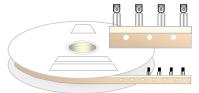

PNP Switching Transistor (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHAI	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage*	$I_{C} = 10 \text{ mA}, I_{B} = 0$	12		V
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_C = 100 \mu A, V_{BE} = 0$	12		V
/ _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 100 \mu A, I_E = 0$	12		V
/ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \mu A, I_C = 0$	4.0		V
CES	Collector Cutoff Current	$V_{CE} = 6.0 \text{ V}, V_{BE} = 0$		0.01	μΑ
		$V_{CE} = 6.0 \text{ V}, V_{BE} = 0, T_A = 65^{\circ}\text{C}$ $V_{CE} = 6.0 \text{ V}, V_{BE} = 0$		1.0	μΑ
В	Base Current	$V_{CE} = 6.0 \text{ V}, V_{BE} = 0$		10	nA
ON CHAR	ACTERISTICS*				
) _{FE}	DC Current Gain	$I_C = 10 \text{ mA}, V_{CE} = 0.3 \text{ V}$	30	120	
'FE	Do current dans	$I_C = 50 \text{ mA}, V_{CE} = 0.3 \text{ V}$ $I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$	20	120	
/ _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$		0.3	V
		$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.2	V
		$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}, T_A = 65^{\circ}\text{C}$		0.6 0.25	V V
/ _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}, I_A = 0.5 \text{ c}$	0.75	0.25	V
BE(sat)	Base Emilier Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 3.0 \text{ mA}$	0.8	1.0	V
		$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		1.5	V
SMALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$	500		MHz
Sobo	Output Capacitance	f = 100 MHz $V_{CB} = 5.0 \text{ V}, I_{E} = 0,$		3.5	pF
J obo	Cutput Capacitance	f = 1.0 MHz		0.0	Pi
C _{ibo}	Input Capacitance	$V_{BE} = 0.5 \text{ V}, I_{C} = 0,$		3.5	pF
		f = 1.0 MHz			
SWITCHIN	NG CHARACTERISTICS				
d	Doloy Timo			40	
	Delay Time	$V_{CC} = 6.0 \text{ V}, V_{BE(off)} = 1.9 \text{ V},$		10	ns
r	Rise Time	$V_{CC} = 6.0 \text{ V}, V_{BE(off)} = 1.9 \text{ V},$ $I_{C} = 50 \text{ mA}, I_{B1} = 5.0 \text{ mA}$		30	ns ns
•	· ·	<u> </u>			
s	Rise Time	$I_C = 50 \text{ mA}, I_{B1} = 5.0 \text{ mA}$ $V_{CC} = 6.0 \text{ V}, I_C = 50 \text{ mA},$		30 20	ns
is if	Rise Time Storage Time Fall Time	$\begin{split} &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ I_{C} = 50 \text{ mA}, \\ &I_{B1} = I_{B2} = 5.0 \text{ mA} \end{split}$		30 20 12	ns ns ns
is if	Rise Time Storage Time	$I_C = 50 \text{ mA}, I_{B1} = 5.0 \text{ mA}$ $V_{CC} = 6.0 \text{ V}, I_C = 50 \text{ mA},$		30 20	ns ns
is if	Rise Time Storage Time Fall Time	$\begin{split} I_C &= 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ V_{CC} &= 6.0 \text{ V}, \ I_C = 50 \text{ mA}, \\ I_{B1} &= I_{B2} = 5.0 \text{ mA} \\ V_{CC} &= 6.0 \text{ V}, \ V_{BE(off)} = 1.9 \text{ V}, \\ I_C &= 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \end{split}$		30 20 12 25	ns ns ns
s f	Rise Time Storage Time Fall Time	$\begin{split} &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ I_{C} = 50 \text{ mA}, \\ &I_{B1} = I_{B2} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ V_{BE(off)} = 1.9 \text{ V}, \\ &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 1.5 \text{ V}, \ I_{C} = 10 \text{ mA}, \end{split}$		30 20 12	ns ns ns
is if	Rise Time Storage Time Fall Time Turn-On Time	$\begin{split} &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ I_{C} = 50 \text{ mA}, \\ &I_{B1} = I_{B2} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ V_{BE(off)} = 1.9 \text{ V}, \\ &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 1.5 \text{ V}, \ I_{C} = 10 \text{ mA}, \\ &I_{B1} = I_{B2} = 0.5 \text{ mA} \end{split}$		30 20 12 25 60	ns ns ns ns
ts tf ton	Rise Time Storage Time Fall Time	$\begin{split} &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ I_{C} = 50 \text{ mA}, \\ &I_{B1} = I_{B2} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ V_{BE(off)} = 1.9 \text{ V}, \\ &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 1.5 \text{ V}, \ I_{C} = 10 \text{ mA}, \\ &I_{B1} = I_{B2} = 0.5 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ V_{BE(off)} = 1.9 \text{ V}, \end{split}$		30 20 12 25	ns ns ns
tr ts tf ton	Rise Time Storage Time Fall Time Turn-On Time	$\begin{split} &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ I_{C} = 50 \text{ mA}, \\ &I_{B1} = I_{B2} = 5.0 \text{ mA} \\ &V_{CC} = 6.0 \text{ V}, \ V_{BE(off)} = 1.9 \text{ V}, \\ &I_{C} = 50 \text{ mA}, \ I_{B1} = 5.0 \text{ mA} \\ &V_{CC} = 1.5 \text{ V}, \ I_{C} = 10 \text{ mA}, \\ &I_{B1} = I_{B2} = 0.5 \text{ mA} \end{split}$		30 20 12 25 60	ns ns ns ns

 $I_{B1} = I_{B2} = 0.5 \ mA$

NOTE: All voltages (V) and currents (A) are negative polarity for PNP transistors.

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

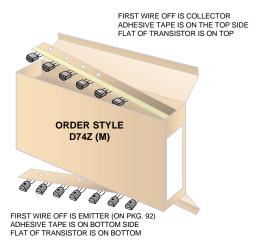


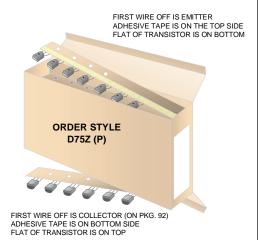
©2001 Fairchild Semiconductor Corporation

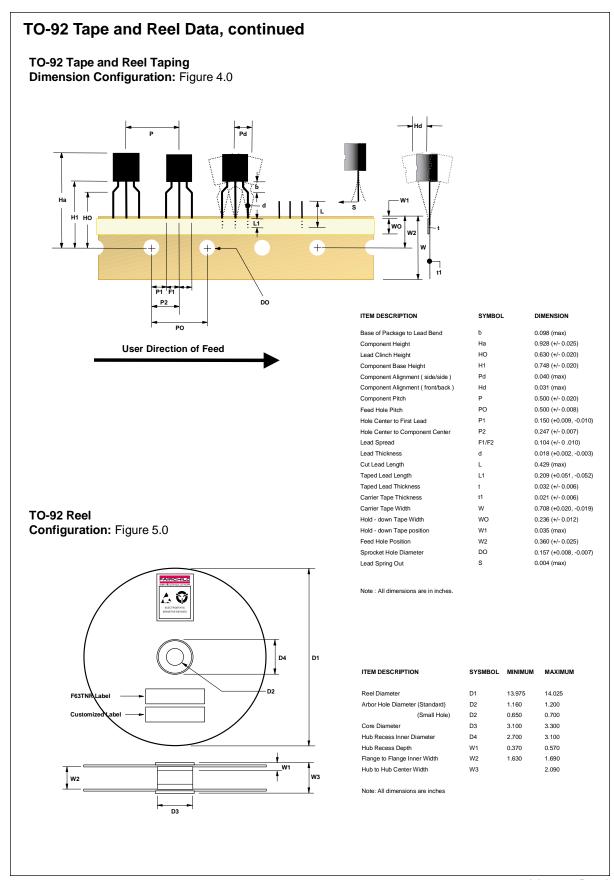
TO-92 Tape and Reel Data, continued

TO-92 Reeling Style Configuration: Figure 2.0

Machine Option "A" (H)

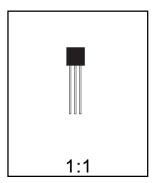



Style "A", D26Z, D70Z (s/h)

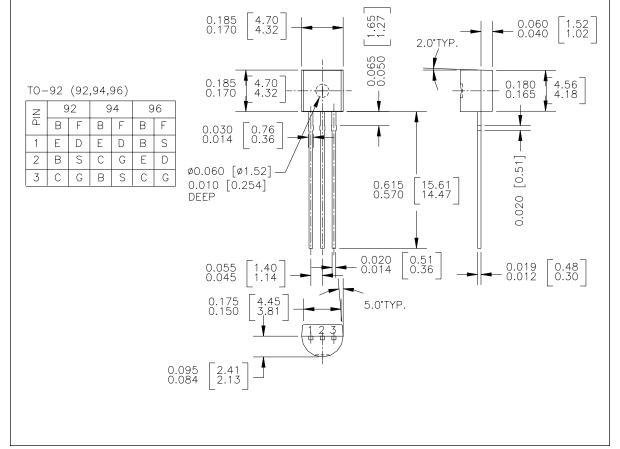

Machine Option "E" (J)

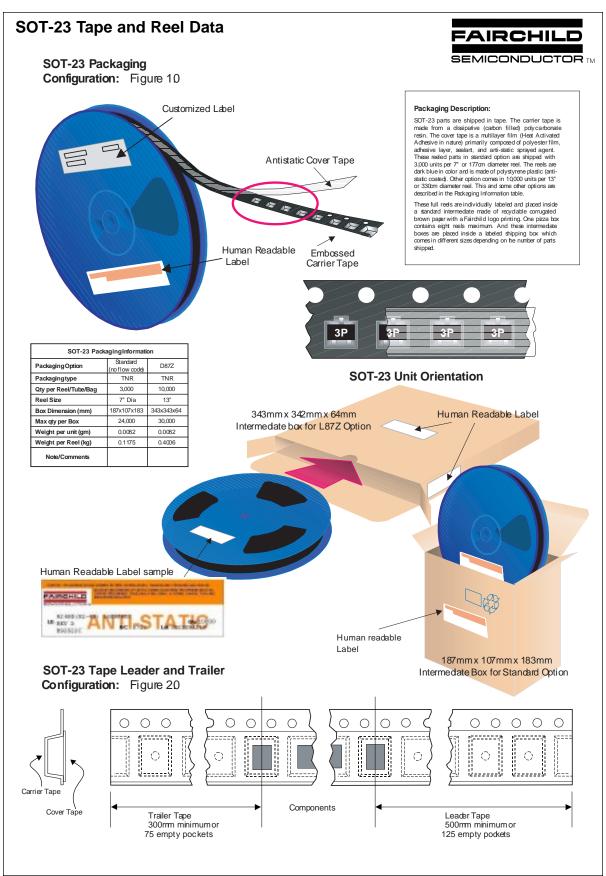
Style "E", D27Z, D71Z (s/h)

TO-92 Radial Ammo Packaging Configuration: Figure 3.0



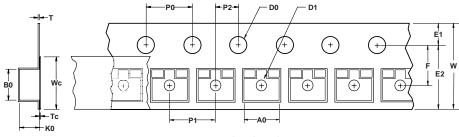
TO-92 Package Dimensions


TO-92 (FS PKG Code 92, 94, 96)


Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.1977

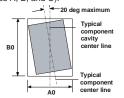
©2000 Fairchild Semiconductor International


January 2000, Rev. B

SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape

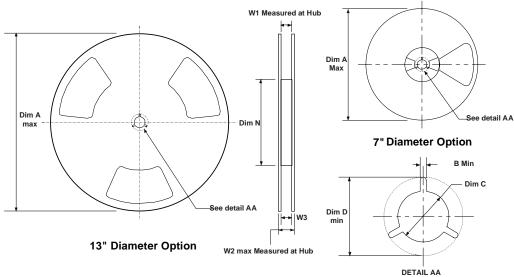
Configuration: Figure 3.0


User Direction of Feed	

Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
SOT-23 (8mm)	3.15 +/-0.10	2.77 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.30 +/-0.10	0.228 +/-0.013	5.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

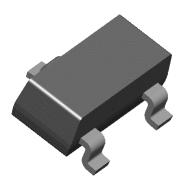
Sketch A (Side or Front Sectional View)
Component Rotation

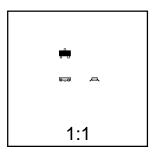

Sketch B (Top View)
Component Rotation

Sketch C (Top View)

Component lateral movement

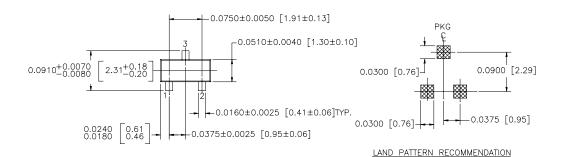
SOT-23 Reel Configuration: Figure 4.0

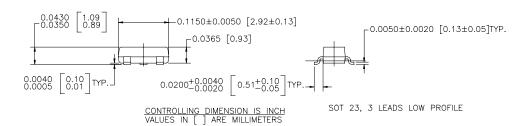



Dimensions are in inches and millimeters									
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

SOT-23 Package Dimensions

SOT-23 (FS PKG Code 49)





Scale 1:1 on letter size paper

Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0082

NOTE: UNLESS OTHERWISE SPECIFIED

- 1. STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993

©2000 Fairchild Semiconductor International

September 1998, Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™ DOME™ Quiet Series™

DOMETM ISOPLANARTM Quiet SeriesTM E²CMOSTM MICROWIRETM SILENT SWITCHER[®]

EnSignaTM OPTOLOGICTM SMART STARTTM
FACTTM OPTOPLANARTM SuperSOTTM-3
FACT Quiet SeriesTM PACMANTM SuperSOTTM-6
FAST ® POPTM SuperSOTTM-8

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.				

Rev. G