Symbol	Parameter		Value		Unit
		TO-220 / IPAK	TO-92	TO-220FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)		600	•	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)		600		V
V _{GS}	Gate- source Voltage		± 30		V
ID	Drain Current (continuous) at T _C = 25°C	1.4	0.4	1.4 (*)	Α
I _D	Drain Current (continuous) at T _C = 100°C	0.77	0.25	0.77 (*)	Α
I _{DM} (•)	Drain Current (pulsed)	5.6	1.6	5.6 (*)	Α
Ртот	Total Dissipation at $T_C = 25^{\circ}C$	45	3	20	W
	Derating Factor	0.36	0.025	0.16	W/°C
V _{ESD(G-S)}	Gate source ESD (HBM-C= 100pF, R=1.5kΩ)		1500		V
VISO	Insulation Withstand Voltage (DC)			2500	V
dv/dt (1)	Peak Diode Recovery voltage slope		4.5	•	V/ns
T _j T _{stg}	Operating Junction Temperature Storage Temperature		-55 to 150		°C

Table 3: Absolute Maximum ratings

(•) Pulse width limited by safe operating area

(1) $I_{SD} \le 1.4A$, di/dt $\le 200A/\mu$ s, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$. (*) Limited only by maximum temperature allowed

Table 4: Thermal Data

		TO-220/IPAK	TO-220FP	TO-92	Unit
Rthj-case	Thermal Resistance Junction-case Max	2.77	6.25		°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	100	100	120	°C/W
Rthj-lead	Thermal Resistance Junction-lead Max			40	°C/W
Τι	Maximum Lead Temperature For Soldering Purpose	30	0	260	°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	1.4	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}, I_D = I_{AR}, V_{DD} = 50 \text{ V}$)	90	mJ

Table 6: Gate-Source Zener Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
BV _{GSO}	Gate source Breakdown Voltage	I _{gs} = ± 1 mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) Table 7: On/Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 1$ mA, $V_{GS} = 0$	600			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			1 50	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 50 \ \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 0.7 A		7.2	8	Ω

Table 8: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V _, I _D = 0.7 A		1		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		170 27 5		pF pF pF
C _{oss eq.} (3)	Equivalent Output Capacitance	$V_{GS} = 0V$, $V_{DS} = 0V$ to 480V		30		pF
t _{d(on)} t _r t _{d(off)} t _r	Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time	$\label{eq:VDD} \begin{array}{l} V_{DD} = 300 \text{ V}, \text{ I}_{D} = 0.65 \text{ A}, \\ R_{G} = 4.7 \ \Omega, \ V_{GS} = 10 \text{ V} \\ (\text{Resistive Load see, Figure} \\ 22) \end{array}$		8 30 22 55		ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 480V, I_D = 1.5 A,$ $V_{GS} = 10V$ (see, Figure 24)		7.7 1.7 4	10	nC nC nC

Table 9: Source Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				1.5 6	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 1.5 A, V _{GS} = 0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 1.3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 25\text{V}, \text{ T}_{j} = 25^{\circ}\text{C}$ (see test circuit, Figure 23)		250 550 4.4		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 1.3 A, di/dt = 100 A/µs V _{DD} = 25V, T _j = 150°C (see test circuit, Figure 23)		300 690 4.6		ns μC Α

Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
 Pulse width limited by safe operating area.
 Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Figure 3: Safe Operating Area For TO-220

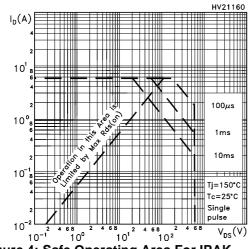


Figure 4: Safe Operating Area For IPAK

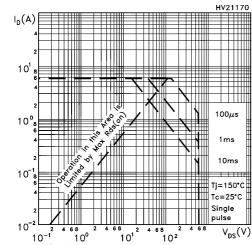


Figure 5: Safe Operating Area For TO-92

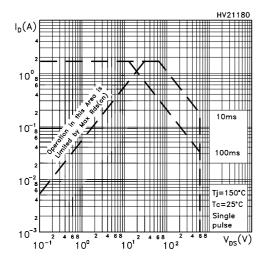


Figure 6: Thermal Impedance For TO-220

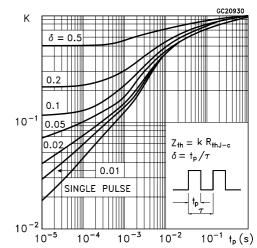
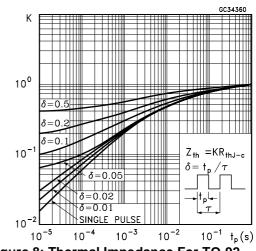
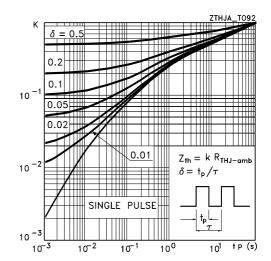
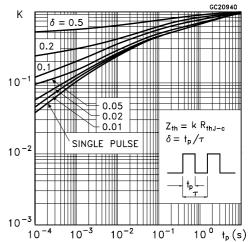
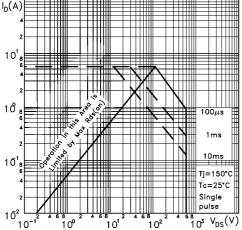
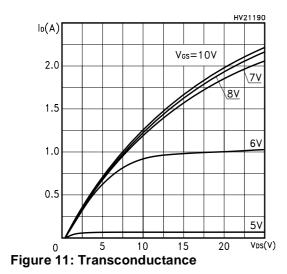
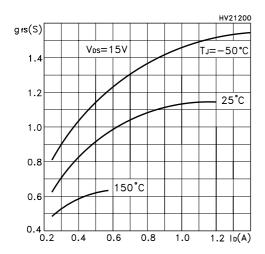




Figure 7: Thermal Impedance For IPAK

4/16


Figure 12: Thermal Impedance For TO-220FP


Figure 9: Safe Operating Area For TO-220FP

HV23760

Figure 10: Output Characteristics

Figure 13: Transfer Characteristics

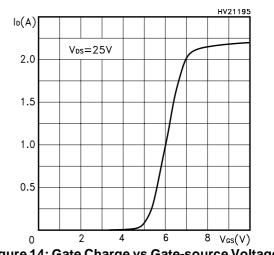
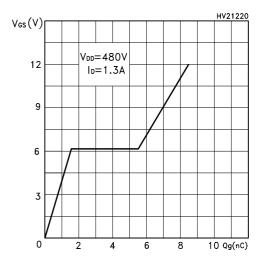
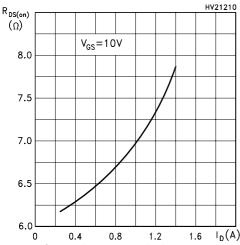




Figure 14: Gate Charge vs Gate-source Voltage

Figure 15: Static Drain-source On Resistance

Figure 16: Capacitance Variations

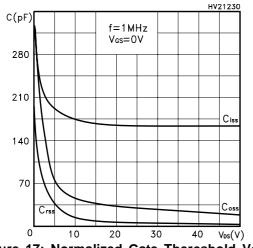
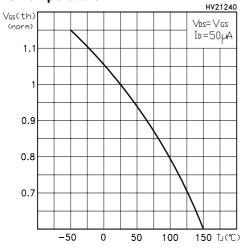



Figure 17: Normalized Gate Thereshold Voltage vs Temperature

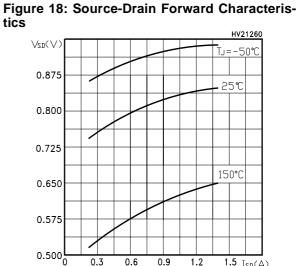


Figure 19: Maximum Avalanche Energy vs Temperature

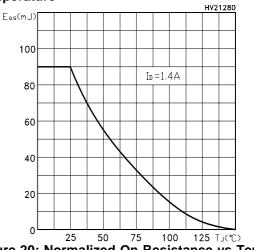
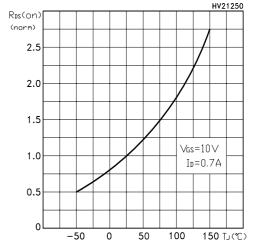



Figure 20: Normalized On Resistance vs Temperature

6/16

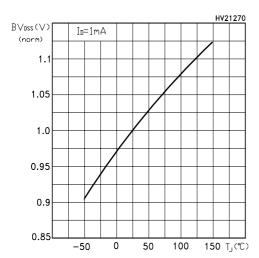


Figure 21: Normalized BV_{DSS} vs Temperature

STQ2NK60ZR-AP - STP2NK60Z - STF2NK60Z - STD2NK60Z-1

Figure 22: Switching Times Test Circuit For Resistive Load

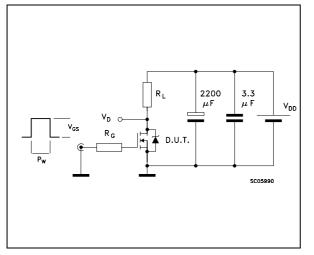
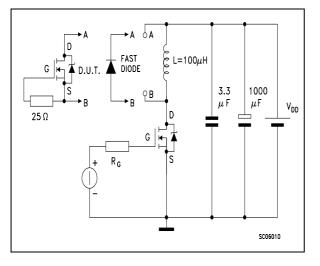
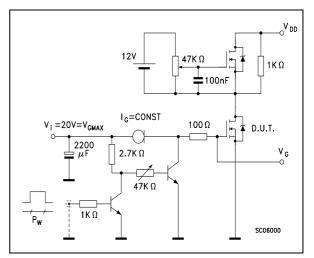
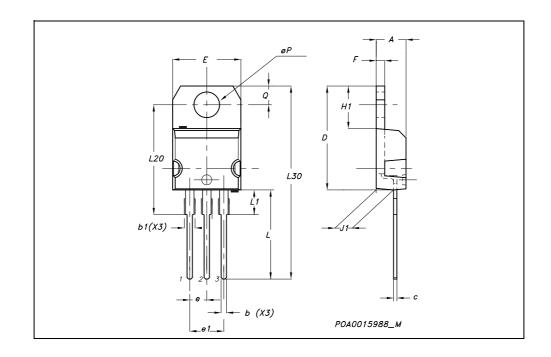




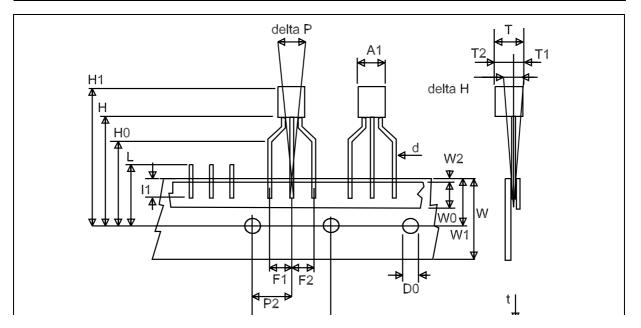
Figure 23: Test Circuit For Inductive Load Switching and Diode Recovery Times

Figure 24: Gate Charge Test Circuit



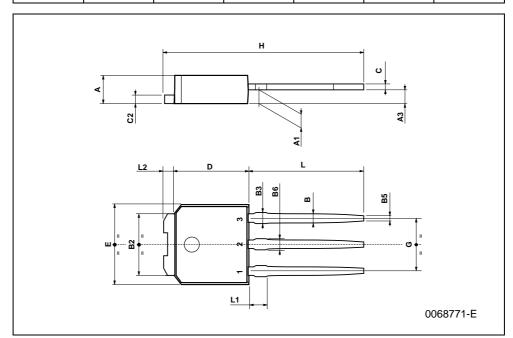
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

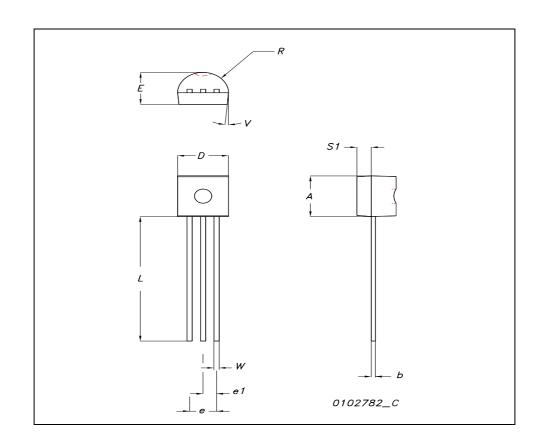
DIM.		mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX	
А	4.40		4.60	0.173		0.181	
b	0.61		0.88	0.024		0.034	
b1	1.15		1.70	0.045		0.066	
С	0.49		0.70	0.019		0.027	
D	15.25		15.75	0.60		0.620	
Е	10		10.40	0.393		0.409	
е	2.40		2.70	0.094		0.106	
e1	4.95		5.15	0.194		0.202	
F	1.23		1.32	0.048		0.052	
H1	6.20		6.60	0.244		0.256	
J1	2.40		2.72	0.094		0.107	
L	13		14	0.511		0.551	
L1	3.50		3.93	0.137		0.154	
L20		16.40			0.645		
L30		28.90			1.137		
øP	3.75		3.85	0.147		0.151	
Q	2.65		2.95	0.104		0.116	



Downloaded from Arrow.com.

DIM.		mm.			inch	
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
A1	4.45		4.95	0.170		0.194
Т	3.30		3.94	0.130		0.155
T1			1.6			0.06
T2			2.3			0.09
d	0.41		0.56	0.016		0.022
P0	12.5	12.7	12.9	0.49	0.5	0.51
P2	5.65	6.35	7.05	0.22	0.25	0.27
F1, F2	2.44	2.54	2.94	0.09	0.1	0.11
delta H	-2		2	-0.08		0.08
W	17.5	18	19	0.69	0.71	0.74
W0	5.7	6	6.3	0.22	0.23	0.24
W1	8.5	9	9.25	0.33	0.35	0.36
W2			0.5			0.02
Н	18.5		20.5	0.72		0.80
H0	15.5	16	16.5	0.61	0.63	0.65
H1			25			0.98
D0	3.8	4	4.2	0.15	0.157	0.16
t			0.9			0.035
L			11			0.43
l1	3			0.11		
delta P	-1		1	-0.04		0.04




DIM.		mm			inch	
Dim	MIN.	TYP.	MAX.	MIN.	TYP.	MAX
А	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
В	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85			0.033
B5		0.3			0.012	
B6			0.95			0.037
С	0.45		0.6	0.017		0.023
C2	0.48		0.6	0.019		0.023
D	6		6.2	0.236		0.244
E	6.4		6.6	0.252		0.260
G	4.4		4.6	0.173		0.181
Н	15.9		16.3	0.626		0.641
L	9		9.4	0.354		0.370
L1	0.8		1.2	0.031		0.047
L2		0.8	1		0.031	0.039

TO-251 (IPAK) MECHANICAL DATA

DIM.		mm.			inch	
DINI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А	4.32		4.95	0.170		0.194
b	0.36		0.51	0.014		0.020
D	4.45		4.95	0.175		0.194
Е	3.30		3.94	0.130		0.155
е	2.41		2.67	0.094		0.105
e1	1.14		1.40	0.044		0.055
L	12.70		15.49	0.50		0.610
R	2.16		2.41	0.085		0.094
S1	0.92		1.52	0.036		0.060
W	0.41		0.56	0.016		0.022
V		5°			5°	

TO-92 MECHANICAL DATA

DIM.		mm.			inch	
DIN.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Table 10: Revision History

Date	Revision	Description of Changes	
07-Jul-2004	3	The document change from "TARGET" to "COMPLETE"	
		New stylesheet	
11/Nov/2004	4	Added TO-220FP	
05-Sep-2005	5	Inserted Ecopack indication	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

