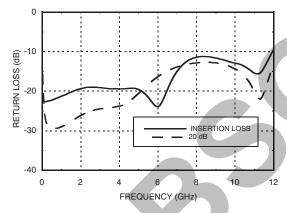
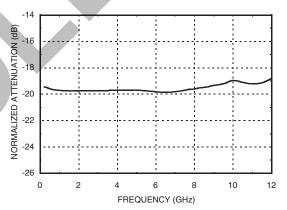
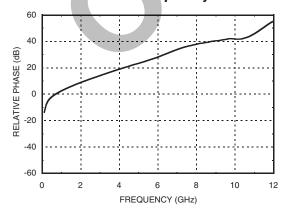
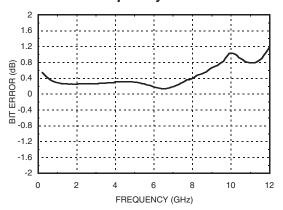

ICROWAVE CORPORATION V00.0

20 dB GaAs MMIC 1-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 10 GHz

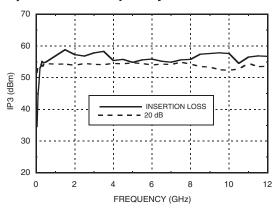

Insertion Loss

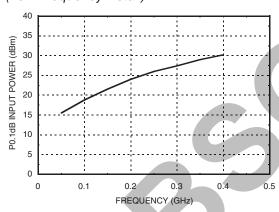

Input Return Loss


Output Return Loss

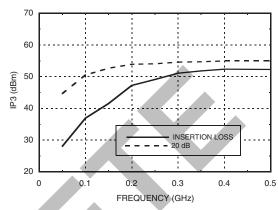

Relative Attenuation

Relative Phase vs. Frequency


Bit Error vs. Frequency



Input IP3 vs. Frequency



Input Power for 0.1 dB Compression* (Low Frequency Detail)

Input IP3 vs. Frequency

(Low Frequency Detail)

Truth Table

Control Voltage Input V1	Attenuation State RF1 - RF2
High	Reference Insertion Loss
Low	20 dB

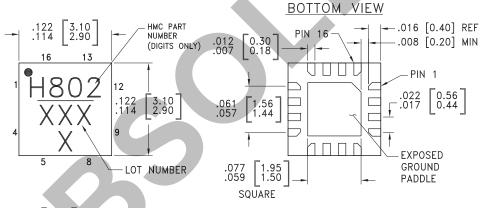
Bias Voltage & Current

$Vdd = +5 \ Vdc \pm 10\%$		
Vdd (Vdc)	ldd (Typ.) (mA)	
4.5	0.21	
5.0	0.23	
5.5	0.25	

Control Voltage

State	Bias Condition
Low	0 to +0.8V @ -1 μA Typ.
High	+2 to +5V @ 30 μA Typ.
Note: Vdd = +5V	

^{*} For frequencies greater than 0.4 GHz, the 0.1 dB compression point is greater than the absolute maximum RF input power of 30 dBm.



Absolute Maximum Ratings

RF Input Power (DC - 10 GHz)	+30 dBm
Control Voltage Range (V1)	-1 to Vdd + 1V
Bias Voltage (Vdd)	+7 Vdc
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 12 mW/°C above 85 °C)	0.783 W
Thermal Resistance (channel to ground paddle)	83 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Outline Drawing

.039 [1.00] .002 [0.05] .000 [0.00] .003[0.08] C .003[0.08] C

NOTES

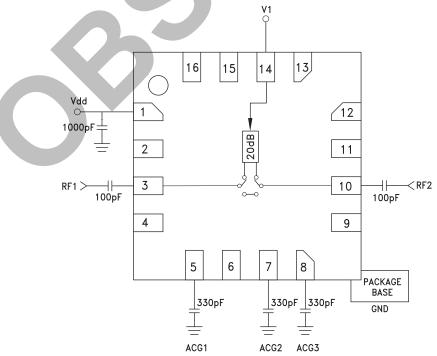
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC802LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	H802 XXXX

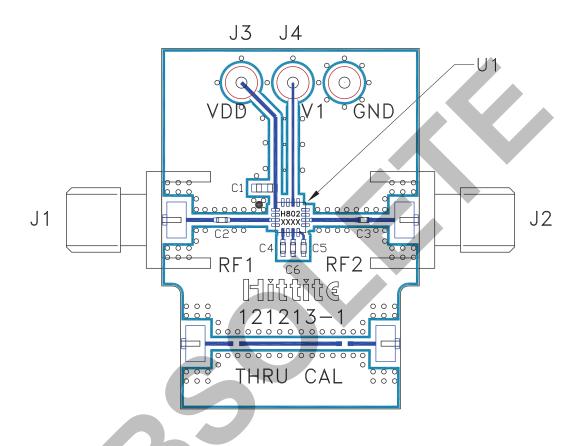
^[1] Max peak reflow temperature of 260 °C

^{[2] 4-}Digit lot number XXXX



Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Supply Voltage.	
2, 4, 9, 11	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	GND
3, 10	RF1, RF2	These pins are DC coupled and matched to 50 Ohms. Blocking capacitors are required. Select value based on lowest frequency of operation.	RF1 RF2
5, 7, 8	ACG1, ACG2, ACG3	External capacitor to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible.	
6, 12, 13, 15, 16	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
14	V1	See truth table and control voltage table.	V1 0 180K 500 =


Application Circuit

Evaluation PCB

List of Materials for Evaluation PCB 127103 [1]

Item		Description
J1, J2		PCB Mount SMA Connector
J3, J4		DC Connector
C1		1000 pF Capacitor, 0603 Pkg.
C2, C3		100 pF Capacitor, 0402 Pkg.
C4 - C6		330 pF Capacitor, 0402 Pkg.
U1		HMC802LP3E Digital Attenuator
PCB [2]		121213 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350