

Maximum Ratings

Storage Temperature	65°C to +150°C
Ambient Temperature with Power Applied	40°C to +85°C
Supply Voltage V _{CC}	0.5V to +7.0V
DC Switch Voltage V _{IN}	0.5V to V _{CC} +0.5V
Control Input Voltage V _S	0.5V to +7.0V
DC Output Current V _{OUT}	128mA
DC V_{CC} or Ground Current I_{CC} / I_{GND}	
Junction Temperature under Bias (TJ)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	
Power Dissipation (PD) @ +85°C	
ESD(HBM)	2000V

Note

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
V_{CC}	Operating Voltage	-	1.65	-	5.5	V
V_{S}	Control Input Voltage	1	0	-	5.5	V
$ m V_{IN}$	Switch Input Voltage	1	0	-	V_{CC}	V
V_{OUT}	Output Voltage	-	0	-	V_{CC}	V
T_A	Operating Temperature	-	-40	25	85	°C
+ +	Input Rise and Fall Time	Control Input $VCC = 2.3V - 3.6V$	0	-	10	ns/V
t_r, t_f	input Rise and Fan Time	Control Input $VCC = 4.5V - 5.5V$	0	-	5	ns/V

Note: Control input must be held HIGH or LOW; it must not float.

DC Electrical Characteristics

 $(T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ unless otherwise noted.})$

Parameter	Description	Test Conditions	Temperature (T _A :°C)	Min.	Тур.	Max.	Units
V_{IAR}	Analog Input Signal Range	V_{CC}	-40°C to 85°C	0	-	V_{CC}	V
		V_{CC} =4.5V, I_{O} = 30mA, V_{IN} = 0V		-	4	6	
		V_{CC} =4.5V, I_{O} =-30mA, V_{IN} =2.4V	25℃	-	5	8	
		V_{CC} =4.5V, I_{O} =-30mA, V_{IN} =4.5V		-	7	11	
		V_{CC} =4.5V, I_{O} =30mA, V_{IN} = 0V		-	-	6	
		V_{CC} =4.5V, I_{O} =-30mA, V_{IN} =2.4V	-40°C to 85°C	-	-	8	
		V_{CC} =4.5V, I_{O} =-30mA, V_{IN} =4.5V		-	-	11	
		V_{CC} =3.0V, I_{O} =24mA, V_{IN} =0V	25℃		5	8	
		V_{CC} =3.0V, I_{O} =-24mA, V_{IN} =3.0V	25 C	-	10	15	
R_{ON}	ON Resistance ⁽¹⁾	$V_{CC}=3.0V, I_{O}=24mA, V_{IN}=0V$	-40°C to 85°C	-	-	8	Ω
TON	ON Resistance	$V_{CC}=3.0V, I_{O}=-24mA, V_{IN}=3.0V$	10 0 10 05 0	-	-	15	32
		V_{CC} =2.3V, I_{O} =8mA, V_{IN} =0V	25°C	-	6	9]
		V_{CC} =2.3V, I_{O} =-8mA, V_{IN} =2.3V	25 C	-	13	20	
		$V_{CC}=2.3V, I_{O}=8mA, V_{IN}=0V$	-40°C to 85°C	-	-	9	
		V_{CC} =2.3V, I_{O} =-8mA, V_{IN} =2.3V	10 0 10 03 0	-	-	20	
		$V_{CC}=1.65V, I_{O}=4mA, V_{IN}=0V$	25°C	-	8	12	
		$V_{CC}=1.65V, I_{O}=-4mA, V_{IN}=1.65V$	25 C	-	20	30	
		$V_{CC}=1.65V, I_{O}=4mA, V_{IN}=0V$	-40°C to 85°C	-	-	12	
		$V_{CC}=1.65V, I_{O}=-4mA, V_{IN}=1.65V$	40 C 10 03 C	-	-	25	
	ON Resistance Match Between Channels ^(1,2,3)	V_{CC} =4.5V, I_A =-30mA, V_{Bn} =3.15V	25°C	-	0.15	-	Ω
ΔR_{ON}		V_{CC} =3.0V, I_{A} =-24mA, V_{Bn} =2.1V		-	0.2	-	
ДКОN		V_{CC} =2.3V, I_A =-8mA, V_{Bn} =1.6V			0.3	-	
		$V_{CC}=1.65V, I_A=-4mA, V_{Bn}=1.15V$		-	0.5	-	
	ON Resistance Flatness (1,2,4)	$V_{CC} = 5.0 \text{V}, I_A = -30 \text{mA}, 0 \le V_{Bn} \le V_{CC}$		-	6	-	Ω
		V_{CC} =3.3V, I_A =-		_	12	_	
R_{ONF}		$24\text{mA}, 0 \le V_{Bn} \le V_{CC}$	25°C	_	12	_	
		V_{CC} =2.5V, I_A =-8mA, $0 \le V_{Bn} \le V_{CC}$		-	22	-	
		$V_{CC}=1.8V, I_{A}=-4mA, 0 \le V_{Bn} \le V_{CC}$		-	90	-	
	Input High Voltage (Logic High Level)	V _{CC} =1.65V	-40°C to 85°C	1	-	-	
		$V_{CC} = 2.3V$		1.2	-	-	
$V_{_{ m IH}}$		$V_{CC} = 3V$		1.3	-	-	V
		$V_{CC} = 4.2V$		1.5	-	-	
		$V_{CC} = 5.5V$		1.8	-	-	
		V _{CC} =1.65V		-	-	0.4	V
	Input Low Voltage (Logic Low Level)	$V_{CC} = 2.3V$		-	-	0.6	
V_{IL}		$V_{CC} = 3V$	-40°C to 85°C	-	-	0.8	
		$V_{CC} = 4.2V$		-	-	1	
		$V_{CC} = 5.5V$		-	-	1.2	
ī	Input Leakage Current	$0 \le V_{IN} \le 5.5V$, $V_{CC} = 0V$ to $5.5V$	25°C	-	-	±0.1	μA
I_{LKC}			-40°C to 85°C	-	-	±1.0	μΑ
I	OFF State Leakage Current	$0 \le V_{IN} \le 5.5V$, $V_{CC} = 1.65V$ to $5.5V$	25℃		-	±0.1	^
I_{OFF}		0_V _{IN} _3.3 V, V _{CC} _1.03 V to 3.3 V	-40°Cto 85°C	-	-	±10	μA
т —	0: 10	All channels ON or OFF, $V_{IN} = V_{CC}$	25°C	-	-	1	
I_{CC}	Quiescent Supply Current	or GND, $I_{OUT}=0$, $V_{CC}=5.5V$	-40°C to 85°C	_	_	5	μA

Notes:

- 1. Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B).
- 2. Parameter is characterized but not tested in production.
- 3. $DR_{ON} = R_{ON} \text{ max} R_{ON} \text{ min.}$ measured at identical V_{CC} , temperature and voltage levels.
- 4. Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions. Guaranteed by design.

$\textbf{Capacitance}^{(1)}$

 $(T_A = 25$ °C, unless otherwise noted.)

Symbol	Parameter	rameter Test Conditions		Typ.	Max.	Units
C_{IN}	Control Input	$V_{CC} = 5.0V$	-	2.5	-	
C_{IO-B}	For B Port, Switch OFF		-	5.0	-	
C _{IOA-ON}	For A Port, Switch ON	$V_{CC} = 5.0V, f = 1 \text{ MHz}^{(1)}$	-	15.0	-	pF

Notes:

Switch and AC Characteristics (1)

Parameter	Description	Test Conditions	Supply Voltage	Temperature $(T_A: {}^{\bullet}C)$	Min.	Тур.	Max.	Units	
+		See test circuit diagrams 1	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$		-	0.7	-	-	
t PLH t PHL	Propagation Delay:A to Bn	and 2. V _I Open ⁽²⁾	$V_{CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$	–40 to 85°C	-	0.6	-		
			$V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		-	0.4	-		
		See test circuit diagrams 1 & 2. $V_I = 2V_{CC} \text{ for } t_{PZL},$ $V_I = 0V \text{ for } t_{PZH}$	$V_{CC} = 1.65V \text{ to } 1.95V$		-	9	-		
t _{PZL}	Output Enable Turn ON Time:		$V_{CC} = 2.3V \text{ to } 2.7V$	-40 to 85°C	-	5	-		
t_{PZH}	A to Bn		$V_{CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$	-40 to 85°C	-	3	-	-	
			$V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		-	2	-		
		See test circuit diagrams 1	See test circuit diagrams 1 $V_{CC} = 1.65 \text{V}$ to 1.95V	-40 to 85°C		-	9	-	ns
t _{PLZ} t _{PHZ}	Output Disable Turn OFF Time:A to Bn	and 2. V_I =2 V_{CC} for t_{PLZ} , V_I =0 V for t_{PHZ}	$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$		-	6	-	-	
			$V_{CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$		-	5	-		
			$V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		-	3	-		
t _{BM}	Break Before Make Time	See test circuit diagram 3.	$V_{CC} = 1.65V \text{ to } 1.95V$	-40 to 85℃	0.5	-	-		
			$V_{CC} = 2.3 \text{V to } 2.7 \text{V}$		0.5	-	-		
			$V_{CC} = 3.0 \text{V} \text{ to } 3.6 \text{V}$		0.5	-	-		
			$V_{CC} = 4.5 \text{V to } 5.5 \text{V}$		0.5	-	-		
	Q Charge Injection	C_L =0.1nF, V_{GEN} =0V, R_{GEN} =0 Ω See test circuit 4.	$V_{CC} = 5.0V$		-	5	-	_	
Q			$V_{CC} = 3.3V$	25℃	-	4	-	pC	
OIRR	Off Isolation	R_L =50 Ω , V_{GEN} =0 V , R_{GEN} =0 Ω , f =10 M Hz. See test circuit 5. (3)	$V_{CC} = 1.65 \text{V to } 5.5 \text{V}$	25℃	-	-63	-	dB	
X _{TALK}	Crosstalk Isolation	See test circuit 6. ⁽⁴⁾	$V_{CC} = 1.65 \text{V} \text{ to } 5.5 \text{V}$	25°C	-	-64	-		
f3dB	-3dB Bandwidth	See test circuit 9	V _{CC} =1.65V to 5.5V	25℃	-	350	-	MHz	

Notes:

- 1. Guaranteed by design.
- 2. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance, when driven by an ideal voltage source with zero output impedance.
- 3. Off Isolation = 20 Log $_{10}$ [v_{Bn}/v_{A}] and is measured in dB.
- 4. Crosstalk Isolation = 20 Log $_{10}$ [v_{B1}/v_{B0}] and is measured in dB.

^{1.} Capacitance is characterized but not tested in production

Test Circuits and Timing Diagrams

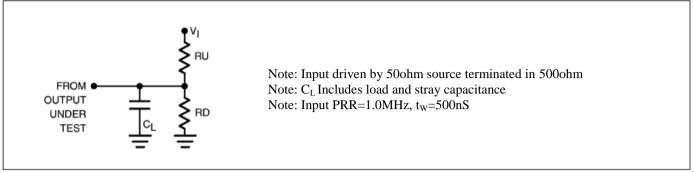


Figure 1. AC Test Circuit

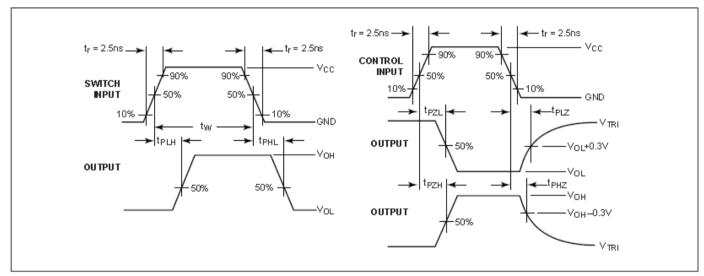


Figure 2. AC Waveforms

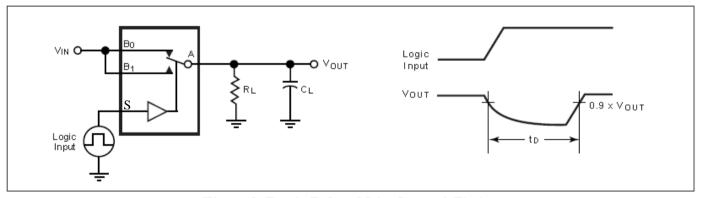


Figure 3. Break Before Make Interval Timing

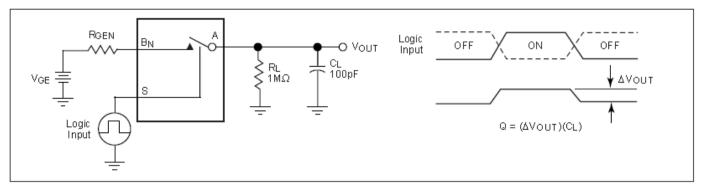


Figure 4. Charge Injection Test

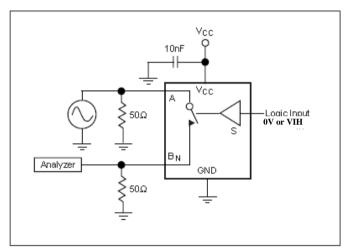


Figure 5. Off Isolation

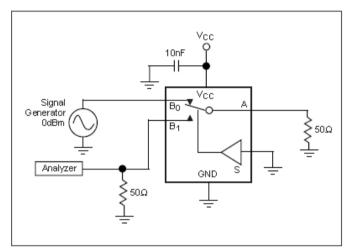


Figure 6. Crosstalk

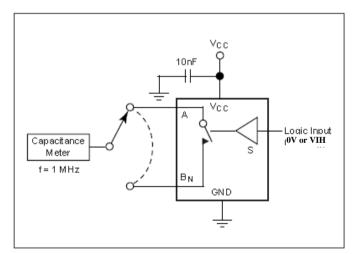


Figure 7. Channel Off Capacitance

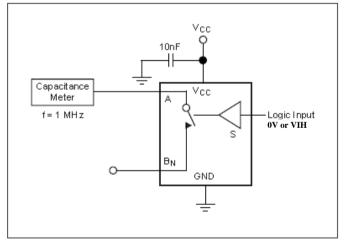


Figure 8. Channel On Capacitance

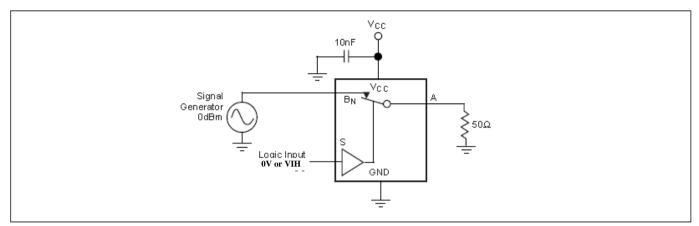
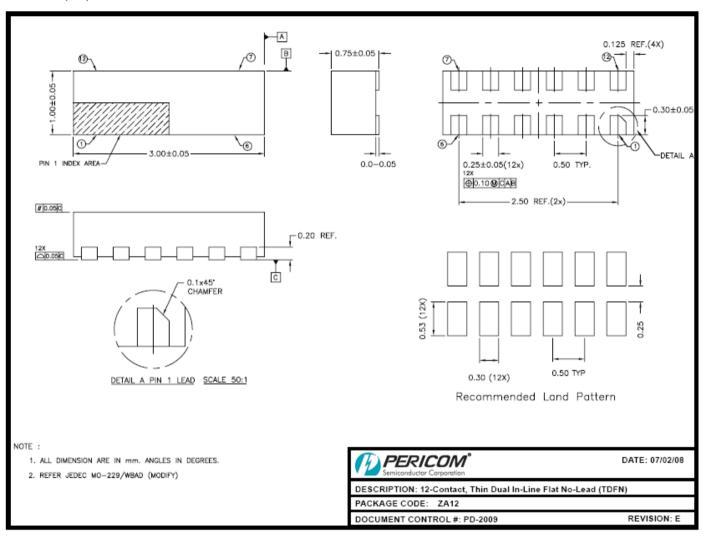


Figure 9. Bandwidth

Part Marking

ZA Package

kE: PI5A3158BZAE


Downloaded from Arrow.com.

Packaging Mechanical

12-TDFN (**ZA**)

For latest package info.

 $please\ check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/packaging/packaging-mechanicals-and-thermal-characteristics/packaging-packaging-mechanicals-and-thermal-characteristics/packaging-pack$

Ordering Information

Part Number	Package Code	Package	Top Marking
PI5A3158BZAEX	ZA	12-Contact, Thin Dual In-Line Flat No-Lead (TDFN)	kE

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- See http://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Thermal characteristics can be found on the company web site at www.diodes.com/design/support/packaging/
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY IURISDICTION)

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com