
ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

Consult factory for Industrial and Military grades.

ELECTRICAL CHARACTERISTICS

 $T_A = 25^{\circ}C$, $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_0 = half supply$, $V_{\overline{SHDN}} = V^+$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage	V _{CM} = V ⁺		25	90	μV
		$V_{CM} = V^-$		25	90	μV
ΔV_{0S}	Input Offset Voltage Shift	$V_{CM} = V^- \text{ to } V^+$		15	70	μV
I _B	Input Bias Current	V _{CM} = V ⁺		30	70	nA
		$V_{CM} = V^-$	-70	-18		nA
Δl_{B}	Input Bias Current Shift	$V_{CM} = V^- \text{ to } V^+$		50	140	nA
I _{OS}	Input Offset Current	V _{CM} = V ⁺		5	18	nA
		$V_{CM} = V^-$		2	18	nA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- \text{ to } V^+$		5	18	nA
en	Input Noise Voltage Density	f = 1kHz		33		nV/√Hz
in	Input Noise Current Density	f = 1kHz		0.09		pA/√Hz
A _{VOL}	Large-Signal Voltage Gain	$V_S = 5V$, $V_0 = 50$ mV to 4.8V, $R_L = 10$ k	250	1000		V/mV
		$V_S = 3V$, $V_0 = 50$ mV to 2.8V, $R_L = 10$ k	200	750		V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V, V_{CM} = V^- \text{ to } V^+$	97	110		dB
		$V_S = 3V, V_{CM} = V^- \text{ to } V^+$	92	106		dB
PSRR	Power Supply Rejection Ratio	$V_S = 2.3V$ to 12V, $V_{CM} = 0V$, $V_0 = 0.5V$	90	100		dB
V_{OL}	Output Voltage Swing LOW	No Load		4	12	mV
		$I_{SINK} = 0.5 mA$		45	90	mV
		I _{SINK} = 2.5mA		120	240	mV
V_{OH}	Output Voltage Swing HIGH	No Load	V+ - 0.012	$V^{+} - 0.003$		V
		I _{SOURCE} = 0.5mA	V ⁺ – 0.130	V ⁺ - 0.065		V
		I _{SOURCE} = 2.5mA	V ⁺ - 0.400	V ⁺ – 0.210		V
I _{SC}	Short-Circuit Current	V _S = 5V	5	10		mA
		V _S = 3V	4	7		mA
Is	Supply Current	V _S = 5V		370	420	μA
		V _S = 3V		370	410	μA
	Positive Supply Current, SHDN	$V_S = 5V$, $V_{\overline{SHDN}} = 0V$		9	30	μA
		$V_S = 3V$, $V_{\overline{SHDN}} = 0V$		6	20	μA

 $T_A = 25^{\circ}C$, $V_S = 5V$, OV; $V_S = 3V$, OV; $V_{CM} = V_0 = half supply$, $V_{\overline{SHDN}} = V^+$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
SR	Slew Rate (LT1218/LT1218L)	$A_V = -1$		0.10		V/µs
	(LT1219/LT1219L)	$A_V = -1$		0.05		V/µs
GBW	Gain Bandwidth Product					
	(LT1218/LT1218L)	$A_V = 1000$		0.30		MHz
	(LT1219/LT1219L)	$A_V = 1000$		0.15		MHz

$0^{\circ}C \leq T_{A} \leq 70^{\circ}C, \ V_{S} = 5V, \ 0V; \ V_{S} = 3V, \ 0V; \ V_{CM} = V_{O} = half \ supply, \ V_{\overline{SHDN}} = V^{+}, \ unless \ otherwise \ noted.$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	$V_{CM} = V^+$ $V_{CM} = V^-$	•		75 75	200 200	μV μV
V _{OS} TC	Input Offset Drift	(Note 2)	•		1	3	μV/°C
ΔV_{0S}	Input Offset Voltage Shift	$V_{CM} = V^- \text{ to } V^+$	•		25	80	μV
I _B	Input Bias Current	$V_{CM} = V^+$ $V_{CM} = V^-$	•	-75	30 -18	75	nA nA
Δl_B	Input Bias Current Shift	$V_{CM} = V^- \text{ to } V^+$	•		50	150	nA
I _{OS}	Input Offset Current	$V_{CM} = V^+$ $V_{CM} = V^-$	•		5 3	25 25	nA nA
ΔI_{0S}	Input Offset Current Shift	V _{CM} = V ⁻ to V ⁺	•		5	25	nA
A _{VOL}	Large-Signal Voltage Gain	$V_S = 5V$, $V_0 = 50$ mV to 4.8V, $R_L = 10$ k $V_S = 3V$, $V_0 = 50$ mV to 2.8V, $R_L = 10$ k	•	250 150	1000 750		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^- \text{ to } V^+$ $V_S = 3V$, $V_{CM} = V^- \text{ to } V^+$	•	96 91	104 106		dB dB
PSRR	Power Supply Rejection Ratio	$V_S = 2.3V$ to 12V, $V_{CM} = 0V$, $V_0 = 0.5V$	•	88	100		dB
V _{OL}	Output Voltage Swing LOW	No Load I _{SINK} = 0.5mA I _{SINK} = 2.5mA	•		4 45 130	14 100 290	mV mV mV
V _{OH}	Output Voltage Swing HIGH	No Load I _{SOURCE} = 0.5mA I _{SOURCE} = 2.5mA	•	V ⁺ - 0.014 V ⁺ - 0.150 V ⁺ - 0.480	V ⁺ - 0.004 V ⁺ - 0.075 V ⁺ - 0.240		V V V
I _{SC}	Short-Circuit Current	$V_S = 5V$ $V_S = 3V$	•	4 3	7 6		mA mA
I _S	Supply Current	$V_S = 5V$ $V_S = 3V$	•		370 370	485 475	μA μA
	Positive Supply Current, SHDN	$V_S = 5V$, $V_{\overline{SHDN}} = 0V$ $V_S = 3V$, $V_{\overline{SHDN}} = 0V$	•		9 6	36 26	μA μA

$-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ V_{S} = 5V, \ 0V; \ V_{S} = 3V, \ 0V; \ V_{CM} = V_{0} = half \ supply, \ V_{\overline{SHDN}} = V^{+}, \ unless \ otherwise \ noted. \ (Note \ 3)$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage	$V_{CM} = V^+ - 0.15$	•			400	μV
		$V_{CM} = V^- + 0.15$	•			400	μV
V _{OS} TC	Input Offset Drift	(Note 2)	•		1	4	μV/°C
ΔV_{OS}	Input Offset Voltage Shift	$V_{CM} = V^+ - 0.15 \text{ to } V^- + 0.15$	•		30	105	μV
$\overline{I_B}$	Input Bias Current	$V_{CM} = V^+ - 0.15$	•			80	nA
		$V_{CM} = V^- + 0.15$	•	-80			nA
Δl_{B}	Input Bias Current Shift	$V_{CM} = V^+ - 0.15 \text{ to } V^- + 0.15$	•			160	nA
I _{OS}	Input Offset Current	$V_{CM} = V^+ - 0.15$	•			40	nA
		$V_{CM} = V^- + 0.15$	•			40	nA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^+ - 0.15 \text{ to } V^- + 0.15$	•			40	nA

 $-40^{\circ}C \leq T_{A} \leq 85^{\circ}C, \ V_{S} = 5V, \ 0V; \ V_{S} = 3V, \ 0V; \ V_{CM} = V_{0} = half \ supply, \ V_{\overline{SHDN}} = V^{+}, \ unless \ otherwise \ noted. \ (Note \ 3)$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
A _{VOL}	Large-Signal Voltage Gain	$V_S = 5V$, $V_0 = 50$ mV to 4.8V, $R_L = 10$ k $V_S = 3V$, $V_0 = 50$ mV to 2.8V, $R_L = 10$ k	•	150 100	500 500		V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^+ - 0.15$ to $V^- + 0.15$ $V_S = 3V$, $V_{CM} = V^+ - 0.15$ to $V^- + 0.15$	•	93 88	102 100		dB dB
PSRR	Power Supply Rejection Ratio	$V_S = 2.3V$ to 12V, $V_{CM} = 0V$, $V_0 = 0.5V$	•	86	100		dB
V _{OL}	Output Voltage Swing LOW	No Load I _{SINK} = 0.5mA I _{SINK} = 2.5mA	•		5 50 130	15 105 300	mV mV mV
V _{OH}	Output Voltage Swing HIGH	No Load I _{SOURCE} = 0.5mA I _{SOURCE} = 2.5mA	•	V ⁺ - 0.015 V ⁺ - 0.160 V ⁺ - 0.500	V ⁺ - 0.004 V ⁺ - 0.070 V ⁺ - 0.250		mV mV mV
I _{SC}	Short-Circuit Current	V _S = 5V V _S = 3V	•	4 3	7 7		mA mA
I _S	Supply Current	V _S = 5V V _S = 3V	•		410 400	505 495	μA μA
	Positive Supply Current, SHDN	$V_S = 5V$, $V_{\overline{SHDN}} = 0V$ $V_S = 3V$, $V_{\overline{SHDN}} = 0V$	•		15 13	50 40	μA μA

LT1218L/LT1219L only; T_A = 25°C, V_S = \pm 5V, V_{CM} = 0V, V₀ = 0V, V_{SHDN} = 5V, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V_{OS}	Input Offset Voltage	V _{CM} = V ⁺		35	140	μV
		$V_{CM} = V^-$		35	140	μV
ΔV_{OS}	Input Offset Voltage Shift	$V_{CM} = V^- \text{ to } V^+$		20	70	μV
I _B	Input Bias Current	V _{CM} = V ⁺		30	70	nA
		$V_{CM} = V^-$	-70	-18		nA
Δl_B	Input Bias Current Shift	$V_{CM} = V^- \text{ to } V^+$		50	140	nA
I _{OS}	Input Offset Current	$V_{CM} = V^+$		5	18	nA
		$V_{CM} = V^-$		2	18	nA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- \text{ to } V^+$		5	18	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = -4.7V$ to 4.7V, $R_L = 10k$	500	2800		V/mV
		$V_0 = -4.5V$ to 4.5V, $R_L = 2k$	300	1300		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$	103	114		dB
V_{OL}	Output Voltage Swing LOW	No Load		$V^- + 0.004$	$V^- + 0.012$	V
		I _{SINK} = 0.5mA		$V^- + 0.045$	$V^- + 0.090$	V
		I _{SINK} = 5mA		V ⁻ + 0.180	V ⁻ + 0.525	V
V_{OH}	Output Voltage Swing HIGH	No Load	V+ - 0.012	$V^+ - 0.003$		V
		I _{SOURCE} = 0.5mA	V+ - 0.130	V ⁺ – 0.065		V
		I _{SOURCE} = 5mA	V ⁺ – 0.800	V ⁺ – 0.350		V
I _{SC}	Short-Circuit Current		6	12		mA
Is	Supply Current			400	430	μΑ
	Positive Supply Current, SHDN	V _{SHDN} = 0V		10	40	μΑ
SR	Slew Rate (LT1218/LT1218L)	$A_V = -1$, $R_L = Open$, $V_0 = \pm 3.5V$	0.06	0.10		V/µs
	(LT1219/LT1219L)	$A_V = -1$, $R_L = Open$, $V_0 = \pm 3.5V$	0.03	0.05		V/µs
GBW	Gain-Bandwidth Product					
	(LT1218/LT1218L)	A _V = 1000	0.2	0.30		MHz
	(LT1219/LT1219L)	A _V = 1000	0.1	0.15		MHz

 $LT1218L/LT1219L \ only; \ 0^{\circ}C \leq T_{A} \leq 70^{\circ}C, \ V_{S} = \pm 5V, \ V_{CM} = 0V, \ V_{0} = 0V, \ V_{\overline{SHDN}} = 5V, \ unless \ otherwise \ noted.$

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage	V _{CM} = V ⁺	•		100	250	μV
		V _{CM} = V ⁻	•		100	250	μV
ΔV_{0S}	Input Offset Voltage Shift	V _{CM} = V ⁻ to V ⁺	•		30	90	μV
I _B	Input Bias Current	V _{CM} = V ⁺	•		30	75	nA
		$V_{CM} = V^-$	•	-75	-18		nA
Δl_{B}	Input Bias Current	$V_{CM} = V^- \text{ to } V^+$	•		50	150	nA
I _{OS}	Input Offset Current	V _{CM} = V ⁺	•		5	25	nA
		$V_{CM} = V^-$	•		3	25	nA
Δl_{0S}	Input Offset Current Shift	$V_{CM} = V^- \text{ to } V^+$	•		5	20	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = -4.7V$ to 4.7V, $R_L = 10k$	•	375	2800		V/mV
		$V_0 = -4.5V$ to 4.5V, $R_L = 2k$	•	275	1300		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$	•	100	110		dB
V_{0L}	Output Voltage Swing LOW	No Load	•		$V^- + 0.004$	$V^- + 0.014$	V
		I _{SINK} = 0.5mA	•		$V^- + 0.045$	$V^- + 0.100$	V
		I _{SINK} = 5mA	•		$V^- + 0.200$	$V^- + 0.580$	V
V_{OH}	Output Voltage Swing HIGH	No Load	•	V+ - 0.014	$V^{+} - 0.004$		V
		I _{SOURCE} = 0.5mA	•	V ⁺ – 0.150	$V^+ - 0.075$		V
		I _{SOURCE} = 5mA	•	V+ - 0.920	$V^{+} - 0.450$		V
I_{SC}	Short-Circuit Current		•	5	10		mA
I _S	Supply Current		•		400	495	μА
	Positive Supply Current, SHDN	V _{SHDN} = 0V	•		11	54	μΑ

LT1218L, LT1219L only; $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, $V_S = \pm 5V$; $V_{CM} = 0V$, $V_0 = 0V$, $V_{\overline{SHDN}} = 5V$, unless otherwise noted. (Note 3)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{V_{OS}}$	Input Offset Voltage	$V_{CM} = V^+ - 0.15$	•		125	500	μV
		$V_{CM} = V^- + 0.15$	•		125	500	μV
ΔV_{OS}	Input Offset Voltage Shift	$V_{CM} = V^+ - 0.15$ to $V^- + 0.15$	•		35	120	μV
I _B	Input Bias Current	$V_{CM} = V^+ - 0.15$	•			80	nA
		$V_{CM} = V^- + 0.15$	•	-80			nA
Δl_{B}	Input Bias Current	$V_{CM} = V^+ - 0.15$ to $V^- + 0.15$	•			160	nA
I _{0S}	Input Offset Current Shift	$V_{CM} = V^+ - 0.15$	•			40	nA
		$V_{CM} = V^- + 0.15$	•			40	nA
Δl_{0S}	Input Offset Current Shift	$V_{CM} = V^+ - 0.15 \text{ to } V^- + 0.15$	•			40	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = -4.7V$ to 4.7V, $R_L = 10k$	•	300	2000		V/mV
		$V_0 = -4.5V$ to 4.5V, $R_L = 2k$	•	200	600		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^+ - 0.15 \text{ to } V^- + 0.15$	•	98	109		dB
V_{OL}	Output Voltage Swing LOW	No Load	•		V-+0.005	V-+ 0.015	V
		I _{SINK} = 0.5mA	•		$V^- + 0.050$	$V^- + 0.105$	V
		I _{SINK} = 2.5mA	•		V ⁻ + 0.200	V ⁻ + 0.620	V
V_{OH}	Output Voltage Swing HIGH	No Load	•	V ⁺ – 0.015	$V^{+} - 0.004$		V
		I _{SOURCE} = 0.5mA	•	V+ - 0.160	$V^+ - 0.070$		V
		I _{SOURCE} = 2.5mA	•	V ⁺ – 1.000	$V^+ - 0.400$		V
I _{SC}	Short-Circuit Current		•	5	10		mA
Is	Supply Current		•		420	525	μΑ
	Positive Supply Current, SHDN	$V_{\overline{SHDN}} = 0V$	•		18	60	μA

LT1218/LT1219 only; T_A = 25°C, V_S = ± 15 V, V_{CM} = 0V, V_0 = 0V, $V_{\overline{SHDN}}$ = 15V, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{V_{OS}}$	Input Offset Voltage	V _{CM} = V ⁺		85	200	μV
		$V_{CM} = V^-$		85	200	μV
ΔV_{OS}	Input Offset Voltage Shift	$V_{CM} = V^- \text{ to } V^+$		30	70	μV
I_{B}	Input Bias Current	V _{CM} = V ⁺		30	70	nA
		$V_{CM} = V^-$	-70	-18		nA
Δl_{B}	Input Bias Current	$V_{CM} = V^- \text{ to } V^+$		50	140	nA
I _{OS}	Input Offset Current	V _{CM} = V ⁺		5	18	nA
		$V_{CM} = V^-$		2	18	nA
ΔI_{0S}	Input Offset Current Shift	$V_{CM} = V^- \text{ to } V^+$		5	18	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = -14.7V$ to 14.7V, $R_L = 10k$	1000	4000		V/mV
		$V_0 = -10V$ to 10V, $R_L = 2k$	500	2000		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$	113	120		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 5V$ to $\pm 15V$	100	110		dB
$\overline{V_{0L}}$	Output Voltage Swing LOW	No Load		V-+0.004	V-+0.012	V
		I _{SINK} = 0.5mA		$V^- + 0.045$	$V^- + 0.090$	V
		I _{SINK} = 5mA		V ⁻ + 0.270	$V^- + 0.525$	V
V_{OH}	Output Voltage Swing HIGH	No Load	V+ - 0.012	$V^{+} - 0.003$		V
		I _{SOURCE} = 0.5mA	V ⁺ – 0.130	V+ - 0.065		V
		I _{SOURCE} = 5mA	V+ - 0.800	V+ - 0.580		V
I _{SC}	Short-Circuit Current		10	20		mA
l _S	Supply Current			425	550	μΑ
	Positive Supply Current, SHDN	$V_{\overline{SHDN}} = 0V$		15	40	μΑ
SR	Slew Rate (LT1218/LT1218L)	$A_V = -1$		0.10		V/µs
	(LT1219/LT1219L	$A_V = -1$		0.05		V/µs
GBW	Gain Bandwidth Product					
	(LT1218/LT1218L)	A _V = 1000		0.28		MHz
	(LT1219/LT1219L)	A _V = 1000		0.15		MHz

LT1218/LT1219 only; $0^{\circ}C \leq T_A \leq 70^{\circ}C$, $V_S = \pm 15V$, $V_{CM} = 0V$, $V_0 = 0V$, $V_{\overline{SHDN}} = 15V$, unless otherwise noted.

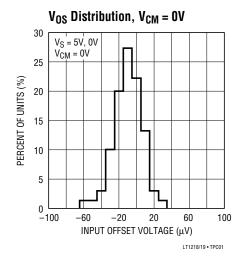
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = V ⁺	•		120	300	μV
		V _{CM} = V ⁻	•		120	300	μV
ΔV_{0S}	Input Offset Voltage Shift	$V_{CM} = V^- \text{ to } V^+$	•		50	105	μV
I_{B}	Input Bias Current	V _{CM} = V ⁺	•		30	75	nA
		$V_{CM} = V^-$	•	-75	-18		nA
Δl_B	Input Bias Current	$V_{CM} = V^- \text{ to } V^+$	•		50	150	nA
I _{OS}	Input Offset Current	$V_{CM} = V^+$	•		5	25	nA
		V _{CM} = V ⁻	•		3	25	nA
Δl_{0S}	Input Offset Current Shift	$V_{CM} = V^- \text{ to } V^+$	•		5	20	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = -14.7V$ to 14.7V, $R_L = 10k$	•	750	3000		V/mV
		$V_0 = -10V$ to 10V, $R_L = 2k$	•	500	1500		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$	•	109	114		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 5V$ to $\pm 15V$	•	97	110		dB
V_{OL}	Output Voltage Swing LOW	No Load	•		$V^- + 0.004$	$V^- + 0.014$	V
		I _{SINK} = 0.5mA	•		$V^- + 0.045$	$V^- + 0.100$	V
		I _{SINK} = 5mA	•		$V^- + 0.310$	$V^- + 0.580$	V
V_{OH}	Output Voltage Swing HIGH	No Load	•	V ⁺ - 0.014	V ⁺ - 0.003		V
		I _{SOURCE} = 0.5mA	•	V+ - 0.150	$V^{+} - 0.075$		V
		I _{SOURCE} = 5mA	•	V ⁺ - 0.920	V ⁺ – 0.700		V

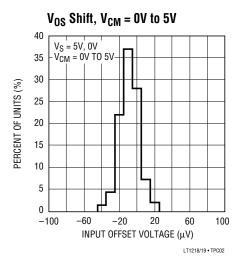
LT1218/LT1219 only; $0^{\circ}C \le T_A \le 70^{\circ}C$, $V_S = \pm 15V$, $V_{CM} = 0V$, $V_0 = 0V$, $V_{\overline{SHDN}} = 15V$, unless otherwise noted.

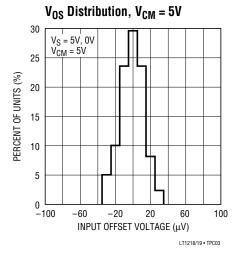
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I _{SC}	Short-Circuit Current		•	8	17		mA
I _S	Supply Current		•		450	600	μА
	Positive Supply Current, SHDN	V _{SHDN} = 0V	•		20	54	μΑ

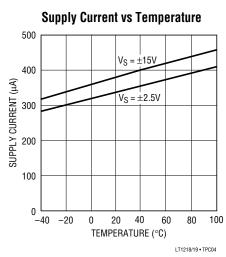
LT1218, LT1219 only; $-40^{\circ}C \leq T_A \leq 85^{\circ}C$, $V_S = \pm 15V$; $V_{CM} = 0V = V_0 = 0V$, $V_{\overline{SHDN}} = 15V$, unless otherwise noted. (Note 3)

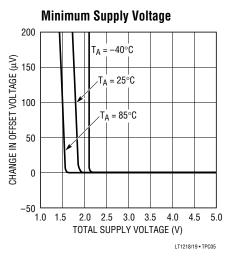
SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{V_{OS}}$	Input Offset Voltage	$V_{CM} = V^+ - 0.15$	•		150	600	μV
		$V_{CM} = V^- + 0.15$	•		150	600	μV
ΔV_{OS}	Input Offset Voltage Shift	$V_{CM} = V^+ - 0.15$ to $V^- + 0.15$	•		50	165	μV
$\overline{I_B}$	Input Bias Current	$V_{CM} = V^+ - 0.15$	•			80	nA
		$V_{CM} = V^- + 0.15$	•	-80			nA
Δl_{B}	Input Bias Current	$V_{CM} = V^+ - 0.15$ to $V^- + 0.15$	•			160	nA
I _{OS}	Input Offset Current	$V_{CM} = V^+ - 0.15$	•			40	nA
		$V_{CM} = V^- + 0.15$	•			40	nA
Δl_{0S}	Input Offset Current Shift	$V_{CM} = V^+ - 0.15 \text{ to } V^- + 0.15$	•			40	nA
A _{VOL}	Large-Signal Voltage Gain	$V_0 = -14.7V$ to 14.7V, $R_L = 10k$	•	500	3000		V/mV
		$V_0 = -10V$ to 10V, $R_L = 2k$	•	400	1000		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^+ - 0.15$ to $V^- + 0.15$	•	105	114		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 5V$ to $\pm 15V$	•	96	110		dB
$\overline{V_{0L}}$	Output Voltage Swing LOW	No Load	•		V-+0.005	V-+ 0.015	V
		I _{SINK} = 0.5mA	•		$V^- + 0.050$	$V^- + 0.105$	V
		I _{SINK} = 2.5mA	•		$V^- + 0.200$	$V^- + 0.620$	V
V_{OH}	Output Voltage Swing HIGH	No Load	•	V ⁺ – 0.015	$V^{+} - 0.004$		V
		I _{SOURCE} = 0.5mA	•	V+ - 0.160	$V^{+} - 0.070$		V
		I _{SOURCE} = 2.5mA	•	V ⁺ – 1.000	$V^+ - 0.400$		V
I _{SC}	Short-Circuit Current		•	5	14		mA
Is	Supply Current		•			650	μА
	Positive Supply Current, SHDN	V _{SHDN} = 0V	•			60	μА

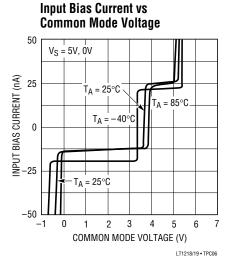

The lacktriangle denotes specifications which apply over the full operating temperature range.

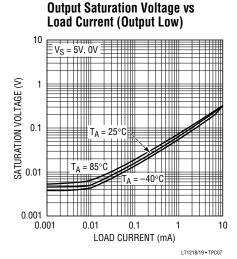

Note 1: A heat sink may be required to keep the junction temperature below the Absolute Maximum Rating when the output is shorted indefinitely.

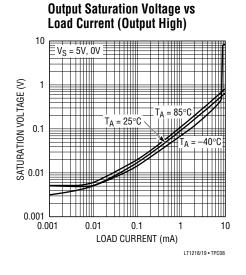

Note 2: This parameter is not 100% tested.

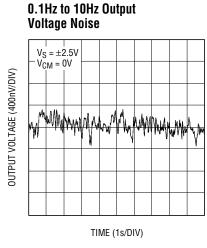

Note 3: The LT1218/LT1219 are designed, characterized and expected to meet these extended temperature limits, but are not tested at -40° C and 85°C. Guaranteed I grade part are available: consult factory.

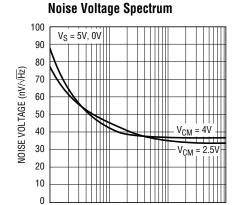








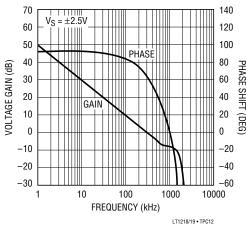


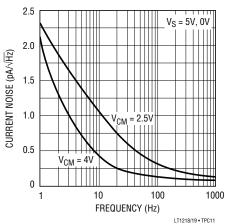


LT1218/19 • TPC09

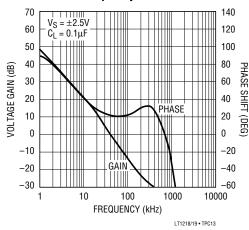
100

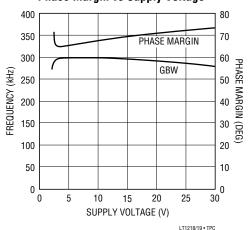
1000

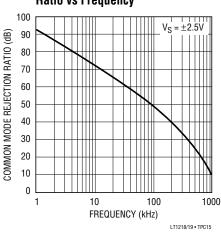

LT1218/19 • TPC10

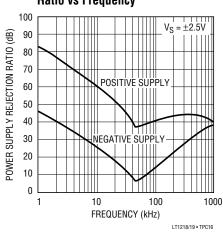

LT1218 Gain and Phase Shift vs Frequency

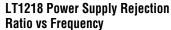
10

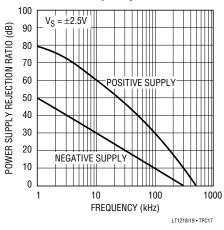

FREQUENCY (Hz)

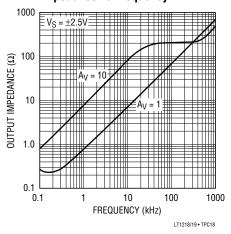

Noise Current Spectrum

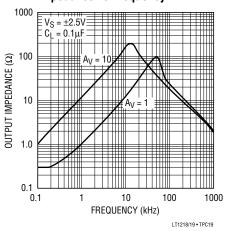

LT1219 Gain and Phase Shift vs Frequency

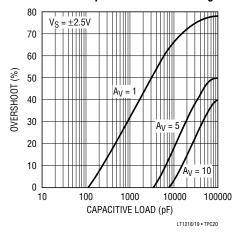

LT1218 Gain Bandwidth and Phase Margin vs Supply Voltage

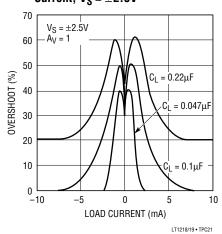


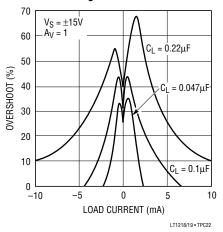

LT1218 Common Mode Rejection Ratio vs Frequency

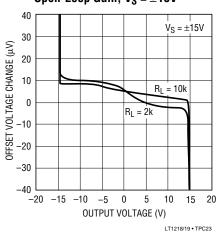

LT1219 Power Supply Rejection Ratio vs Frequency

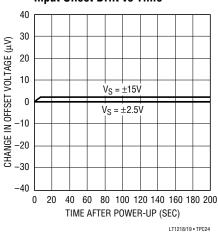


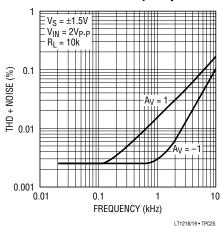

LT1218 Closed Loop Output Impedance vs Frequency

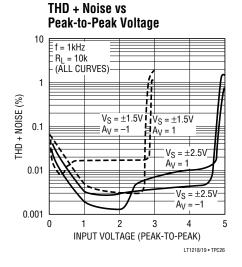

LT1219 Closed Loop Output Impedance vs Frequency

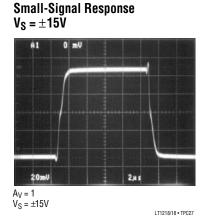

LT1218 Capacitive Load Handling

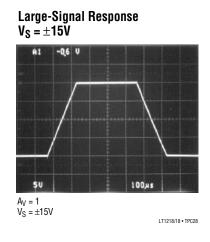

LT1219 Overshoot vs Load Current, $V_S = \pm 2.5V$


LT1219 Overshoot vs Load Current, $V_S = \pm 15V$


Open-Loop Gain, $V_S = \pm 15V$




Input Offset Drift vs Time



THD + Noise vs Frequency

APPLICATIONS INFORMATION

Rail-to-Rail Operation

The LT1218/LT1219 differ from conventional op amps in the design of both the input and output stages. Figure 1 shows a simplified schematic of the amplifier. The input stage consists of two differential amplifiers, a PNP stage Q1/Q2 and an NPN stage Q3/Q4, which are active over different portions of the input common mode range. Lateral devices are used in both input stages, eliminating the need for clamps across the input pins. Each input stage is trimmed for offset voltage. A complementary output configuration (Q23 through Q26) is employed to create an

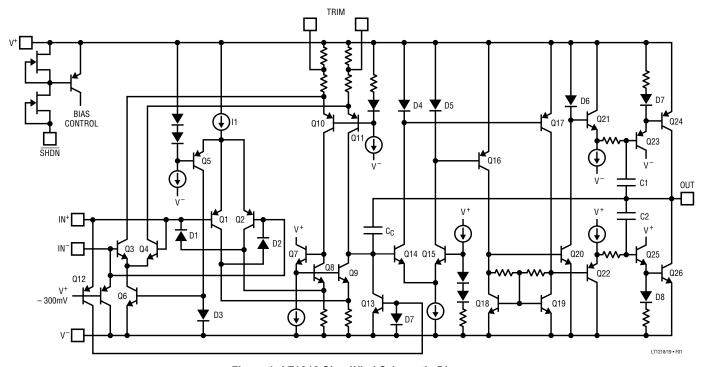


Figure 1. LT1218 Simplified Schematic Diagram

APPLICATIONS INFORMATION

output stage with rail-to-rail swing. The amplifier is fabricated on Linear Technology's proprietary complementary bipolar process, which ensures very similar DC and AC characteristics for the output devices Q24 and Q26.

A simple comparator Q5 steers current from current source I_1 between the two input stages. When the input common mode voltage V_{CM} is near the negative supply, Q5 is reverse biased, and I_1 becomes the tail current for the PNP differential pair Q1/Q2. At the other extreme, when V_{CM} is within about 1.3V from the positive supply, Q5 diverts I_1 to the current mirror D3/Q6, which furnishes the tail current for the NPN differential pair Q3/Q4.

The collector currents of the two input pairs are combined in the second stage, consisting of Q7 through Q11. Most of the voltage gain in the amplifier is contained in this stage. Differential amplifier Q14/Q15 buffers the output of the second stage, converting the output voltage to differential currents. The differential currents pass through current mirrors D4/Q17 and D5/Q16, and are converted to differential voltages by Q18 and Q19. These voltages are also buffered and applied to the output Darlington pairs Q23/Q24 and Q25/Q26. Capacitors C1 and C2 form local feedback loops around the output devices, lowering the output impedance at high frequencies.

Input Offset Voltage

Since the amplifier has two input stages, the input offset voltage changes depending upon which stage is active. The input offsets are random, but bounded voltages. When the amplifier switches between stages, offset voltages may go up, down or remain flat; but will not exceed the guaranteed limits. This behavior is illustrated in three distribution plots of input offset voltage in the Typical Performance Characteristics section.

Overdrive Protection

Two circuits prevent the output from reversing polarity when the input voltage exceeds the common mode range. When the noninverting input exceeds the positive supply by approximately 300mV, the clamp transistor Q12 (Fig-

ure 1) turns on, pulling the output of the second stage low, which forces the output high. For input below the negative supply, diodes D1 and D2 turn on, overcoming the saturation of the input pair Q1/Q2.

When overdriven, the amplifier draws input current that exceeds the normal input bias current. Figures 2 and 3 show typical input current as a function of input voltage. The input current must be less than 10mA for the phase reversal protection to work properly. When the amplifier is severely overdriven, an external resistor should be used to limit the overdrive current.

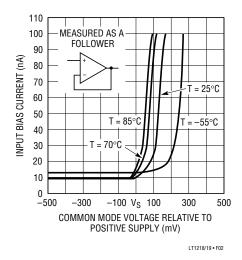
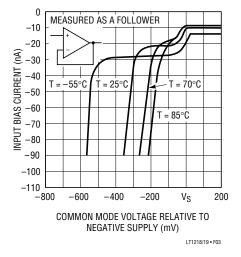
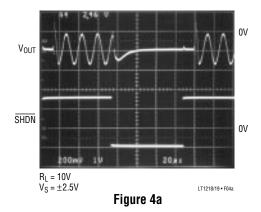
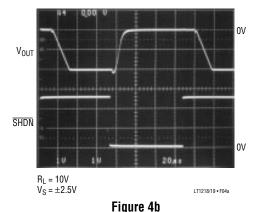


Figure 2. Input Bias Current vs Common Mode Voltage




Figure 3. Input Bias Current vs Common Mode Voltage


APPLICATIONS INFORMATION

Shutdown

The biasing of the LT1218/LT1219 is controlled by the \overline{SHDN} pin. When the \overline{SHDN} pin is low, the part is shut down. In the shutdown mode, the output looks like a 40pF capacitor and the supply current is less than 30µA. The \overline{SHDN} pin is referenced to the positive supply through an internal bias circuit (see Figure 1). The \overline{SHDN} pin current with the pin low is typically 3µA.

The switching time between the shutdown and active states is about $20\mu s$, however, the total time to settle will be greater by the slew time of the amplifier. For example, if the DC voltage at the amplifier output is 0V in shutdown and -2V in the active mode, an additional $20\mu s$ is required. Figures 4a and 4b show the switching waveforms for a sinusoidal and a -2V DC input to the LT1218.

The SHDN pin can be driven directly from CMOS logic if the logic and the LT1218/LT1219 are operated from the same supplies. For higher supply operation, an interface is required. An easy way to interface between supplies is to use open-drain logic, an example is shown in Figure 5. Because the SHDN pin is referenced to the positive supply, the logic used should have a breakdown voltage greater than the positive supply.

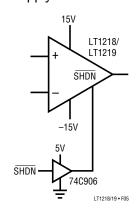


Figure 5. Shutdown Interface

Trim Pins

Trim pins are provided for compatibility with other single op amps. Input offset voltage can be adjusted over a ± 2.3 mV range with a 10k potentiometer.

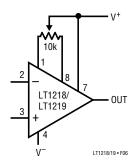


Figure 6. Optional Offset Nulling

Improved Supply Rejection in the LT1219

The LT1219 is a variation of the LT1218 offering greater supply rejection and lower high frequency output impedance. The LT1219 requires a 0.1µF load capacitance for

APPLICATIONS INFORMATION

compensation. The output capacitance forms a filter, which reduces pickup from the supply and lowers the output impedance. This additional filtering is helpful in mixed analog/digital systems with common supplies or systems employing switching supplies. Filtering also reduces high frequency noise, which may be beneficial when driving A/D converters.

Figures 7a and 7b show the outputs of the LT1218/LT1219 perturbed by a $200mV_{P-P}$ 50kHz square wave added to the

positive supply. The LT1219 power supply rejection is about ten times greater than that of the LT1218 at 50kHz. Note the 5-to-1 scale change in the output voltage traces.

The tolerance of the external compensation capacitor is not critical. The plots of Overshoot vs Load Current in the Typical Performance Characteristics section illustrate the effect of a capacitive load.

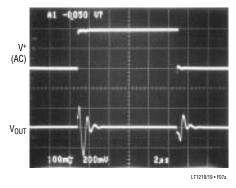
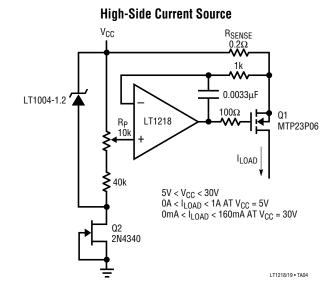


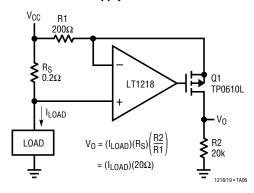
Figure 7a. LT1218 Power Supply Rejection Test




Figure 7b. LT1219 Power Supply Rejection Test

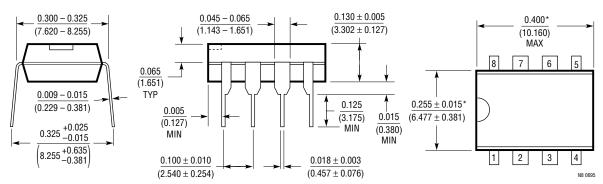
TYPICAL APPLICATIONS

$V_{\text{IN}} = \begin{bmatrix} 0.1 \mu \text{F} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \mu$


LT1218/19 • TA03

Buffer for 12-Bit A/D Converter

TYPICAL APPLICATIONS

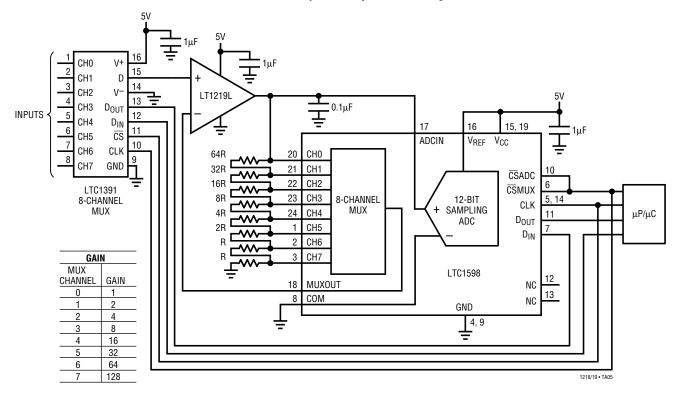

Positive Supply Current Sense

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N8 Package 8-Lead PDIP (Narrow 0.300)

(LTC DWG # 05-08-1510)

^{*}THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)


S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 0.189 - 0.197* $(\overline{4.801 - 5.004})$ 0.228 - 0.2440.010 - 0.020× 45° – 0.053 - 0.069(0.254 - 0.508) $(\overline{5.791 - 6.197})$ $(\overline{1.346 - 1.752})$ 0.150 - 0.157** 0.004 - 0.0100.008 - 0.010(3.810 - 3.988)(0.101 - 0.254)(0.203 - 0.254)<u>0.016 – 0</u>.050 0.014 - 0.0190.050 0.406 - 1.270 (0.355 - 0.483)(1.270)*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH TYP S08 0996 SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC [®] 1152	Rail-to-Rail Input and Output, Zero-Drift Op Amp	High DC Accuracy, 10μV V _{OS(MAX)} , 100nV/°C Drift, 0.7MHz GBW, 0.5V/μs Slew Rate, Maximum Supply Current 3mA
LT1366/LT1367	Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps	475μV V _{OS(MAX)} , 400kHz GBW, 0.13V/μs Slew Rate, Maximum Supply Current 520μA per Op Amp
LT1466/LT1467	Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps	Maximum Supply Current 75μA per Op Amp, 390μV V _{OS(MAX)} , 120kHz Gain Bandwidth