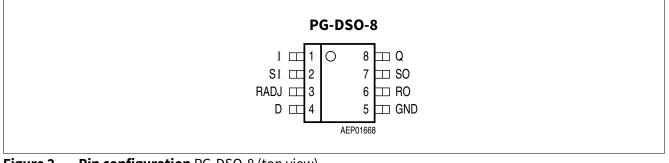

Table of contents

	Features	1
	Potential applications	1
	Product validation	1
	Description	1
	Table of contents	2
1	Block diagram	3
2	Pin configuration	
3 3.1 3.2	General product characteristics	7
4	Functional description	. 10
5 5.1 5.2	Application informationApplication diagramTypical performance characteristics	. 11
6	Package information	. 16
7	Revision history	. 18

Block diagram

1 Block diagram



Pin configuration

Pin configuration 2

Pin configuration PG-DSO-8 (top view) Figure 2

Pin definitions and functions (TLE4269G) Table 1

Pin No.	Symbol	Function
1	I	Input connected with a ceramic capacitor to GND directly at the IC.
<u></u>	CI	
2	SI	Sense input if not needed connect to Q.
3	RADJ	Reset threshold adjust if not needed connect to GND.
4	D	Reset delay to select delay time, connect to GND via capacitor.
5	GND	Ground
6	RO	$\begin{array}{c} \textbf{Reset output} \\ \text{the open collector output is connected to the 5 V output via an integrated 20 k} \\ \text{pull-up resistor;} \\ \text{leave open if the reset function is not needed} \end{array}$
7	SO	Sense output the open collector output is connected to the 5 V output via an integrated 20 k Ω pull-up resistor; leave open if the sense comparator is not needed.
8	Q	5 V output connect to GND with a 10 μF capacitor, ESR < 10 Ω

Pin configuration

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PG-DSO-14						
AEP02248		D [] 2 GND [] 3 GND [] 4 GND [] 5 GND [] 6 RO [] 7	13 □ I 12 □ GND 11 □ GND 10 □ GND 9 □ Q				

Figure 3Pin configuration PG-DSO-14 (top view)

Table 2 Pin definitions and functions (TLE4269GM)

Pin No.	Symbol	Function
1	RADJ	Reset threshold adjust
		if not needed connect to GND.
2	D	Reset delay
		to select delay time; connect to GND via capacitor.
3, 4, 5, 6	GND	Ground
7	RO	Reset output
		the open collector output is connected to the 5 V output via an integrated 20 k Ω pull-up resistor;
		leave open if the reset function is not needed
8	SO	Sense output
		the open collector output is connected to the 5 V output via an integrated 20 $k\Omega$
		pull-up resistor;
		leave open if the sense comparator is not needed.
9	Q	5 V Output
		connect to GND with a 10 μ F capacitor, ESR < 10 Ω .
10, 11, 12	GND	Ground
13	I	Input
		connected with a ceramic capacitor to GND directly at the IC.
14	SI	Sense input
		if not needed connect to Q.

Pin configuration

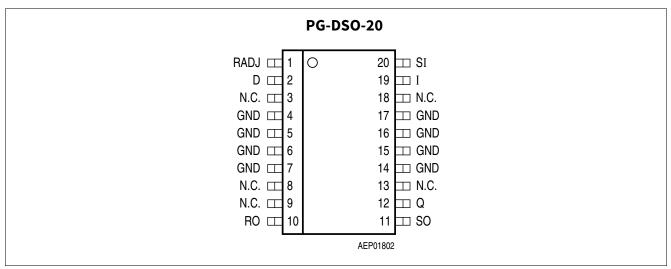


Figure 4Pin configuration PG-DSO-20 (top view)

Table 3 Pin definitions and functions (TLE4269GL)

Pin No.	Symbol	Function
1	RADJ	Reset threshold adjust if not needed connect to ground.
2	D	Reset delay to select delay time, connect to GND via external capacitor.
4 - 7, 14 - 17	GND	Ground
10	RO	Reset output the open collector output is connected to the 5 V output via an integrated 20 k Ω pull-up resistor; leave open if the reset function is not needed
11	SO	Sense output the open collector output is connected to the 5 V output via an integrated 20 k Ω pull-up resistor; leave open if the sense comparator is not needed.
12	Q	Output connect to GND with a 10 μ F capacitor, ESR < 10 Ω .
19	1	Input connected with a ceramic capacitor to GND directly at the IC.
20	SI	Sense input if not needed connect to Q.

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 4 Absolute maximum ratings

 $T_{\rm i}$ = -40°C to 150°C

Parameter	Symbol	Values			Unit	Note or
		Min.	Тур.	Max.		Test Condition
Input						_
Input voltage	V	-40	-	45	V	-
Input current	I ₁	-	-	-	-	Internal limited
Sense input						
Input voltage	V _{SI}	-40	-	45	V	-
Input current	I _{SI}	1	-	1	mA	-
Reset threshold						
Voltage	V _{RADJ}	-0.3	-	7	V	-
Current	I _{RADJ}	-10	-	10	mA	-
Reset delay		·	L.			
Voltage	V _D	-0.3	-	7	V	-
Current	I _D	-	-	_	-	Internal limited
Ground				!		
Current	I _{GND}	50	-	-	mA	-
Reset output	I	I	I	I	U	
Voltage	V _R	-0.3	-	7	V	-
Current	I _R	-	-	_	-	Internal limited
Sense output	I	I	I		U	
Voltage	V _{so}	-0.3	-	7	V	-
Current	I _{so}	-	-	-	-	Internal limited
5 V output	I	I	I		U	
Output voltage	V _Q	-0.5	-	7	V	-
Output current	I _Q	-10	-	-	mA	-
Temperature	I	I	I		U	
Junction temperature	Tj	-	-	150	°C	-
Storage temperature	T _{Stg}	-50	-	150	°C	-
Operating range		1			l.	-
Input voltage	V	-	-	45	V	-
Junction temperature	Tj	-40	-	150	°C	_

General product characteristics

Table 4 Absolute maximum ratings (cont'd)

 $T_{\rm i}$ = -40°C to 150°C

Parameter	Symbol		Value	Unit	Note or	
		Min.	Тур.	Max.		Test Condition
Thermal data						
Junction-ambient	R _{thja}	-	-	200	K/W	PG-DSO-8
		-		70	K/W	PG-DSO-14
		-		70	K/W	PG-DSO-20
Junction-pin	R _{thjp}	-	-	30	K/W	PG-DSO-8 ¹⁾
		-		30	K/W	PG-DSO-14 ²⁾
				30	K/W	PG-DSO-20 ²⁾

1) Measured to pin 5.

2) Measured to pin 4.

General product characteristics

3.2 Electrical characteristics

Table 5Electrical characteristics

 $V_1 = 13.5 \text{ V}; -40^{\circ}\text{C} \le T_1 \le 125^{\circ}\text{C}$

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Output voltage	V _Q	4.90	5.00	5.10	V	$1 \text{ mA} \le I_Q \le 100 \text{ mA},$ $6 \text{ V} \le V_1 \le 16 \text{ V}$
Current limit	I _Q	150	200	500	mA	-
Current consumption; $I_q = I_1 - I_Q$	l _q	-	240	300	μΑ	$I_{\rm Q} \le 1$ mA, $T_{\rm j} < 85^{\circ}$ C
Current consumption; $I_q = I_1 - I_Q$	/ _q	-	250	700	μA	$I_{\rm Q} = 10 {\rm mA}$
Current consumption; $I_q = I_1 - I_Q$	l _q	-	2	8	mA	I _Q = 50 mA
Drop voltage	V _{dr}	-	0.25	0.5	V	$I_{\rm Q} = 100 {\rm mA}^{1)}$
Load regulation	$\Delta V_{\rm Q}$	-	10	30	mV	$I_{\rm Q}$ = 5 mA to 100 mA
Line regulation	$\Delta V_{\rm Q}$	-	10	40	mV	$V_{\rm I} = 6 {\rm V}$ to 26 V, $I_{\rm Q} = 1 {\rm mA}$
Reset generator						
Switching threshold	V _{RT}	4.50	4.65	4.80	V	-
Reset adjust switching threshold	V _{radj, th}	1.26	1.35	1.44	V	V _Q > 3.5 V
Reset pull-up	-	10	20	40	kΩ	-
Saturation voltage	V _{RO, SAT}	-	0.1	0.4	V	R _{intern}
Upper delay switching threshold	V _{UD}	1.4	1.8	2.2	V	-
Lower delay switching threshold	V _{LD}	0.3	0.45	0.60	V	-
Saturation voltage delay capacitor	V _{D, SAT}	-	-	0.1	V	$V_Q < V_{RT}$
Charge current	I _D	3.0	6.5	9.5	μA	<i>V</i> _D = 1 V
Delay time L → H	t _d	17	28	-	ms	C _D = 100 nF
Delay time H → L	t _t	-	1	-	μs	C _D = 100 nF
Input voltage sense						
Sense threshold high	V _{SI, high}	1.24	1.31	1.38	V	-
Sense threshold low	V _{SI, low}	1.16	1.20	1.28	V	-
Sense output low voltage	V _{SO, low}	-	0.1	0.4	V	$V_{\rm SI} < 1.20 \rm V; V_Q > 3 \rm V, R_{\rm inter}$
Sense pull-up	-	10	20	40	kΩ	-
Sense input current	I _{SI}	-1	0.1	1	μA	-

1) Drop voltage = $V_1 - V_0$ measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input.

Downloaded from Arrow.com.

Functional description

4 Functional description

The control amplifier compares a reference voltage, made highly accurate by resistance balancing, with a voltage proportional to the output voltage and drives the base of the series PNP transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element.

The reset output RO is in high-state if the voltage on the delay capacitor C_D is greater or equal V_{UD} . The delay capacitor C_D is charged with the current I_D for output voltages greater than the reset threshold V_{RT} . If the output voltage gets lower than V_{RT} ('reset condition') a fast discharge of the delay capacitor C_D sets in and as soon as V_D gets lower than V_{LD} the reset output RO is set to low-level.

The time gap for the delay capacitor discharge is the reset reaction time t_{RR} .

The reset threshold V_{RT} can be decreased via an external voltage divider connected to the pin RADJ. In this case the reset condition is reached if $V_Q < V_{\text{RT}}$ and $V_{\text{RADJ}} < V_{\text{RAQDJ, TH}}$. Dimensioning the voltage divider (Figure 5) according to:

(4.1)

$$V_{\text{THRES}} = \frac{V_{\text{RAD}(J, \text{TH})} \times (R_{\text{ADJ1}} + R_{\text{ADJ2}})}{R_{\text{ADJ2}}}$$

the reset threshold can be decreased down to 3.5 V. If the reset-adjust-option is not needed the RADJ-pin should be connected to GND causing the reset threshold to go to its default value (typ. 4.65 V).

A built in comparator compares the signal of the pin SI, normally fed by a voltage divider from the input voltage, with the reference and gives an early warning on the pin SO. It is also possible to superwise another voltage e.g. of a second regulator, or to build a watchdog circuit with few external components.

Application information

5 Application information

The input capacitor C_1 is necessary for compensating line influences. Using a resistor of approx. 1 Ω in series with C_1 , the oscillating circuit consisting of input inductivity and input capacitance can be damped. The output capacitor C_Q is necessary for the stability of the regulating circuit. Stability is guaranteed at values $\geq 10 \ \mu$ F and an ESR $\leq 10 \ \Omega$ within the operating temperature range. For small tolerances of the reset delay the spread of the capacitance of the delay capacitor and its temperature coefficient should be noted.

5.1 Application diagram

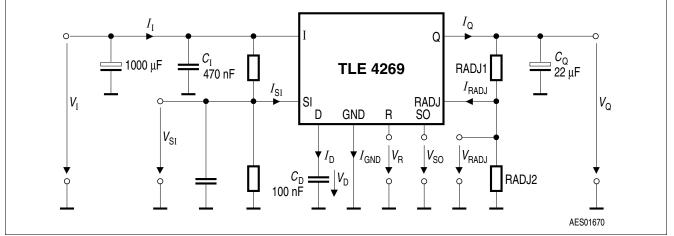


Figure 5 Measuring circuit

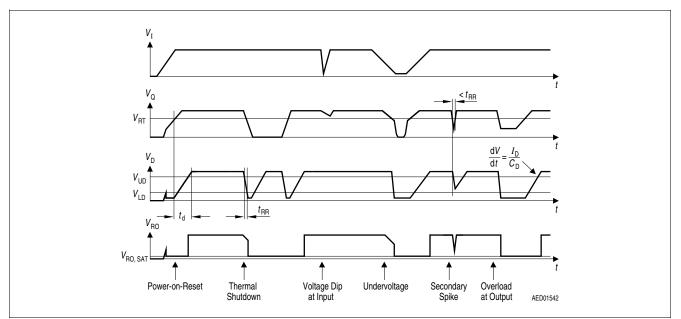
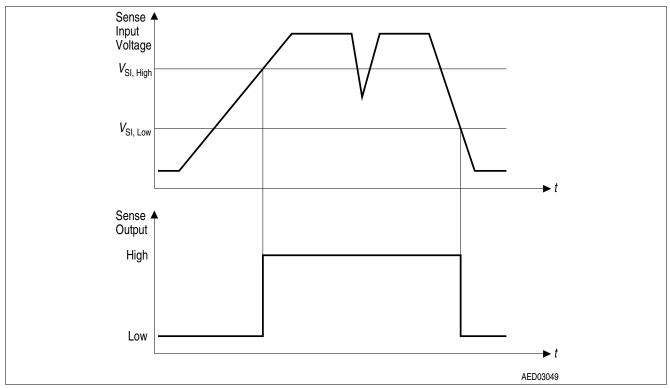
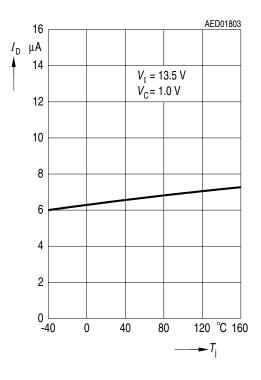
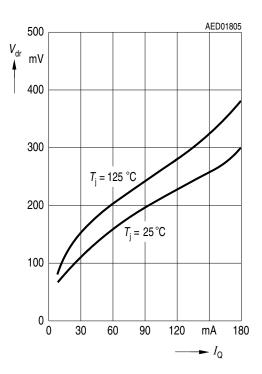



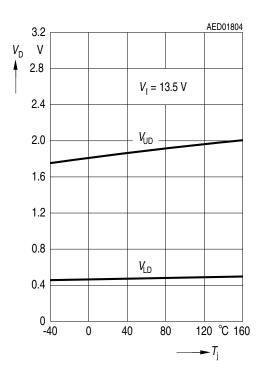
Figure 6 Reset timing diagram

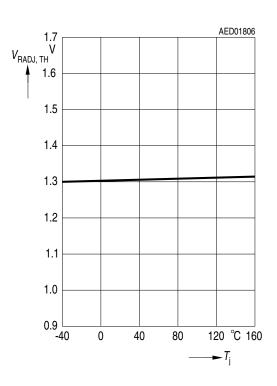
Application information




Application information

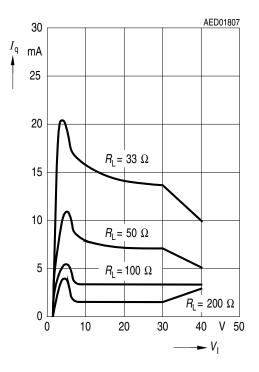
5.2 Typical performance characteristics


Charge current I_D versus junction temperature T_j

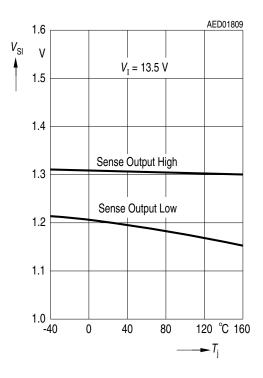

Drop voltage V_{dr} versus output current I_0

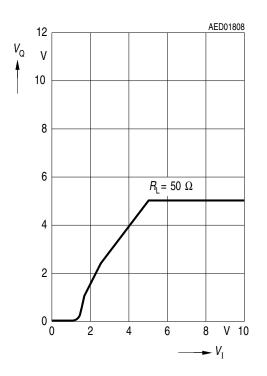
Switching voltage V_{UD} and V_{LD} versus junction temperature T_{j}

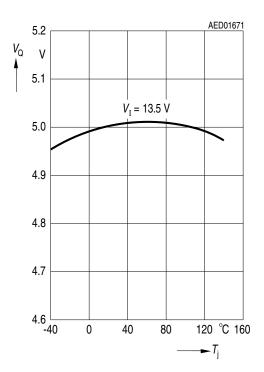
Reset adjust switching threshold $V_{\text{RADJ,TH}}$ versus junction temperature T_i



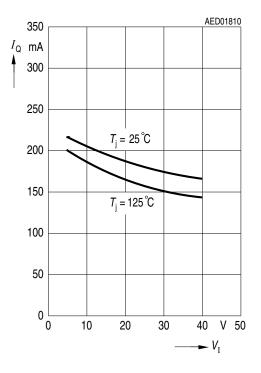
Data Sheet

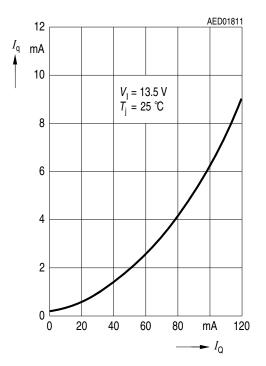


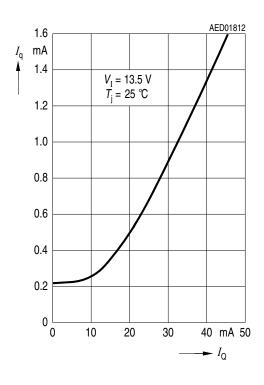

Current consumption I_Q versus input voltage V₁


Sense threshold V_{si} versus junction temperature T_i

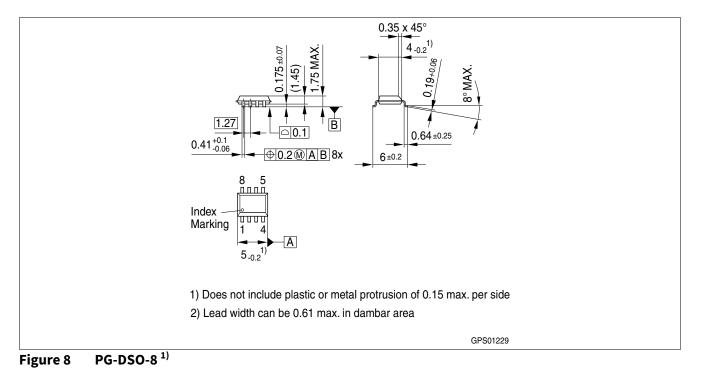
Output voltage V_Q versus input voltage V_I

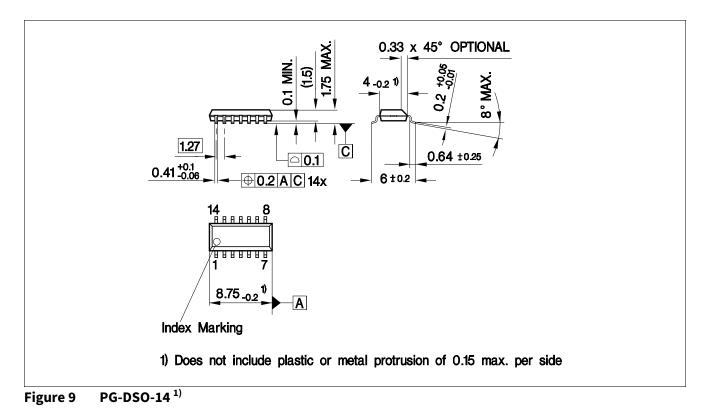

Output voltage V_Q versus junction temperature *T*_i


Application information



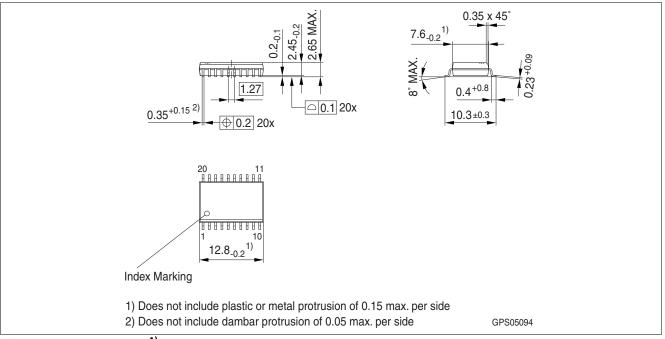
Current consumption I_Q versus output current I_Q


Current consumption I_q versus output current I₀



Package information

6 Package information



¹⁾ Dimensions in mm

Package information

Green product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

¹⁾ Dimensions in mm

Revision history

7 Revision history

Revision	Date	Changes
2.6	2018-11-20	Update layout and structure Updated packaged drawing "PG-DSO-14" Editorial changes
2.5	2013-11-25	Package version changed: - PG-DSO-20-35 to PG-DSO-20 Package naming harmonized according to Infineon standards: - PG-DSO-8-16 to PG-DSO-8 - PG-DSO-14-30 to PG-DSO-14
2.4	2007-03-20	Initial version of RoHS-compliant derivate of TLE4269 Page 1 : AEC certified statement added Page 1 and Page 16 : RoHS compliance statement and Green product feature added Page 1 and Page 16 : Package changed to RoHS compliant version Legal Disclaimer updated
2.3	2004-01-01	

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-11-20 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Z8F52238104

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.