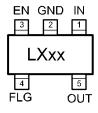
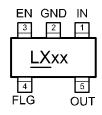
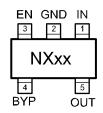
### **Ordering Information**


| Part N          | umber           | Marking  |              | Voltage** | Junction Temperature | Dookogo      |  |
|-----------------|-----------------|----------|--------------|-----------|----------------------|--------------|--|
| Standard        | Pb-Free         | Standard | Pb-Free*     | vollage   | Range                | Package      |  |
| MIC5256-1.5BM5  | MIC5256-1.5YM5  | LX15     | <u>LX</u> 15 | 1.5V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-1.8BM5  | MIC5256-1.8YM5  | LX18     | <u>LX</u> 18 | 1.8V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-2.5BM5  | MIC5256-2.5YM5  | LX25     | <u>LX</u> 25 | 2.5V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-2.6BM5  | MIC5256-2.6YM5  | LX26     | <u>LX</u> 26 | 2.6V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-2.7BM5  | MIC5256-2.7YM5  | LX27     | <u>LX</u> 27 | 2.7V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-2.8BM5  | MIC5256-2.8YM5  | LX28     | <u>LX</u> 28 | 2.8V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-2.85BM5 | MIC5256-2.85YM5 | LX2J     | <u>LX</u> 2J | 2.85V     | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-2.9BM5  | MIC5256-2.9YM5  | LX29     | <u>LX</u> 29 | 2.9V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-3.0BM5  | MIC5256-3.0YM5  | LX30     | <u>LX</u> 30 | 3.0V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-3.1BM5  | MIC5256-3.1YM5  | LX31     | <u>LX</u> 31 | 3.1V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-3.3BM5  | MIC5256-3.3YM5  | LX33     | <u>LX</u> 33 | 3.3V      | –40° to +125°C       | 5-Pin SOT23  |  |
| MIC5256-2.85BD5 | MIC5256-2.85YD5 | NX2J     | <u>NX</u> 2J | 2.85V     | –40° to +125°C       | 5-Pin TSOT23 |  |

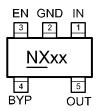
Notes:


\* Under bar symbol ( \_ ) may not be to scale.

\*\* Other Voltage available. Contact Micrel for details.


### **Pin Configuration**




MIC5256-x.xBM5 5-Pin SOT23



MIC5256-x.xYM5 5-Pin SOT23



MIC5256-x.xBD5 5-Pin Thin SOT23



MIC5256-x.xYD5 5-Pin Thin SOT23

## **Pin Description**

| Pin Number | Pin Name | Pin Name                                                                                                      |
|------------|----------|---------------------------------------------------------------------------------------------------------------|
| 1          | IN       | Supply Input.                                                                                                 |
| 2          | GND      | Ground.                                                                                                       |
| 3          | EN       | Enable/Shutdown (Input): CMOS compatible input. Logic high = enable; logic low = shutdown. Do not leave open. |
| 4          | FLG      | Error Flag (Output): Open-drain output. Active low indicates an output undervoltage condition.                |
| 5          | OUT      | Regulator Output.                                                                                             |

# Absolute Maximum Ratings<sup>(1)</sup>

| Supply Voltage (V <sub>IN</sub> )      | 0V to +7V                         |
|----------------------------------------|-----------------------------------|
| Enable Voltage (V <sub>EN</sub> )      | 0V to +7V                         |
| Power Dissipation (P <sub>D</sub> )    | Internally Limited <sup>(3)</sup> |
| Junction Temperature (T <sub>J</sub> ) | –40°C to +125°C                   |
| Storage Temperature (T <sub>s</sub> )  | –60°C to +150°C                   |
| Lead Temperature (soldering, 5 sec.)   | 260°C                             |
| EDS Rating <sup>(4)</sup>              | 2kV                               |

# **Operating Ratings**<sup>(2)</sup>

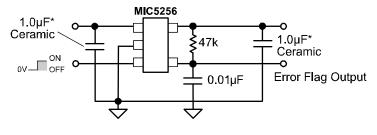
| Supply Voltage (V <sub>IN</sub> )      | +2.7V to +6V    |
|----------------------------------------|-----------------|
| Enable Voltage (V <sub>EN</sub> )      |                 |
| Junction Temperature (T <sub>J</sub> ) | –40°C to +125°C |
| Thermal Resistance                     |                 |
| SOT23-5 (θ <sub>JA</sub> )             | 235°C/W         |

## Electrical Characteristics<sup>(5)</sup>

 $V_{IN} = V_{OUT} + 1V$ ,  $V_{EN} = V_{IN}$ ;  $I_{OUT} = 100\mu A$ ;  $T_J = 25^{\circ}C$ , **bold** values indicate  $-40^{\circ}C \le T_J \le +125^{\circ}C$ ; unless noted.

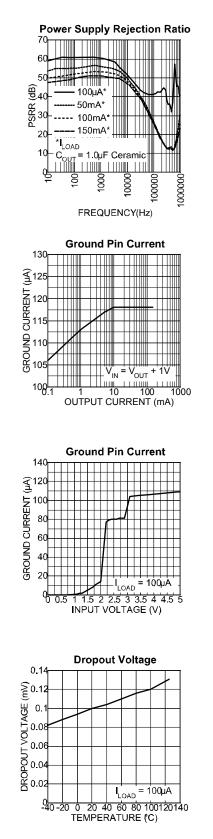
| Symbol                  | Parameter                          | Condition                                                                      | Min.     | Тур. | Max.              | Units    |
|-------------------------|------------------------------------|--------------------------------------------------------------------------------|----------|------|-------------------|----------|
| Vo                      | Output Voltage Accuracy            | I <sub>OUT</sub> = 100μA                                                       | -1<br>-2 |      | 1<br>2            | %<br>%   |
| $\Delta V_{\text{LNR}}$ | Line Regulation                    | $V_{IN} = V_{OUT} + 1V$ to 6V                                                  |          | 0.02 | 0.05              | %/V      |
| $\Delta V_{\text{LDR}}$ | Load Regulation                    | I <sub>OUT</sub> = 0.1mA to 150mA <sup>(6)</sup>                               |          | 1.5  | 2.5               | %        |
|                         |                                    | I <sub>OUT</sub> = 100μA                                                       |          | 0.1  | 5                 | mV       |
| V <sub>IN</sub> –       | Dropout Voltage <sup>(7)</sup>     | I <sub>OUT</sub> = 100mA                                                       |          | 90   | 150               | mV       |
| V <sub>OUT</sub>        | Diopout voltage                    | I <sub>OUT</sub> = 150mA                                                       |          | 135  | 200<br><b>250</b> | mV<br>mV |
| lq                      | Quiescent Current                  | V <sub>EN</sub> ≤ 0.4V (shutdown)                                              |          | 0.2  | 1                 | μA       |
| 1                       | Ground Pin Current <sup>(8)</sup>  | I <sub>OUT</sub> = 0mA                                                         |          | 90   | 150               | μA       |
| I <sub>GND</sub>        |                                    | I <sub>OUT</sub> = 150mA                                                       |          | 117  |                   | μA       |
|                         |                                    | $f = 10Hz, V_{IN} = V_{OUT} + 1V; C_{OUT} = 1.0\mu F$                          |          | 60   |                   | dB       |
| PSRR                    | Ripple Rejection                   | f = 100Hz, V <sub>IN</sub> = V <sub>OUT</sub> + 0.5V; C <sub>OUT</sub> = 1.0µF |          | 60   |                   | dB       |
|                         |                                    | $f = 10 \text{kHz}, V_{\text{IN}} = V_{\text{OUT}} + 0.5 \text{V}$             |          | 45   |                   | dB       |
| I <sub>LIM</sub>        | Current Limit                      | V <sub>OUT</sub> = 0V                                                          | 160      | 425  |                   | mV       |
| en                      | Output Voltage Noise               |                                                                                |          | TBD  |                   | μV(rms)  |
| Enable In               | put                                |                                                                                |          |      |                   |          |
| VIL                     | Enable Input Logic-Low Voltage     | $V_{IN}$ = 2.7V to 5.5V, regulator shutdown                                    |          |      | 0.4               | V        |
| V <sub>IH</sub>         | Enable Input Logic-High<br>Voltage | $V_{IN}$ = 2.7V to 5.5V, regulator enabled                                     | 1.6      |      |                   | V        |
| I <sub>EN</sub>         | Enable Input Current               | $V_{IL} \leq 0.4V$ , regulator shutdown                                        |          | 0.01 |                   | μA       |
|                         |                                    | $V_{IH} \ge 1.6V$ , regulator enabled                                          |          | 0.01 |                   | μA       |
|                         | Shutdown Resistance<br>Discharge   |                                                                                |          | 500  |                   | Ω        |

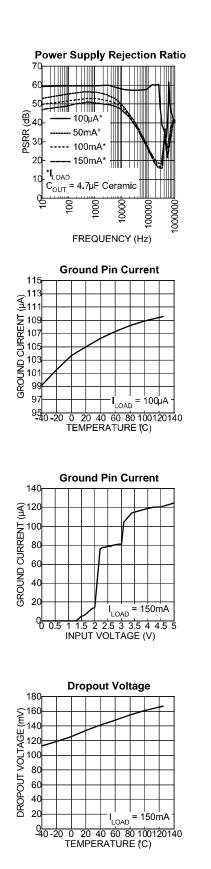
# Electrical Characteristics<sup>(5)</sup> (Continued)

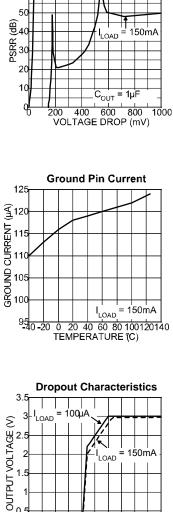

 $V_{IN} = V_{OUT} + 1V$ ,  $V_{EN} = V_{IN}$ ;  $I_{OUT} = 100\mu A$ ;  $T_J = 25^{\circ}C$ , **bold** values indicate  $-40^{\circ}C \le T_J \le +125^{\circ}C$ ; unless noted.

| Symbol          | Parameter                       | Condition                                                           | Min. | Тур. | Max. | Units  |
|-----------------|---------------------------------|---------------------------------------------------------------------|------|------|------|--------|
| Error Flag      |                                 |                                                                     |      |      |      |        |
| $V_{FLG}$       | Low Threshold<br>High Threshold | % of V <sub>OUT</sub> (Flag ON)<br>% of V <sub>OUT</sub> (Flag OFF) | 90   |      | 96   | %<br>% |
| V <sub>OL</sub> | Output Logic-Low Voltage        | $I_L = 100 \mu A$ , fault condition                                 |      | 0.02 | 0.1  | V      |
| I <sub>FL</sub> | Flag Leakage Current            | flag off, V <sub>FLG</sub> = 6V                                     |      | 0.01 |      | μA     |
| Thermal P       | Protection                      |                                                                     |      |      |      |        |
|                 | Thermal-Shutdown<br>Temperature |                                                                     |      | 150  |      | °C     |
|                 | Thermal-Shutdown Hysteresis     |                                                                     |      | 10   |      | °C     |

Notes:


- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- The maximum allowable power dissipation of any T<sub>A</sub> (ambient temperature) is P<sub>D(max)</sub> = T<sub>J(max)</sub>-T<sub>A</sub> / θ<sub>JA</sub>. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The θ<sub>JA</sub> of the MIC5255-x.xBM5 (all versions) is 235°C/W on a PC board (see "Thermal Considerations" section for further details).
- 4. Devices are ESD sensitive. Handling precautions recommended.
- 5. Specification for packaged product only.
- 6. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 150mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1Vdifferential. For outputs below 2.7V, dropout voltage is the input-to-output voltage differential with the minimum input voltage 2.7V. Minimum input operating voltage is 2.7V.
- 8. Ground pin current is the regulator quiescent current. The total current drawn from the supply is the sum of the load current plus the ground pin current.


## **Test Circuit**

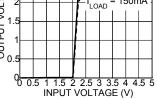


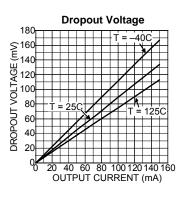

$$* C_{IN} = C_{OUT} = 1 \mu F$$

## **Typical Characteristics**

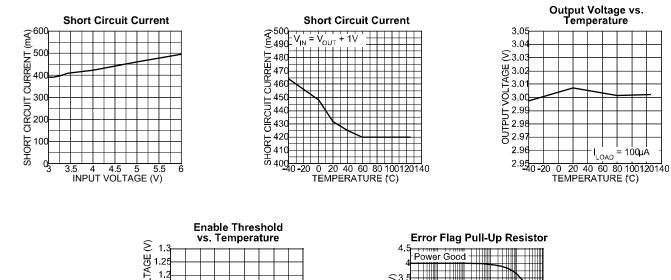


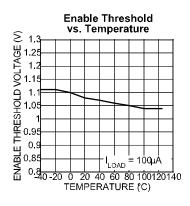




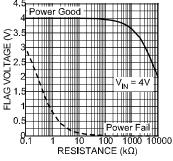


PSRR vs. Voltage Drop

= 100µİA


7(

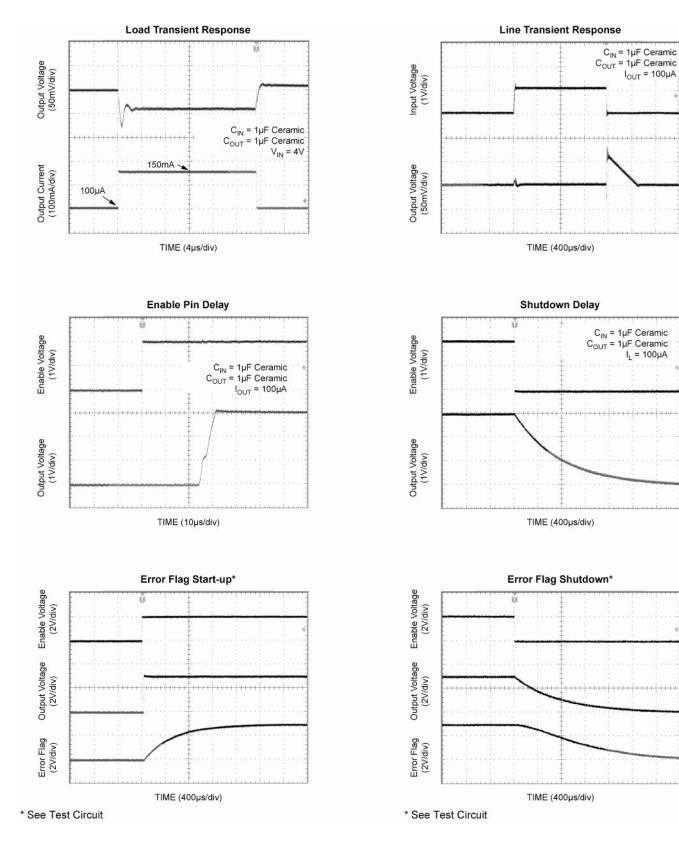

LOAD 60





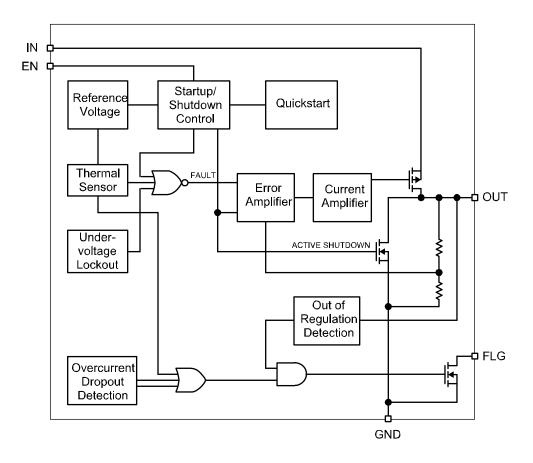

## **Typical Characteristics (Continued)**











I<sub>L</sub> = 100µA

### **Functional Characteristics**



August 2010

### **Functional Diagram**



### Application Information

#### Enable/Shutdown

The MIC5256 comes with an active-high enable pin that allows the regulator to be disabled. Forcing the enable pin low disables the regulator and sends it into a "zero" off-mode-current state. In this state, current consumed by the regulator goes nearly to zero. Forcing the enable pin high enables the output voltage. This part is CMOS and the enable pin cannot be left floating; a floating enable pin may cause an indeterminate state on the output.

#### Input Capacitor

The MIC5256 is a high-performance, high-bandwidth device. Therefore, it requires a well-bypassed input supply for optimal performance. A  $1\mu$ F capacitor is required from the input to ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small valued NPO dielectric type capacitors, help filter out high frequency noise and are good practice in any RF based circuit.

#### **Output capacitor**

The MIC5256 requires an output capacitor for stability. The design requires  $1\mu$ F or greater on the output to maintain stability. The design is optimized for use with low-ESR ceramic-chip capacitors. High-ESR capacitors may cause high-frequency oscillation. The maximum recommended ESR is  $300m\Omega$ . The output capacitor can be increased, but performance has been optimized for a  $1\mu$ F ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric-type ceramic capacitors are recommended because of their temperature performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60% respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

### Error Flag

The error flag output is an active-low, open-drain output that drives low when a fault condition AND an undervoltage detection occurs. Internal circuitry intelligently monitors overcurrent, overtemperature and dropout conditions and ORs these outputs together to indicate some fault condition. The output of that OR gate is ANDed with an output voltage monitor that detects an undervoltage condition. That output drives the opendrain transistor to indicate a fault. This prevents chattering or inadvertent triggering of the error flag. The error flag must be pulled-up using a resistor from the flag pin to either the input or the output.

The error flag circuit was designed essentially to work with a capacitor to ground to act as a power-on reset generator, signaling a power-good situation once the regulated voltage was up and/or out of a fault condition. This capacitor delays the error signal from pulling high, allowing the down stream circuits time to stabilize. When the error flag is pulled-up to the input without using a pull-down capacitor, then there can be a glitch on the error flag upon start up of the device. This is due to the response time of the error flag circuit as the device starts up. When the device comes out of the "zero" off mode current state, all the various nodes of the circuit power up before the device begins supplying full current to the output capacitor. The error flag drives low immediately and then releases after a few microseconds. The intelligent circuit that triggers an error detects the output going into current limit AND the output being low while charging the output capacitor. The error output then pulls low for the duration of the turn-on time. A capacitor from the error flag to ground will filter out this glitch. The glitch does not occur if the error flag pulled up to the output.

#### Active Shutdown

The MIC5256 also features an active shutdown clamp, which is an N-channel MOSFET that turns on when the device is disabled. This allows the output capacitor and load to discharge, de-energizing the load.

#### No Load Stability

The MIC5256 will remain stable and in regulation with no load unlike many other voltage regulators. This is especially important in CMOS RAM keep-alive applications.

### **Thermal Considerations**

The MIC5256 is designed to provide 150mA of continuous current in a very small package. Maximum power dissipation can be calculated based on the output current and the voltage drop across the part. To determine the maximum power dissipation of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

$$P_{D(max)} = \left(\frac{T_{J(max)} - T_{A}}{\theta_{JA}}\right)$$

 $T_{J(max)}$  is the maximum junction temperature of the die, 125°C, and  $T_A$  is the ambient operating temperature.  $\theta_{JA}$ is layout dependent; Table 1 shows examples of junction-to-ambient thermal resistance for the MIC5256.

| Package               | <b>θ</b> <sub>JA</sub> Recommended<br>Minimum Footprint | θ <sub>JA</sub> 1" Square<br>Copper Clad | θ <sub>JC</sub> |
|-----------------------|---------------------------------------------------------|------------------------------------------|-----------------|
| SOT23-5<br>(M5 or D5) | 235°C/W                                                 | 185°C/W                                  | 145°C/W         |

Table 1. SOT-23-5 Thermal Resistance

The actual power dissipation of the regulator circuit can be determined using the equation:

$$P_{D} = (V_{IN} - V_{OUT}) I_{OUT} + V_{IN} I_{GND}$$

Substituting  $P_{D(max)}$  for  $P_D$  and solving for the operating conditions that are critical to the application will give the maximum operating conditions for the regulator circuit. For example, when operating the MIC5256-3.0BM5 at 50°C with a minimum footprint layout, the maximum input voltage for a set output current can be determined as follows:

$$P_{D(max)} = \left(\frac{125^{\circ}C - 50^{\circ}C}{235^{\circ}C/W}\right)$$
$$P_{D(max)} = 315mW$$

The junction-to-ambient thermal resistance for the minimum footprint is 235°C/W, from Table 1. The maximum power dissipation must not be exceeded for proper operation. Using the output voltage of 3.0V and an output current of 150mA, the maximum input voltage

can be determined. Because this device is CMOS and the ground current is typically  $100\mu$ A over the load range, the power dissipation contributed by the ground current is < 1% and can be ignored for this calculation.

$$315mW = (V_{IN} - 3.0V) 150mA$$
  
 $315mW = V_{IN} \cdot 150mA - 450mW$   
 $810mW = V_{IN} \cdot 150mA$   
 $V_{IN(max)} = 5.4V$ 

Therefore, a 3.0V application at 150mA of output current can accept a maximum input voltage of 5.4V in a SOT-23-5 package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the "Regulator Thermals" section of Micrel's *Designing with Low-Dropout Voltage Regulators* handbook.

#### **Fixed Regulator Applications**

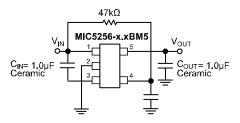
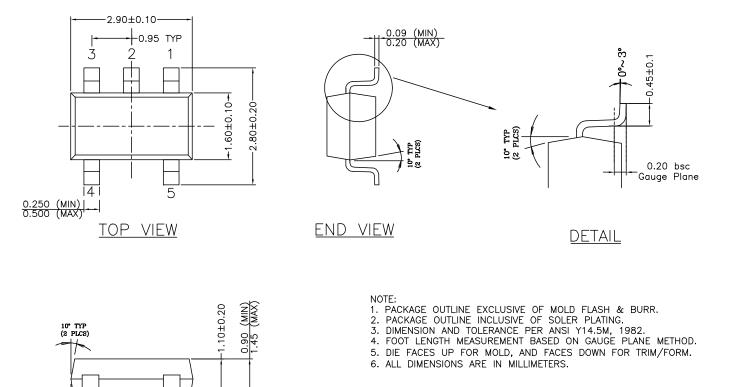



Figure 1. Low-Noise Fixed Voltage Application


Figure 1 shows a standard low-noise configuration with a  $47k\Omega$  pull-up resistor from the error flag to the input voltage and a pull-down capacitor to ground for the purpose of fault indication. EN (Pin 3) is connected to IN (Pin 1) for an application where enable/shutdown is not required. C<sub>OUT</sub> = 1.0µF minimum.

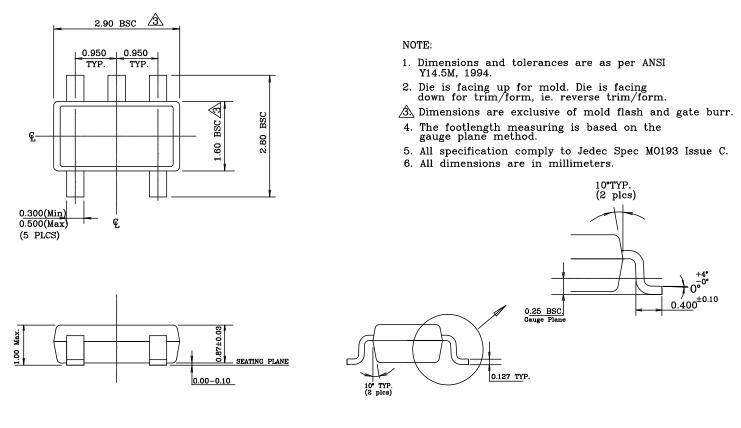
Downloaded from Arrow.com.

### **Package Information**

10° TYP (2 PLCS)

SIDE VIEW




5-Pin SOT (M5)

SEATING PLANE

0.00 (MIN) 0.15 (MAX)

1

### Package Information (Continued)



5-Pin Thin SOT (D5)

#### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB <u>http://www.micrel.com</u>

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.