Contents STD14NM50N

Contents

1	Electrical ratings		
2	Electrical characteristics4		
	2.1 Electrical characteristics (curves)		
3	Test circuits 8		
4	Package information		
	4.1 DPAK package information		
5	Packing mechanical data13		
6	Revision history		

STD14NM50N Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	500	V
V _{GS}	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	12	Α
I _D	Drain current (continuous) at T _C = 100 °C	8	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	48	Α
P _{TOT}	Total dissipation at T _C = 25 °C	90	W
dv/dt (2)	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _j	Max. operating junction temperature	150	°C

^{1.} Pulse width limited by safe operating area.

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.39	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	50	°C/W

^{1.} When mounted on 1inch2 FR-4 board, 2 oz Cu.

Table 4. Avalanche data

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T_j max)	4	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	172	mJ

^{2.} $I_{SD} \leq$ 12 A, di/dt \leq 400 A/s, V_{DS} peak \leq $V_{(BR)DSS}$, V_{DD} = 80% $V_{(BR)DSS}$.

Electrical characteristics STD14NM50N

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified).

Table 5. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0, I _D = 1 mA	500			V
	Zero gate voltage	V _{GS} = 0, V _{DS} = 500 V			1	μΑ
I _{DSS}		V _{GS} = 0, V _{DS} = 500 V, T _C =125 °C			100	μΑ
I _{GSS}	Gate-body leakage current	V _{DS} = 0, V _{GS} = ± 25 V			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 6 A		0.28	0.32	Ω

Table 6. Dynamic

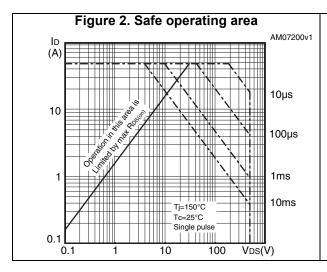
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	816	-	pF
Coss	Output capacitance	V _{GS} = 0, V _{DS} = 50 V, f = 1 MHz	-	60	-	pF
C _{rss}	Reverse transfer capacitance	00 / 20	-	3	-	pF
C _{oss eq.} (1)	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 50 V	-	157	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain	-	4.5	-	Ω
Qg	Total gate charge		-	27	-	nC
Q _{gs}	Gate-source charge	V _{DD} =400 V, I _D =12 A, V _{GS} =10 V (see <i>Figure 13</i>)	-	5	-	nC
Q _{gd}	Gate-drain charge	GG : (3331 G)	-	15	-	nC

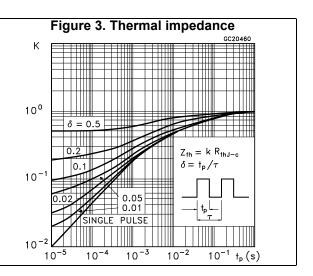
^{1.} $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DS}

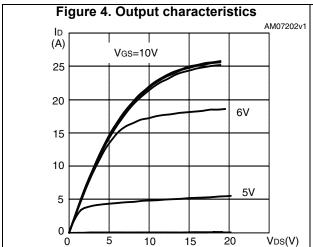
Table 7. Switching times

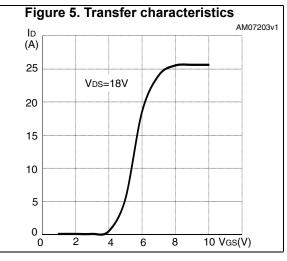
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	12	-	ns
t _r	Rise time	$V_{DD} = 400 \text{ V}, I_{D} = 12 \text{ A},$ $R_{G} = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	16	-	ns
t _{d(off)}	Turn-off-delay time	(see <i>Figure 13</i>)	-	42	-	ns
t _f	Fall time		-	22	-	ns

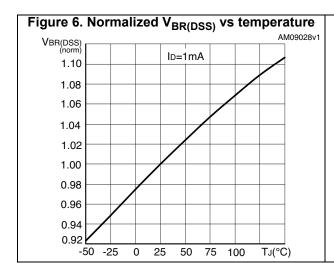
Table 8. Source drain diode

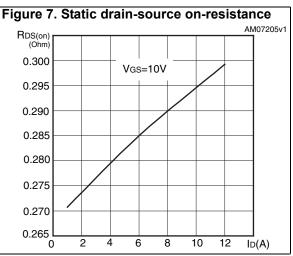

Symbol	Parameter Test condition		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		12	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		48	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0, I _{SD} = 12 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 12 A, di/dt = 100 A/μs,	-	252		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	2.8		μC
I _{RRM}	Reverse recovery current	(see <i>Figure 17</i>)	-	22		Α
t _{rr}	Reverse recovery time	I _{SD} = 12 A, di/dt = 100 A/μs,	-	300		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	3.3		μC
I _{RRM}	Reverse recovery current	(see <i>Figure 17</i>)	-	22.2		Α


^{1.} Pulse width limited by safe operating area


^{2.} Pulsed: pulse duration = 300 μ s, duty cycle 1.5%


Electrical characteristics STD14NM50N


2.1 Electrical characteristics (curves)



57

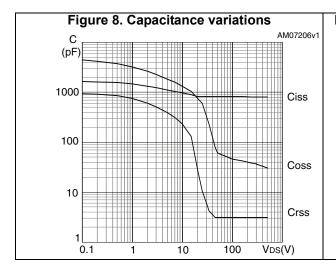
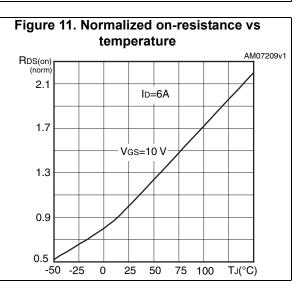


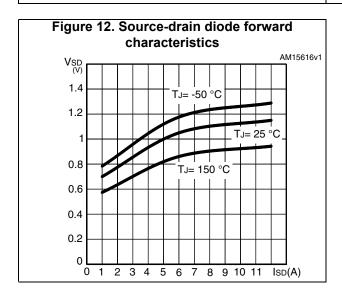
Figure 9. Gate charge vs gate-source voltage Vgs (V) VDD=400V 12 350 VDS ID=12A 10 300 8 250 200 6 150 100 50 30 Qg(nC) 5 10 20 25 15

Figure 10. Normalized gate threshold voltage vs temperature

VGS(th)
(norm)
1.10
1.00
0.90
0.80
0.70

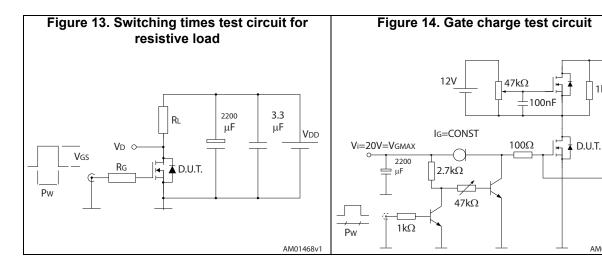
25

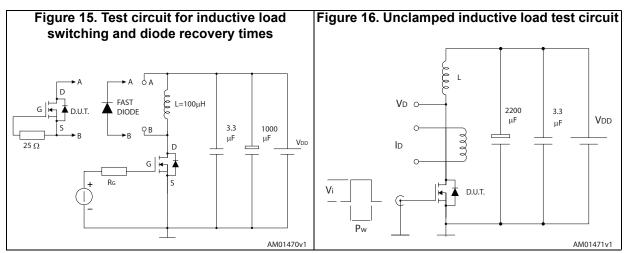

50

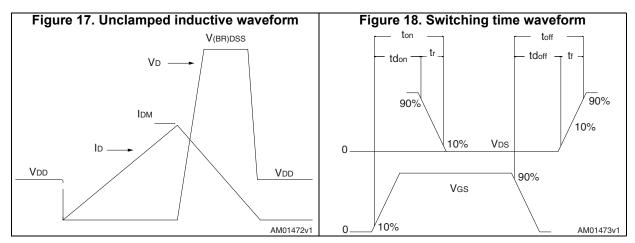

0

75 100

TJ(°C)


-50 -25





Test circuits STD14NM50N

3 Test circuits

577

VDD

VG

AM01469v1

1kΩ

8/16

STD14NM50N Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Package information STD14NM50N

4.1 DPAK package information

Ε THERMAL PAD c2 E1 L2 A 1 <u>b(</u>2x) R С SEATING PLANE V2 0,25 0068772_type-A2_rev19

Figure 19. DPAK (TO-252) type A2 package outline

Table 9. DPAK (TO-252) type A2 mechanical data

Dim.		mm	
Dilli.	Min.	Тур.	Max.
Α	2.20		2.40
A1	0.90		1.10
A2	0.03		0.23
b	0.64		0.90
b4	5.20		5.40
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
D1	4.95	5.10	5.25
E	6.40		6.60
E1	5.10	5.20	5.30
е	2.16	2.28	2.40
e1	4.40		4.60
Н	9.35		10.10
L	1.00		1.50
L1	2.60	2.80	3.00
L2	0.65	0.80	0.95
L4	0.60		1.00
R		0.20	
V2	0°		8°

Package information STD14NM50N

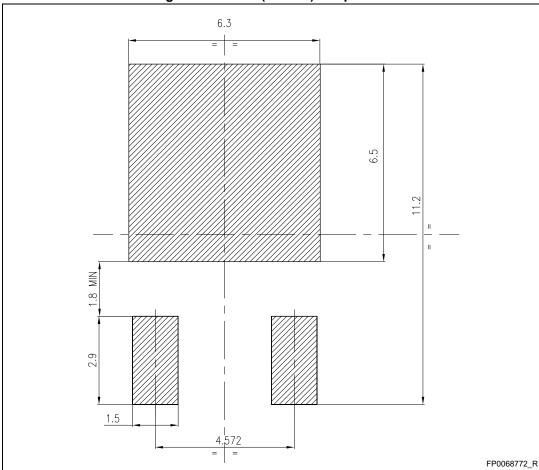


Figure 20. DPAK (TO-252) footprint (a)

a. All dimensions are in millimeters

5 Packing mechanical data

Top cover tape

For machine ref. only including draft and radii concentric around B0

User direction of feed

Liser direction of feed

AM08852v1

Figure 21. Tape

REEL DIMENSIONS

T

40mm min.

Access hole

At slot location

Tape slot in core for tape start 25 mm min. width

AM08851v2

Figure 22. Reel

Table 10. D²PAK (TO-263) tape and reel mechanical data

	Таре			Reel	
Dim.	mm		Dim.	m	nm
Dilli.	Min.	Max.		Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1		Bulk qty	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

STD14NM50N Revision history

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
27-Jun-2014	1	First release.
03-Sep-2015	2	Updated <i>DPAK package information</i> . Minor text changes.
09-Sep-2015	3	Updated figure and table MD for DPAK package information Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

16/16 DocID026625 Rev 3