HUFA75639S3ST-F085A

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

		UNITS
Drain to Source Voltage (Note 1)	100	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	100	V
Gate to Source Voltage	±20	V
Drain Current		
Continuous (Figure 2)	56	Α
Pulsed Drain Current	Figure 4	
Pulsed Avalanche Rating E _{AS}	Figures 6, 14, 15	
Power Dissipation	200	W
Derate Above 25 ^o C	1.35	W/oC
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10sT _L	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE

1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST	CONDITIONS	MIN	TYP	MAX	UNITS
OFF STATE SPECIFICATIONS	*			*			
Drain to Source Breakdown Voltage	BV _{DSS}	$I_D = 250 \mu A, V_{GS} =$	100	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS} V _{DS} = 95V, V _{GS} = 0		0V	-	-	1	μΑ
		V _{DS} = 90V, V _{GS} =	-	-	250	μΑ	
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V	-	-	±100	nA	
ON STATE SPECIFICATIONS		1		J.			
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	2	-	4	V	
Drain to Source On Resistance	r _{DS(ON)}	I _D = 56A, V _{GS} = 10	-	0.021	0.025	Ω	
THERMAL SPECIFICATIONS	-1	1		1	1	II.	
Thermal Resistance Junction to Case	$R_{\theta JC}$	(Figure 3)		-	-	0.74	oC/W
Thermal Resistance Junction to Ambient	R _{θJA} TO-247			-	-	30	oC/W
		TO-220, TO-263		-	-	62	oC/W
SWITCHING SPECIFICATIONS (VGS = 10)V)	1		J.			
Turn-On Time	t _{ON}	V _{DD} = 50V, I _D ≅ 56	-	-	110	ns	
Turn-On Delay Time	t _d (ON)	$R_L = 0.89\Omega, V_{GS} = 10V,$ $R_{GS} = 5.1\Omega$		-	15	-	ns
Rise Time	t _r		-	60	-	ns	
Turn-Off Delay Time	t _d (OFF)		-	20	-	ns	
Fall Time	t _f		-	25	-	ns	
Turn-Off Time	tOFF		-	-	70	ns	
GATE CHARGE SPECIFICATIONS		-				Į.	
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 20V	V _{DD} = 50V,	-	110	130	nC
Gate Charge at 10V	Q _{g(10)}	V _{GS} = 0V to 10V	$I_D \cong 56A$, $R_1 = 0.89\Omega$	-	57	75	nC
Threshold Gate Charge	Q _{g(TH)}	V _{GS} = 0V to 2V	$I_{g(REF)} = 1.0mA$	-	3.7	4.5	nC
Gate to Source Gate Charge	Q _{gs}		(Figure 13)	-	9.8	-	nC
Gate to Drain "Miller" Charge	Q _{gd}			-	24	-	nC

HUFA75639S3ST-F085A

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS	
CAPACITANCE SPECIFICATIONS							
Input Capacitance	C _{ISS}	$V_{DS} = 25V$, $V_{GS} = 0V$, f = 1MHz (Figure 12)	-	2000	-	pF	
Output Capacitance	C _{OSS}		-	500	-	pF	
Reverse Transfer Capacitance	C _{RSS}		-	65	-	pF	

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V_{SD}	I _{SD} = 56A	-	-	1.25	V
Reverse Recovery Time	t _{rr}	$I_{SD} = 56A$, $dI_{SD}/dt = 100A/\mu s$	-	-	110	ns
Reverse Recovered Charge	Q_{RR}	$I_{SD} = 56A$, $dI_{SD}/dt = 100A/\mu s$	-	-	320	nC

Typical Performance Curves

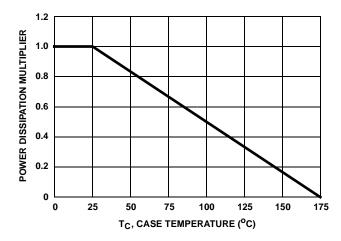


FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

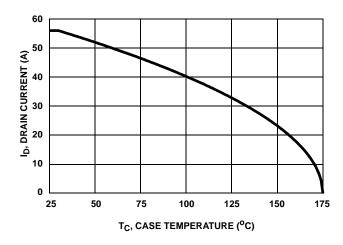


FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

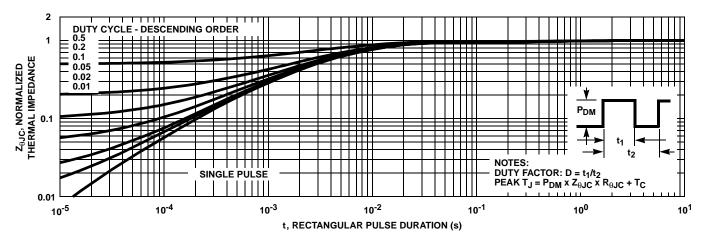


FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

Typical Performance Curves (Continued)

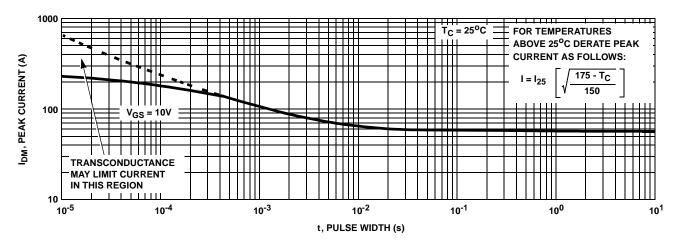


FIGURE 4. PEAK CURRENT CAPABILITY

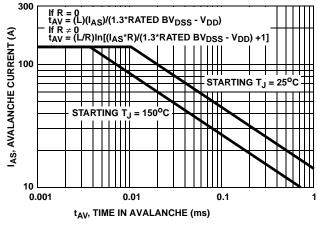



FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

NOTE: Refer to ON Semiconductor Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

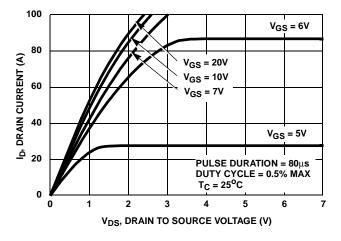


FIGURE 7. SATURATION CHARACTERISTICS

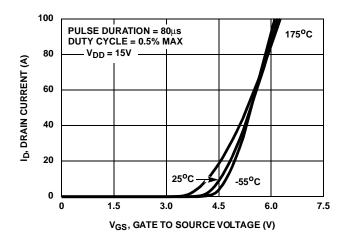


FIGURE 8. TRANSFER CHARACTERISTICS

Typical Performance Curves (Continued)

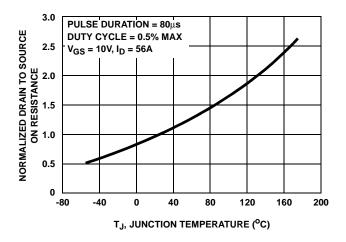


FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

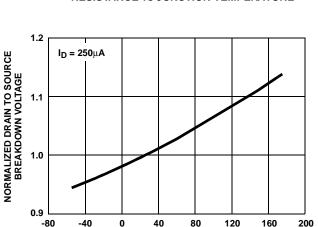


FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

T_J, JUNCTION TEMPERATURE (°C)

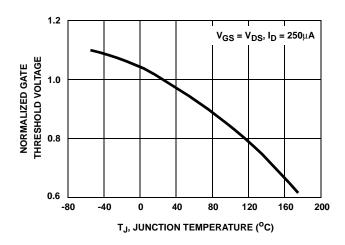


FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

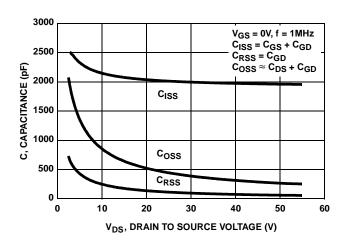
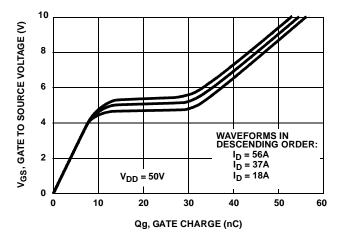



FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to ON Semiconductor Application Notes AN7254 and AN7260.

FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

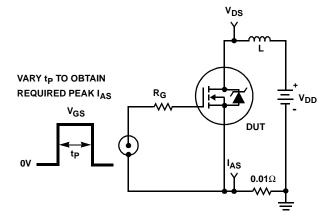


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

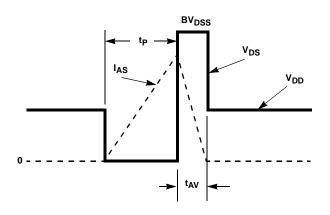


FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

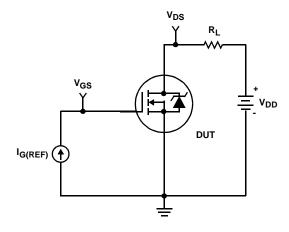


FIGURE 16. GATE CHARGE TEST CIRCUIT

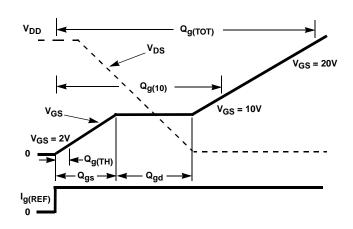


FIGURE 17. GATE CHARGE WAVEFORM

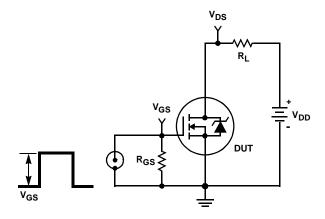


FIGURE 18. SWITCHING TIME TEST CIRCUIT

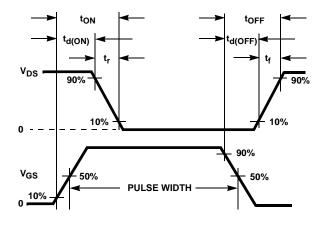


FIGURE 19. RESISTIVE SWITCHING WAVEFORMS

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold O

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com

Phone: 81-3-5817-1050