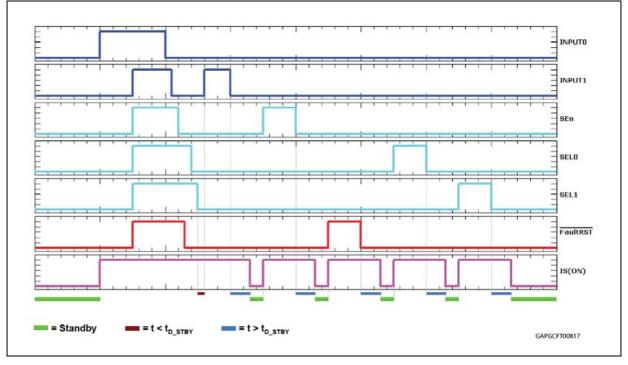



Figure 10. Latch functionality - behavior in hard short circuit condition ($T_{AMB} \ll T_{TSD}$)

Figure 11. Latch functionality - behavior in hard short circuit condition



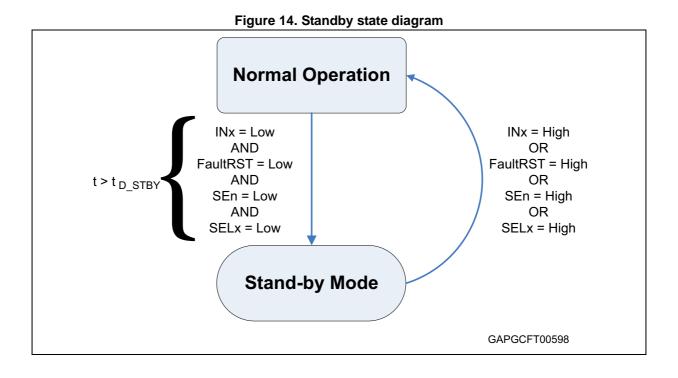
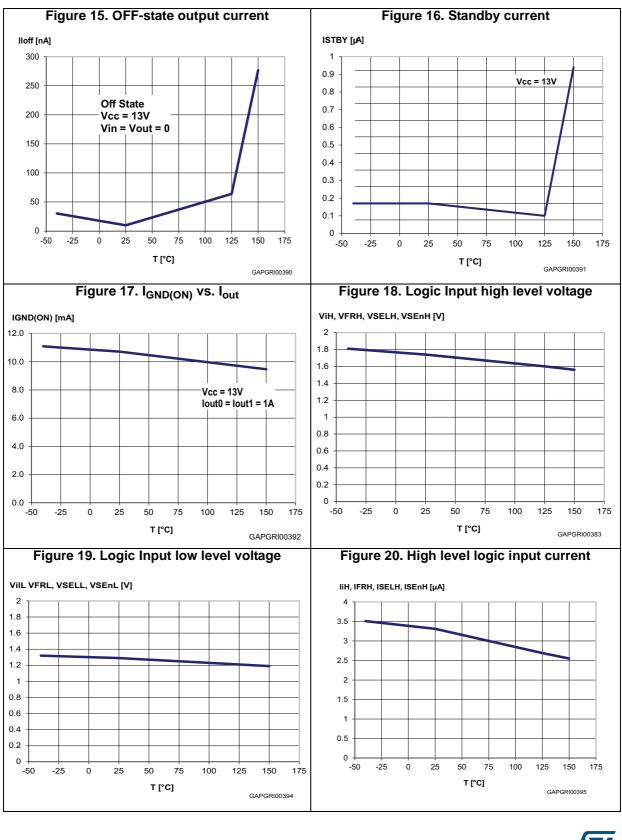
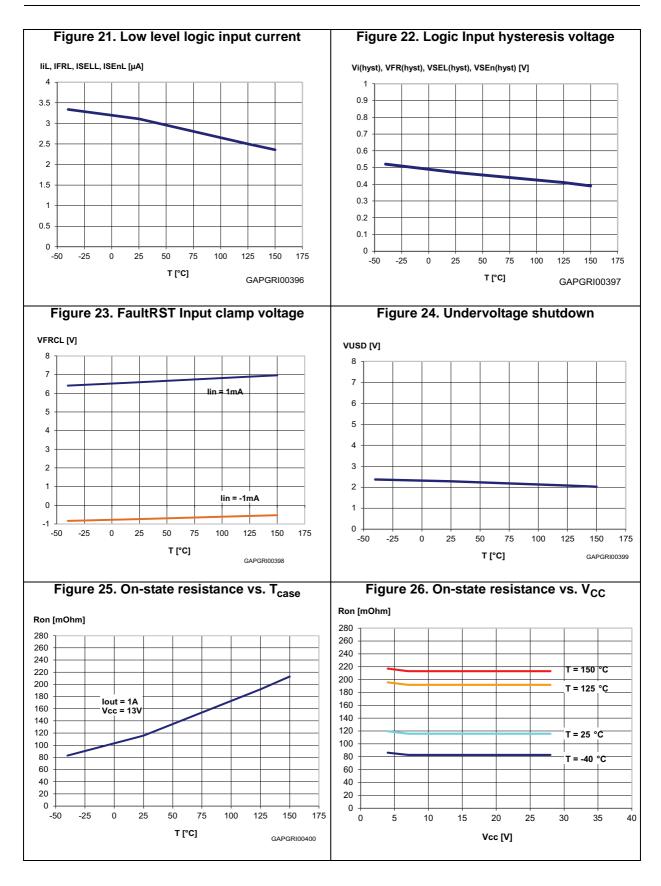


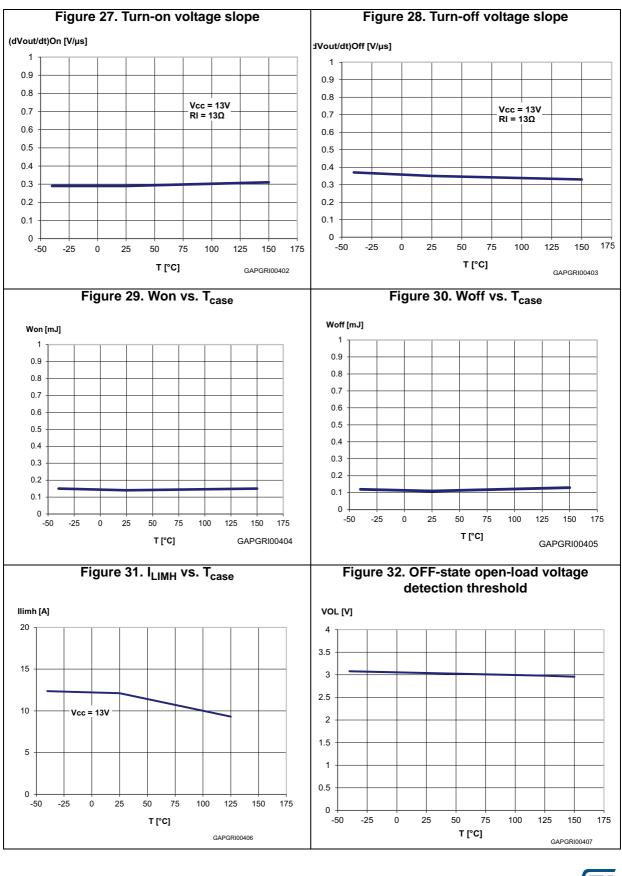
Figure 12. Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)

Figure 13. Standby mode activation

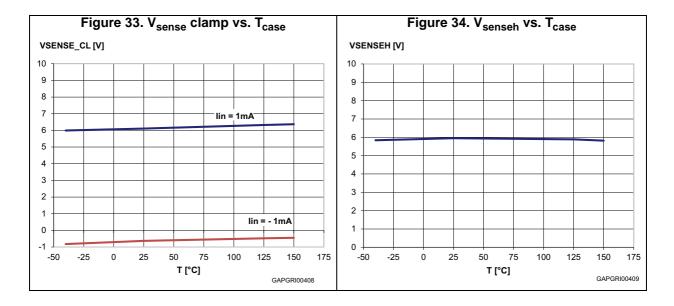




2.5 Electrical characteristics curves



26/48



28/48

3 Protections

3.1 **Power limitation**

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (see *Table 8*, FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} (see *Table 8*), allowing the inductor energy to be dissipated without damaging the device.

4 Application information

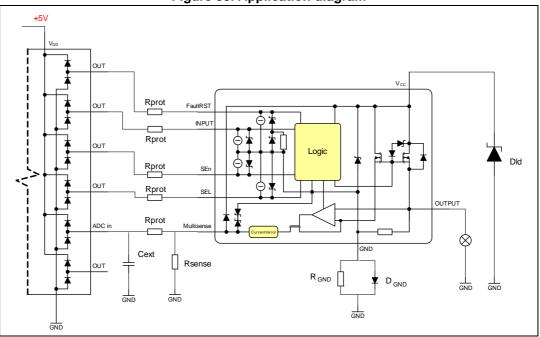


Figure 35. Application diagram

4.1 GND protection network against reverse battery

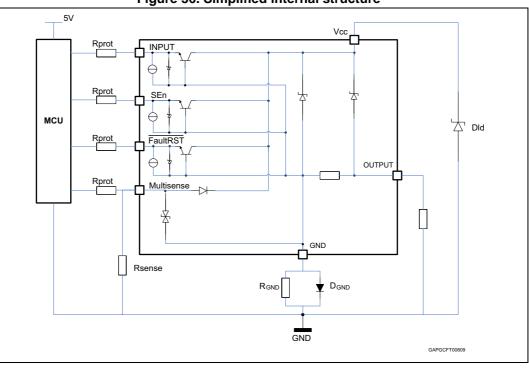


Figure 36. Simplified internal structure

4.1.1 Diode (D_{GND}) in the ground line

A resistor (typ. R_{GND} = 4.7 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 12*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through V_{CC} and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		Minimum number of pulses or test time	-	le / pulse on time	Pulse duration and pulse generator internal impedance
	Level	U _S ⁽¹⁾	une	min max		
1	111	-112V	500 pulses	0,5 s		2ms, 10Ω
2a	III	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω
3a	IV	-220V	1h	90 ms	100 ms	0.1µs, 50Ω
3b	IV	+150V	1h	90 ms	100 ms	0.1µs, 50Ω
4 ⁽²⁾	IV	-7V	1 pulse			100ms, 0.01Ω
Load dump according to ISO 16750-2:2010						
Test B ⁽³⁾		40V	5 pulse	1 min		400ms, 2Ω

Table 12. ISO 7637-2 - electrical transient conduction along supply line

1. U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

2. Test pulse from ISO 7637-2:2004(E).

3. With 40 V external suppressor referred to ground (-40°C < T_i < 150°C).

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation 1

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -150 V; $I_{latchup} \ge 20mA$; $V_{OH\mu C} \ge 4.5V$

7.5 k $\Omega \le R_{prot} \le 140$ k Ω .

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (Multisense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *Table 11*.

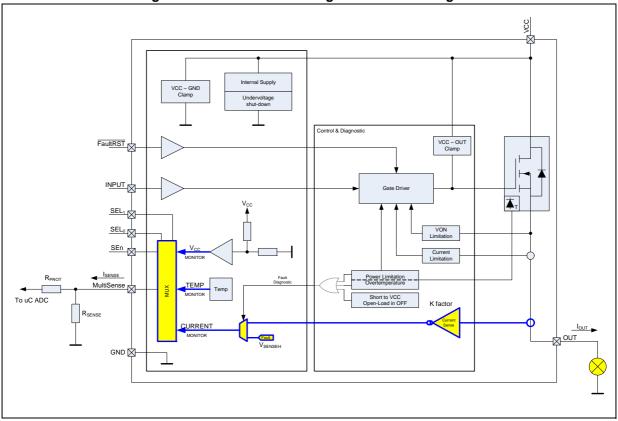
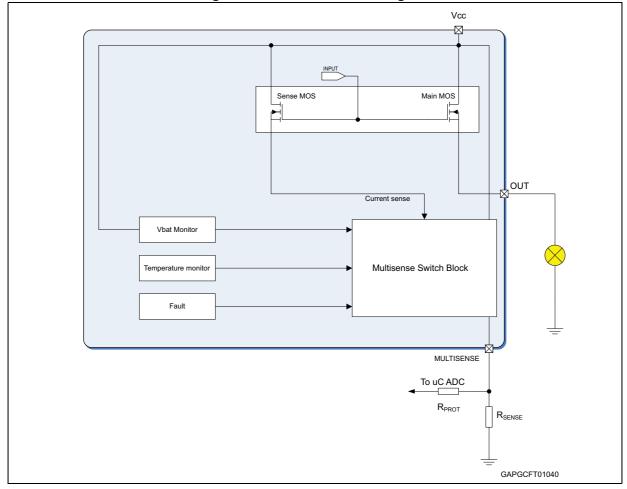



Figure 37. Multisense and diagnostic – block diagram

34/48

4.4.1 Principle of Multisense signal generation

Figure 38. Multisense block diagram

Current monitor

When current mode is selected in the Multisense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

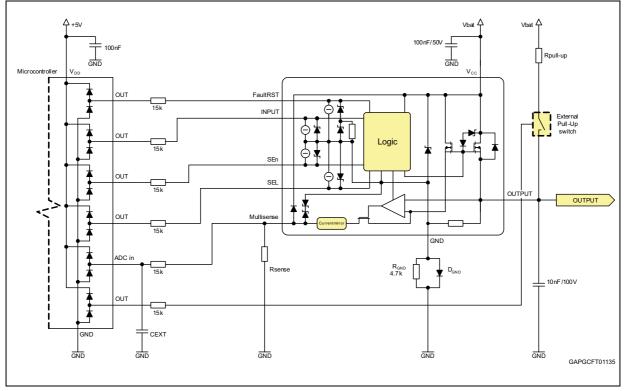
Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), $V_{\mbox{SENSE}}$ calculation can be done using simple equations

Current provided by Multisense output: $I_{SENSE} = I_{OUT}/K$

Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE} · I_{SENSE} = R_{SENSE} · I_{OUT}/K

Where :


- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- ISENSE is current provided from Multisense pin in current output mode
- I_{OUT} is current flowing through output
- K factor represent the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the Multisense pin which is switched to a "current limited" voltage source, V_{SENSEH} (see *Table 9*).

In any case, the current sourced by the Multisense in this condition is limited to I_{SENSEH} (see *Table 9*).

The typical behavior in case of overload or hard short circuit is shown in *Figure 10*, *Figure 11* and *Figure 12*.

Figure 39. Analogue HSD – open-load detection in off-state

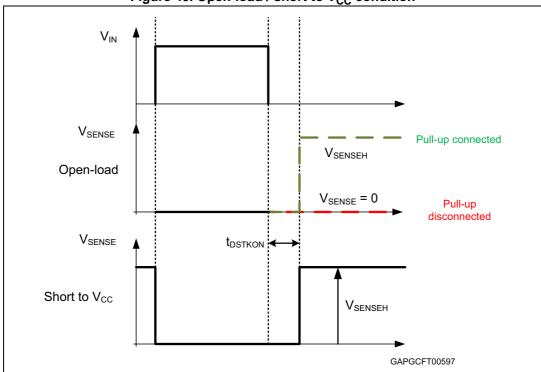
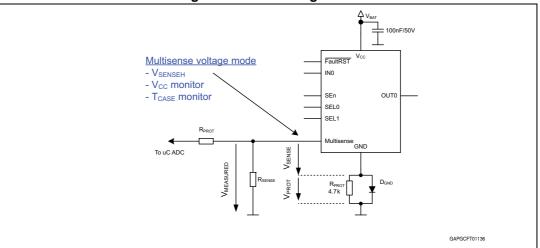


Figure 40. Open-load / short to V_{CC} condition

Table 13. MultiSense pin levels in off-state

Condition	Output	MultiSense	SEn
		Hi-Z	L
Open lead	$V_{OUT} > V_{OL}$	V _{SENSEH}	Н
Open-load	V _{OUT} < V _{OL}	Hi-Z	L
		0	Н
Short to V	V _{OUT} > V _{OL}	Hi-Z	L
Short to V _{CC}		V _{SENSEH}	Н
Nominal	V _{OUT} < V _{OL}	Hi-Z	L
		0	Н


4.4.2 T_{CASE} and V_{CC} monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because of a voltage shift is generated between device GND and the microcontroller input GND reference.

Figure 41 shows link between $V_{\mbox{MEASURED}}$ and real $V_{\mbox{SENSE}}$ signal.

V_{CC} monitor

Battery monitoring channel provides $V_{SENSE} = V_{CC} / 4$.

Case temperature monitor

Case temperature monitor is capable to provide information about actual device temperature. Since diode is used for temperature sensing, following equation describe link between temperature and output V_{SENSE} level:

 $V_{\text{SENSE TC}}(T) = V_{\text{SENSE}_{TC}}(T_0) + dV_{\text{SENSE}_{TC}} / dT * (T - T_0)$

where $dV_{SENSE TC} / dT \sim typically -5.5 mV/K$ (for temperature range (-40°C to +150°C).

4.4.3 Short to V_{CC} and OFF-state open-load detection

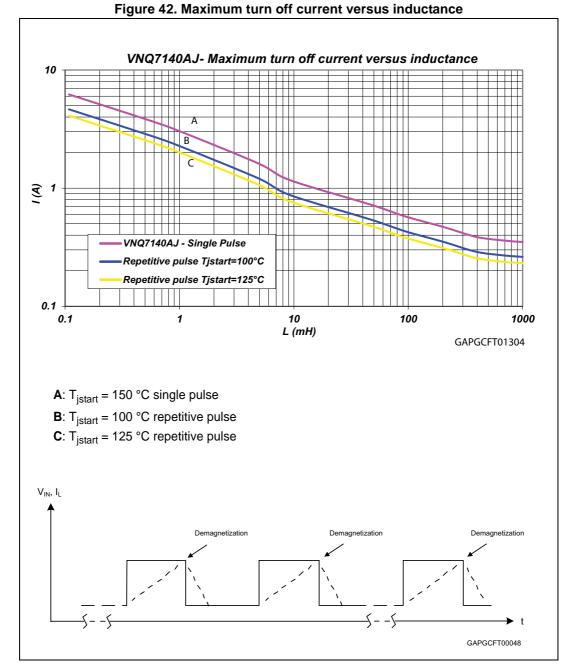
Short to V_{CC}

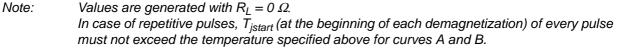
A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.


 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with to following equation:


Equation 2

$$R_{PU} < \frac{V_{PU}^{-4}}{I_{L(off2)min @ 4V}}$$

4.5 Maximum demagnetization energy (V_{CC} = 16 V)

5 Package and PCB thermal data

5.1 PowerSSO-16 thermal data

Figure 43. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)

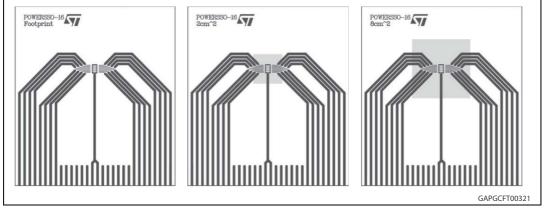
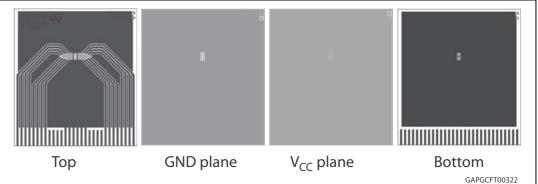



Figure 44. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)

Table 14. PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 cm ² or 8 cm ²

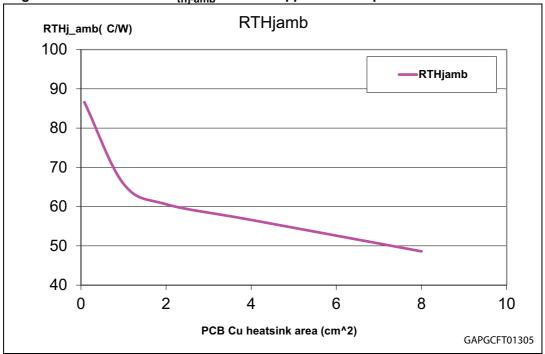
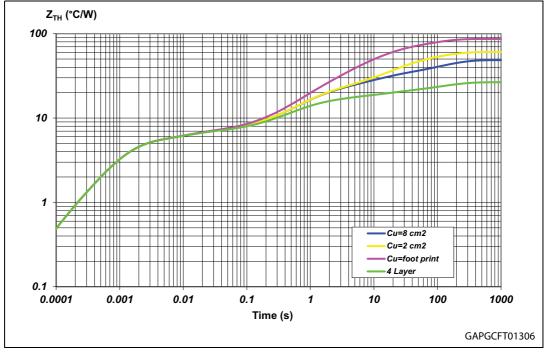



Figure 45. PowerSSO-16 R_{thj-amb} vs PCB copper area in open box free air condition

Figure 46. PowerSSO-16 thermal impedance junction ambient single pulse

Equation 3: pulse calculation formula

$$Z_{\text{TH}\delta} = R_{\text{TH}} \cdot \delta + Z_{\text{THtp}}(1-\delta)$$

where $\delta = t_P/T$

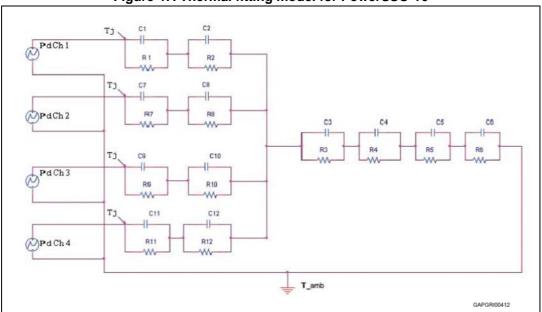


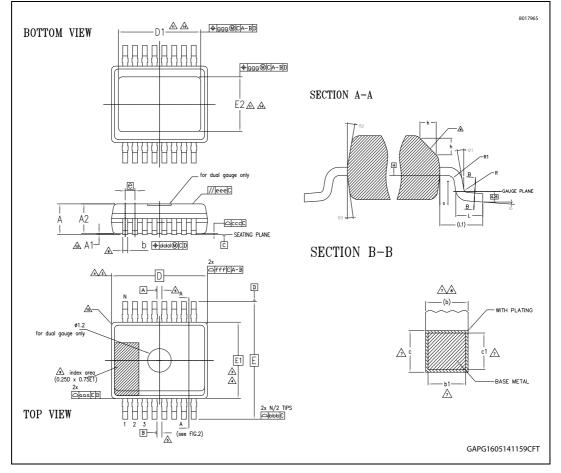
Figure 47. Thermal fitting model for PowerSSO-16

Note:

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Area/island (cm ²)	Footprint	2	8	4L
R1 = R7 = R9 = R11 (°C/W)	4.8			
R2 = R8 = R10 = R12 (°C/W)	1.8			
R3 (°C/W)	8	8	8	5
R4 (°C/W)	16	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 = C7 = C9 = C11 (W.s/°C)	0.0002			
C2 = C8 = C10 = C12 (W.s/°C)	0.005			
C3 (W.s/°C)	0.08			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

Table	15	Thermal	parameters
Iable	15.	Incinai	parameters


6 Package information

6.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK[®] is an ST trademark.

6.2 PowerSSO-16 package information

Figure 48. PowerSSO-16 package dimensions

Table 16. PowerSSO-16 mechanical data				
Symbol		Millimeters		
Cymbol	Min.	Тур.	Max.	
Θ	0°		8°	
Θ1	0°			
Θ2	5°		15°	
Θ3	5°		15°	
A			1.70	
A1	0.00		0.10	
A2	1.10		1.60	
b	0.20		0.30	
b1	0.20	0.25	0.28	
С	0.19		0.25	
c1	0.19	0.20	0.23	
D		4.90 BSC		
D1	3.60		4.20	
е		0.50 BSC		
E	6.00 BSC			
E1		3.90 BSC		
E2	1.90		2.50	
h	0.25		0.50	
L	0.40	0.60	0.85	
L1		1.00 REF		
Ν		16		
R	0.07			
R1	0.07			
S	0.20			
	Tolerance of fo	orm and position		
aaa		0.10		
bbb		0.10		
CCC		0.08		
ddd	0.08			
eee	0.10			
fff		0.10		
<u>ggg</u>		0.15		

Table 16. PowerSSO-16 mechanical data

44/48

7 Order codes

Paakaga	Order codes		
Package	Tube	Tape and reel	
PowerSSO-16	VNQ7140AJ-E	VNQ7140AJTR-E	

Table 17. Device summary

8 Revision history

	51	Ible 18. Document revision history
Date	Revision	Changes
25-Oct-2011	1	Initial release.
04-Jul-2012	2	Updated Table 1: Pin functions Updated Figure 2: Configuration diagram (top view) Table 3: Absolute maximum ratings: $-V_{CCPK}$, V_{CCJS} : added rows $-I_{SENSE}$, V_{ESD} : updated values and parameters $-V_{SENSE}$: removed row Updated Table 4: Thermal data Table 5: Power section: $-V_{USDReset}$, $I_{GND(ON)}$: added row $-V_{clamp}$, t_{D_STBY} , $I_{S(ON)}$: upadated value Updated Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) Table 7: Logic Inputs (7 V < VCC < 28 V; -40°C < Tj < 150°C): $-V_{ICL}$, V_{FRCL} , V_{SELCL} , V_{SEnCL} : updated value Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C): $-t_{LATCH_RST}$: updated values $-V_{ON}$: updated test conditions and value $-V_{ON}$: updated test conditions Updated Table 9: MultiSense (7 V < VCC < 18 V; - 40°C < Tj < 150°C) Updated Figure 7: MultiSense timings (current sense mode) and Figure 8: Multisense timings (chip temperature and VCC sense mode) Added Figure 9: TDSKON Updated Section 2.4: Waveforms Added Chapter 3: Protections and Chapter 4: Application information
18-Oct-2012	3	Table 5: Power section: - I _{GND(ON)} : updated values Updated Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified)
		 V_{SENSE_CL}, K_{OL}, K_{LED}, K₀, dK₀/K₀, K₁, dK₁/K₁, K₂, dK₂/K₂, K₃, dK₃/K₃, V_{SENSEH}: updated values V_{SENSE_TC}: updated parameter

Table 18. Document revision history

46/48

Date R	Revision	Changes Updated Table 2: Suggested connections for unused and not connected pins Table 3: Absolute maximum ratings: - V _{CCPK} : updated parameter - I _{OUT} , I _{SENSE} : updated value - E _{MAX} : updated parameter and value Table 5: Power section: - V _F : updated test conditions Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C): - T _{HYST} : added note
		<pre>connected pins Table 3: Absolute maximum ratings: - V_{CCPK}: updated parameter I_{OUT}, I_{SENSE}: updated value E_{MAX}: updated parameter and value Table 5: Power section: - V_F: updated test conditions Table 8: Protections (7 V < VCC < 18 V; -40°C < Tj < 150°C): - T_{HYST}: added note</pre>
21-Jun-2013	4	Table 9: MultiSense (7 V < VCC < 18 V; -40°C < Tj < 150°C): $- dK_{cal}/K_{cal}$: added row $- K_{OL}, K_{LED}, K_0, K_1, K_3$: updated values $- I_{SENSE_SAT}, I_{OUT_SAT}$: added note $- V_{SENSE_TC}$: updated test conditions and values $- V_{SENSE_VCC}$: updated test conditionsTable 11: MultiSense multiplexer addressing $-$ updated negative output valuesRemoved following tables:Table: Electrical transient requirements (part 1/3)Table: Electrical transient requirements (part 2/3)Table: Electrical transient requirements (part 3/3)Updated Section 3.1: Power limitation, Section 3.2: Thermalshutdown, Section 3.4: Negative voltage clamp and Section 4.1.1:Diode (DGND) in the ground lineRemoved Section: Load dump protectionAdded Section 4.2: Immunity against transient electricaldisturbancesUpdated Figure 39: Analogue HSD – open-load detection in off-stateUpdated Table 13: MultiSense pin levels in off-stateUpdated Figure 41: GND voltage shiftAdded Section 4.5: Maximum demagnetization energy (VCC = 16 V)Updated Chapter 5: Package and PCB thermal data
18-Jul-2013	5	Updated Section 6.2: PowerSSO-16 package information Updated Table 4: Thermal data Updated Table 6: Switching (VCC = 13 V; -40°C < Tj < 150°C, unless otherwise specified) Added Section 2.5: Electrical characteristics curves
20-Sep-2013	6	Updated disclaimer.
09-Jun-2014	7	Updated Section 6.2: PowerSSO-16 package information
22-Oct-2014	8	Updated Table 16: PowerSSO-16 mechanical data

Table 18. Document revision history (continued)

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

