FAIRCHILD

SEMICONDUCTOR TM

MM74HC154 4-to-16 Line Decoder

General Description

The MM74HC154 decoder utilizes advanced silicon-gate CMOS technology, and is well suited to memory address decoding or data routing applications. It possesses high noise immunity, and low power consumption of CMOS with speeds similar to low power Schottky TTL circuits.

The MM74HC154 have 4 binary select inputs (A, B, C, and D). If the device is enabled these inputs determine which one of the 16 normally HIGH outputs will go LOW. Two active LOW enables (G1 and G2) are provided to ease cascading of decoders with little or no external logic.

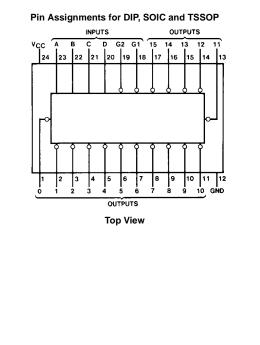
Each output can drive 10 low power Schottky TTL equivalent loads, and is functionally and pin equivalent to the 74LS154. All inputs are protected from damage due to static discharge by diodes to $V_{\rm CC}$ and ground.

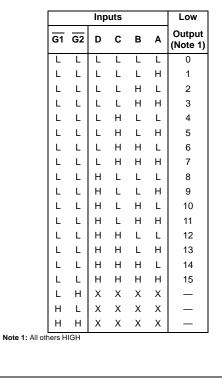
September 1983

Revised July 2003

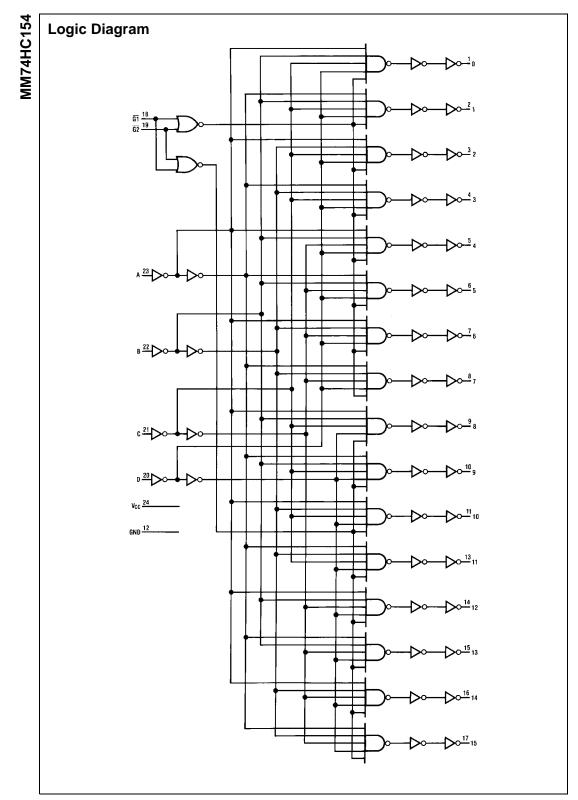
Features

- Typical propagation delay: 21 ns
- Power supply quiescent current: 80 μA
- Wide power supply voltage range: 2–6V
- Low input current: 1 μA maximum


Ordering Code:


Order Number	Package Number	Package Description
MM74HC154WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74HC154MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC154N	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagram

Truth Table

© 2003 Fairchild Semiconductor Corporation DS005122

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

•
-0.5 to +7.0V
-1.5 to V _{CC} $+1.5$ V
–0.5 to V_{CC} +0.5V
±20 mA
±25 mA
±50 mA
$-65^{\circ}C$ to $+150^{\circ}C$
600 mW
500 mW
260°C

	Min	Мах	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V_{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

MM74HC154

Note 2: Absolute Maximum Ratings are those values beyond which damage to the device may occur. Note 3: Unless otherwise specified all voltages are referenced to ground.

Note 4: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$		$T_A{=}{-}40$ to $85^\circ C$	Units
		Conditions	•cc	Тур	Guar	anteed Limits	Units
V _{IH}	Minimum HIGH		2.0V		1.5	1.5	
	Level Input		4.5V		3.15	3.15	V
	Voltage		6.0V		4.2	4.2	
V _{IL}	Maximum LOW		2.0V		0.5	0.5	
	Level Input		4.5V		1.35	1.35	V
	Voltage		6.0V		1.8	1.8	
V _{OH}	Minimum HIGH	$V_{IN} = V_{IH}$ or V_{IL}					
	Level Output	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	
	Voltage		4.5V	4.5	4.4	4.4	V
			6.0V	6.0	5.9	5.9	
		$V_{IN} = V_{IH}$ or V_{IL}					
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	V
V _{OL}	Maximum LOW	$V_{IN} = V_{IH}$ or V_{IL}					
	Level Output	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	
	Voltage		4.5V	0	0.1	0.1	V
			6.0V	0	0.1	0.1	
		$V_{IN} = V_{IH}$ or V_{IL}					
		I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	v
I _{IN}	Maximum	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	μA
	Input Current						
I _{CC}	Maximum	V _{IN} = V _{CC} or GND	6.0V		8.0	80	μA
	Quiescent	$I_{OUT} = 0 \ \mu A$					
	Supply Current						

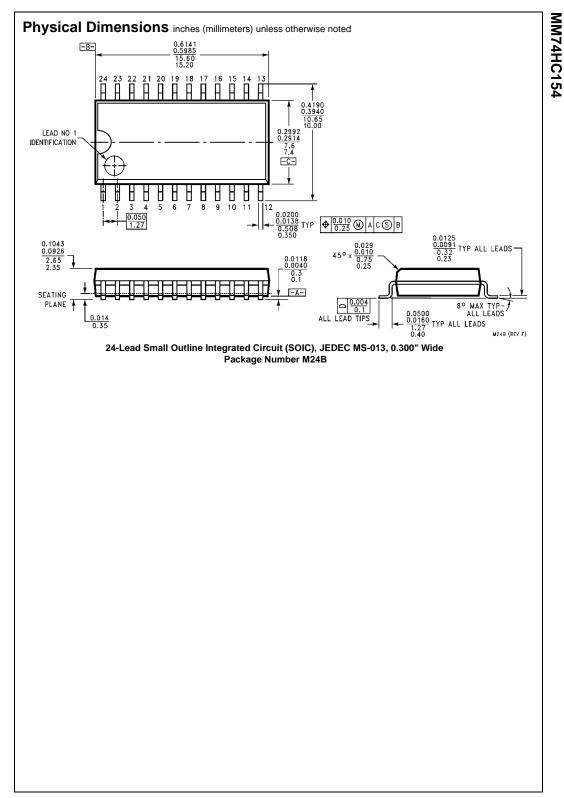
Note 5: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

www.fairchildsemi.com

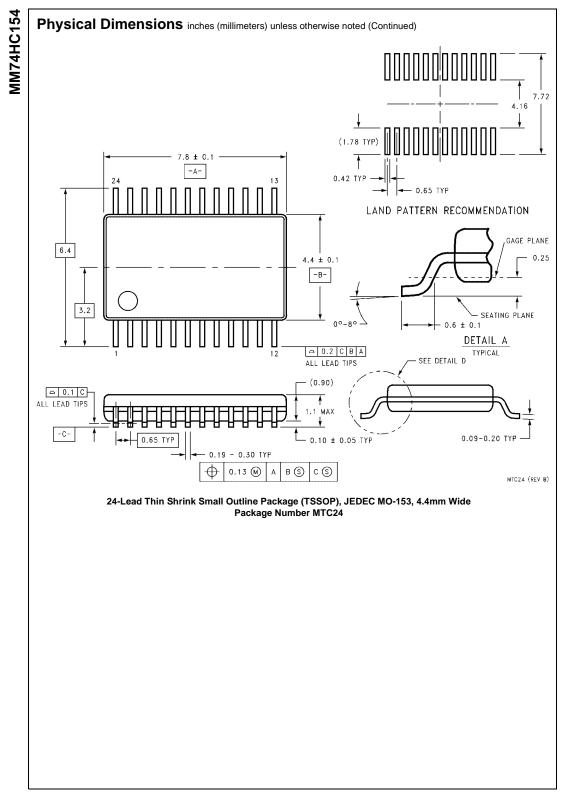
54
$\overline{\mathbf{G}}$
4H
M

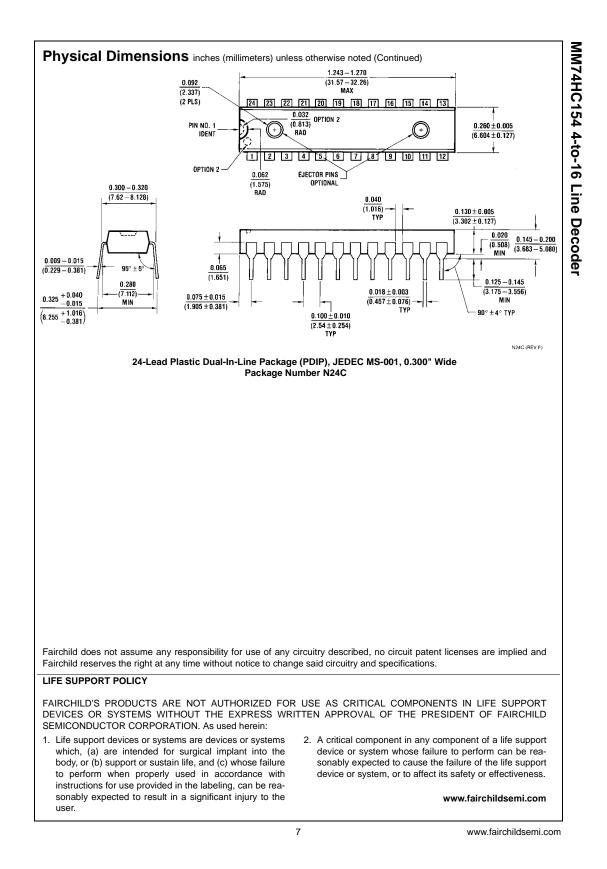
AC Electrical Characteristics

	$V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15 \text{ pF}$, $t_f = t_f = 6 \text{ ns}$							
ľ	Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units		
	t _{PHL} , t _{PLH}	Maximum Propagation Delay, $\overline{G1}$, $\overline{G2}$ or A, B, C, D		21	32	ns		


E AC Electrical Characteristics

 V_{CC} = 2.0V to 6.0V, C_L = 50 pF, t_r = t_f = 6 ns (unless otherwise specified)


Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_{A}=-40$ to $85^{\circ}C$	Units
				Тур	Guara	anteed Limits	Units
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	63	160	190	
	Delay, G1 or G2		4.5V	24	36	42	ns
	or A, B, C, D		6.0V	20	30	35	
t _{TLH} , t _{THL}	Maximum Output		2.0V	25	75	95	
	Rise and Fall Time		4.5V	7	15	19	ns
			6.0V	6	13	16	
C _{PD}	Power Dissipation		90			pF	
	Capacitance (Note 6)			90			рг
CIN	Maximum Input			5	10	10	۶Ē
	Capacitance			5	10	10	pF


Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

www.fairchildsemi.com

5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.