$ADG728/ADG729 — SPECIFICATIONS \\ ^{1}\text{ (V}_{DD} = 5 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V, unless otherwise noted.)}$

	B Ver			
Parameter	25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance (R_{ON})	2.5	O V to VDD	ν Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$
On Resistance (R _{ON})	4.5	5	Ω max	Test Circuit 1
On-Resistance Match Between	4.5	0.4	Ω typ	$V_S = 0 \text{ V to V}_{DD}, I_S = 10 \text{ mA}$
Channels (ΔR_{ON})		0.8	Ω max	VS - 0 V to VDD, IS - 10 IIIA
On-Resistance Flatness ($R_{FLAT(ON)}$)	0.75	0.6	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA}$
On-Resistance Platness (RFLAT(ON))	0.15	1.2	Ω max	V _S = 0 V to V _{DD} , I _S = 10 lll V
LEAKAGE CURRENTS				V _{DD} = 5.5 V
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V}, \text{ Test Circuit 2}$
g3 ()	±0.1	±0.3	nA max	15 200 002 000 000 000 000 000 000 000 00
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}, \text{ Test Circuit}$
gD()	±0.1	±1	nA max	. Б , . Б
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_D = V_S = 4.5 \text{ V/1 V}$, Test Circuit 4
	±0.1	±1	nA max	. Б З
LOGIC INPUTS (A0, A1) ²				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
$ar{I}_{ ext{INL}}$ or $ar{I}_{ ext{INH}}$	0.005		μA typ	
		± 0.1	μA max	
C _{IN} , Input Capacitance	6		pF typ	
LOGIC INPUTS (SCL, SDA) ²				
Input High Voltage, V _{INH}		$0.7 V_{\mathrm{DD}}$	V min	
		$V_{\rm DD} + 0.3$	V max	
Input Low Voltage, V _{INL}		-0.3	V min	
		$0.3~\mathrm{V_{DD}}$	V max	
I _{IN} , Input Leakage Current	0.005	22	μA typ	$V_{IN} = 0 \text{ V to } V_{DD}$
		± 1.0	μA max	
V _{HYST} , Input Hysteresis	$0.05~\mathrm{V_{DD}}$		V min	
C _{IN} , Input Capacitance	6		pF typ	
LOGIC OUTPUT (SDA) ²				
V _{OL} , Output Low Voltage		0.4	V max	$I_{SINK} = 3 \text{ mA}$
		0.6	V max	$I_{SINK} = 6 \text{ mA}$
DYNAMIC CHARACTERISTICS ²				
t_{ON}	95		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, Test Circuit 5;
		140	ns max	$V_{S1} = 3 \text{ V}$
$t_{ m OFF}$	85		ns typ	$V_{S1} = 3 \text{ V}, R_L = 300 \Omega, C_L = 35 \text{ pF};$
		130	ns max	Test Circuit 5
Break-Before-Make Time Delay, t _D	8		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		1	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$, Test Circuit 5
Charge Injection	±3		pC typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
Charge Injection	±3		pC typ	
Charge Injection Off Isolation	±3 -55		pC typ dB typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
,				$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 6
Off Isolation	-55		dB typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 6 $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 10 \text{ MHz};$
,	-55		dB typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ Test Circuit 6 $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 10 \text{ MHz};$ $R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz};$
Off Isolation	-55 -75		dB typ dB typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \end{split}$
Off Isolation Channel-to-Channel Crosstalk	-55 -75 -55		dB typ dB typ dB typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth	-55 -75 -55 -75		dB typ dB typ dB typ dB typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728	-55 -75 -55 -75		dB typ dB typ dB typ dB typ MHz typ	$\begin{split} &V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}; \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729	-55 -75 -55 -75 65 100		dB typ dB typ dB typ dB typ dB typ MHz typ MHz typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF)	-55 -75 -55 -75		dB typ dB typ dB typ dB typ MHz typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF) C _D (OFF)	-55 -75 -55 -75 65 100 13		dB typ dB typ dB typ dB typ MHz typ MHz typ pF typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF) C _D (OFF) ADG728	-55 -75 -55 -75 -65 100 13		dB typ dB typ dB typ dB typ MHz typ MHz typ pF typ pF typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF) C _D (OFF) ADG728 ADG729 ADG729	-55 -75 -55 -75 65 100 13		dB typ dB typ dB typ dB typ MHz typ MHz typ pF typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF) C _D (OFF) ADG728 ADG729 C _D , C _S (ON)	-55 -75 -55 -75 -75 65 100 13 85 42		dB typ dB typ dB typ dB typ MHz typ MHz typ pF typ pF typ pF typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF) C _D (OFF) ADG728 ADG728 ADG729 C _D , C _S (ON) ADG728	-55 -75 -55 -75 -75 -65 100 13 85 42		dB typ dB typ dB typ dB typ dB typ MHz typ MHz typ pF typ pF typ pF typ pF typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF) C _D (OFF) ADG728 ADG729 C _D , C _S (ON) ADG728 ADG729	-55 -75 -55 -75 -75 65 100 13 85 42		dB typ dB typ dB typ dB typ MHz typ MHz typ pF typ pF typ pF typ	$\begin{split} &V_S = 2.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \\ &R_L = 50 \Omega, C_L = 5 \text{ pF}, \text{Test Circuit 8} \end{split}$
Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth ADG728 ADG729 C _S (OFF) C _D (OFF) ADG728 ADG728 ADG729 C _D , C _S (ON) ADG728	-55 -75 -55 -75 -75 -65 100 13 85 42		dB typ dB typ dB typ dB typ dB typ MHz typ MHz typ pF typ pF typ pF typ pF typ	$\begin{split} &V_{S} = 2.5 \text{ V}, R_{S} = 0 \Omega, C_{L} = 1 \text{ nF}; \\ &\text{Test Circuit 6} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 8} \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 10 \text{ MHz}; \\ &R_{L} = 50 \Omega, C_{L} = 5 \text{ pF}, f = 1 \text{ MHz}; \\ &\text{Test Circuit 7} \end{split}$

¹Temperature range is as follows: B Version: -40°C to +85°C. ²Guaranteed by design, not subject to production test.

$SPECIFICATIONS^{1} \ (v_{DD}=3 \ v \pm 10\%, \ GND=0 \ V, \ unless \ otherwise \ noted.)$

Parameter 25°C to +85°C Unit Test Conditions/Comments		B Versi	-40°C		
Analog Signal Range 0 V to V _{DD} V Co	Parameter	25°C		Unit	Test Conditions/Comments
On Resistance (R _{ON}) On-Resistance (R _{ON}) On-Resistance (R _{ON}) On-Resistance Match Between (Channels (AR _{ON}) On-Resistance Flatness (R _{FLAT(ON})) David (AR _{ON}) On-Resistance Flatness (R _{FLAT(ON})) David (AR _{ON}) On-Resistance Flatness (R _{FLAT(ON})) David (AR _{ON}) On-Resistance Flatness (R _{FLAT(ON})) EAKAGE CURRENTS Source OFF Leakage I _S (OFF) ±0.01 ±0.1 ±0.3 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±0.1 ±0.3 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±0.1 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±0.1 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 ±1 AM max Drain OFF Leakage I _S (OFF) ±0.01 Drain OFF Leakage I _S (OFF) Drain	ANALOG SWITCH				
On Resistance (R _{ON}) On-Resistance Match Between On-Resistance Flatness (R _{FLAT(INS)}) Drain OF Leakage I _S (OFF) ±0.01 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0.1 ±0	Analog Signal Range		0 V to V_{DD}	v	
11 12 Ω max Channels (AR _{No}) 0.4 Ω typ		6	DD	Ω tvp	$V_{s} = 0 \text{ V to } V_{DD}, I_{s} = 10 \text{ mA};$
On-Resistance Match Between 0.4 Ω typ 1.2 Ω max On-Resistance Flatness (R _{FLATIONO}) 1.2 Ω max On-Resistance Flatness (R _{FLATIONO}) 3.5 Ω typ V _{ND} = 3.0 V V _{ND} , I _S = 10 mA V _S = 0 V to V _{ND} , I _S = 10 mA V _S = 0 V to V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 3.3 V V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 3.0 V _{ND} , I _S = 10 mA V _{ND} = 3.0 V _{ND} , I _S = 10 mA V _{ND} = 3.0 V _{ND} , I _S = 10 mA V _{ND} = 3.0 V _{ND} , I _S = 10 mA V _{ND} = 3.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 3.0 V _{ND} , I _S = 10 mA V _{ND} = 3.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} V _{ND} = 1.0 V _{ND} , I _S = 10 mA V _{ND} = 1.0 V _{ND} V _{ND} V _{ND} = 1.0 V _{ND} V _{ND} V _{ND} = 1.0 V _{ND} V _{ND} V _{ND} V _{ND} = 1.0 V _{ND} V _{ND} V _{ND} = 1.0 V _{ND} V			12	• •	
Channels (AR _{NO})	On-Resistance Match Between				
On-Resistance Flatness (R _{FLATIONS}) 3.5 Ω typ V _S = 0 V to V _{DD} . I _S = 10 mA					(3 0 (to (DD) 13 10 III 1
EAKAGE CURRENTS Source OFF Leakage Is (OFF) ±0.01				I	$V_{c} = 0 \text{ V to } V_{DD}, I_{c} = 10 \text{ mA}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,		3.3	typ	
Drain OFF Leakage I _D (OFF)					
Drain OFF Leakage I _D (OFF)	Source OFF Leakage I _S (OFF)				$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V}, \text{ Test Circuit 2}$
\$\pmathcal{\pmath			±0.3	I	
Channel ON Leakage I _D , I _S (ON)	Drain OFF Leakage I _D (OFF)			**	$V_D = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V}, \text{ Test Circuit } 3$
DOGIC INPUTS (A0, A1) ²			±1	I	
DOGIC INPUTS (A0, A1) ²	Channel ON Leakage I _D , I _S (ON)			**	$V_D = V_S = 3 \text{ V/1 V}$, Test Circuit 4
Input High Voltage, V _{INL} 0.4 V min 1 mput Current Inst, or Inst 0.005		±0.1	±1	nA max	
Input High Voltage, V _{NNI} 0.4 V min 1	LOGIC INPUTS (A0, A1) ²				
Input Low Voltage, V _{INL} O.005	Input High Voltage, V _{INH}		2.0	V min	
Input Current Inc. or Input Input Current Inc. or Input Input Capacitance 3			0.4	V max	
1					
\$\frac{1}{\text{Dist}} \text{ pights} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	0.005		μA typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			± 0.1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{IN} , Input Capacitance	3		pF typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.7 V ₂₂₂	V min	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	input High Voltage, VINH		22	I	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input I av Valtage V				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	input Low voltage, VINL				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I Input Laskaga Current	0.005	0.5 V _{DD}		V = 0 V to V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IN, input Leakage Current	0.005	+1.0		$\mathbf{v}_{\mathrm{IN}} - \mathbf{v} \cdot \mathbf{v}$ to \mathbf{v}_{DD}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V Input Unitariasis	0.05 V	±1.0	• 1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		J		prityp	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.4	**	T 0 A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{OL} , Output Low Voltage			I	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.6	v max	$I_{SINK} = 6 \text{ mA}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS ²				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{ON}	130		ns typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			200	ns max	
Break-Before-Make Time Delay, t_D 8 ns typ ns min $R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S8} = 2 V$, Test Circuit 5 Charge Injection ±3 pC typ $V_S = 1.5 \text{ V}_S = 0 \Omega$, $C_L = 1 \text{ nF}$; Test Circuit 6 Off Isolation -55 dB typ $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 10 \text{ MHz}$; $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; Test Circuit 8 Crosstalk -55 dB typ $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 10 \text{ MHz}$; $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 10 \text{ MHz}$; $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$; $R_L = 50 \Omega$,	t_{OFF}	115		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			180	ns max	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Break-Before-Make Time Delay, t _D	8		ns typ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	ns min	$V_{S1} = V_{S8} = 2 \text{ V}$, Test Circuit 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Charge Injection	±3		pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Off Isolation	-55		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
Crosstalk -55 dB typ $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; -3 dB Bandwidth $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; -3 dB Bandwidth $ADG728$ $ADG728$ $ADG729$ $C_S \text{ (OFF)}$ $ADG729$ $ADG729$ $ADG729$ $ADG728$ $ADG729$		-75			$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crosstalk			dB typ	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-75		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					Test Circuit 7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ADG728	65			$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ADG729	100		MHz typ	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_S(OFF)$	13		pF typ	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ADG728	85		pF typ	
C_{D} , C_{S} (ON) ADG728 ADG729 48 POWER REQUIREMENTS POWER REQUIREMENTS POWER REQUIREMENTS		42			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 71	
ADG729 48 $pF typ$ POWER REQUIREMENTS $V_{DD} = 3.3 \text{ V}$		96		pF tvp	
POWER REQUIREMENTS $V_{DD} = 3.3 \text{ V}$					
					$V_{pp} = 3.3 \text{ V}$
I_{DD} 10 $\mu A \text{ typ}$ Digital Inputs = 0 V or 3.3 V		10		IIA typ	Digital Inputs = 0 V or 3.3 V
I _{DD} μ A typ Digital Inputs = 0 V or 3.3 V μ A max	•טט	10	20		Digital Inputs - 0 v of 3.3 v

NOTES

¹Temperature ranges are as follows: B Versions: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

TIMING CHARACTERISTICS

 $V_{\rm DD}$ = 2.7 V to 5.5 V. All specifications -40°C to +85°C, unless otherwise noted. See Figure 1.

Parameter	Limit at T _{MIN} , T _{MAX}	Unit	Test Conditions/Comments
f _{SCL}	400	kHz max	SCL clock frequency
t_1	2.5	μs min	SCL cycle time
t_2	0.6	μs min	SCL high time, t _{HIGH}
t_3	1.3	μs min	SCL low time, t _{LOW}
t ₄	0.6	μs min	Start/repeated start condition hold time, thd, STA
t ₅	100	ns min	Data setup time, t _{SU, DAT}
t_6^1	0.9	μs max	Data hold time, t _{HD, DAT}
	0	μs min	
t ₇	0.6	μs min	Setup time for repeated start, t _{SU, STA}
t ₈	0.6	μs min	Stop condition setup time, t _{SU, STO}
t ₉	1.3	μs min	Bus free time between a stop condition and a start condition, t _{BUF}
t ₁₀	300	ns max	Rise time of both SCL and SDA when receiving, $t_{\mbox{\scriptsize R}}$
	$20 + 0.1C_b^2$	ns min	
t ₁₁	250	ns max	Fall time of SDA when receiving, t _F
	300	ns max	Fall time of SDA when transmitting, t _F
	0.1C _b ²	ns min	
C_b^2	400	pF max	Capacitive load for each bus line
t_{SP}^3	50	ns max	Pulse width of spike suppressed

¹ A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the V_H min of the SCL signal) to bridge the undefined region of the falling edge of SCL. 2 Cb is the total capacitance of one bus line in pF. t_R and t_F measured between 0.3 V_{DD} and 0.7 V_{DD} .

³ Input filtering on both the SCL and SDA inputs suppress noise spikes that are less than 50 ns.

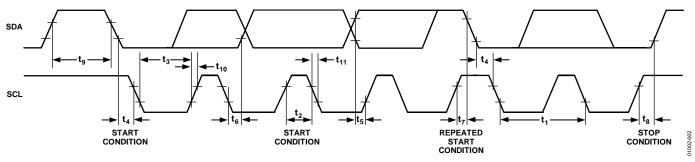
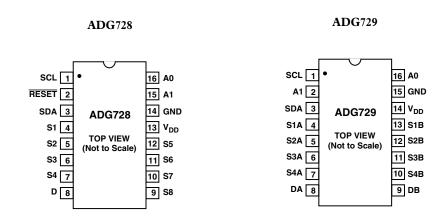



Figure 1. 2-Wire Serial Interface Timing Diagram

PIN FUNCTION DESCRIPTIONS

ADG728	ADG729	Mnemonic	Function
1	1	SCL	Serial Clock Line. This is used in conjunction with the SDA line to clock data into the 8-bit input shift register. Clock rates of up to 400 kbit/s can be accommodated with this 2-wire serial interface.
2		RESET	Active low control input that clears the input register and turns all switches to the OFF condition.
3	3	SDA	Serial Data Line. This is used in conjunction with the SCL line to clock data into the 8-bit input shift register during the write cycle and used to read back 1 byte of data during the read cycle. It is a bidirectional open-drain data line which should be pulled to the supply with an external pull-up resistor.
4, 5, 6, 7	4, 5, 6, 7	Sxx	Source. May be an input or output.
8	8, 9	Dx	Drain. May be an input or output.
9, 10, 11, 12	10, 11, 12, 13	Sxx	Source. May be an input or output.
13	14	$V_{ m DD}$	Power Supply Input. These parts can be operated from a supply of 2.7 V to 5.5 V.
14	15	GND	Ground Reference.
15	2	A1	Address Input. Sets the second least significant bit of the 7-bit slave address.
16	16	A0	Address Input. Sets the least significant bit of the 7-bit slave address.

PIN CONFIGURATIONS

REV. C -5-

ABSOLUTE MAXIMUM RATINGS¹

$(T_A = 25^{\circ}C \text{ unless otherwise noted.})$
V_{DD} to GND $$
Analog, Digital Inputs ² $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or}$
30 mA, Whichever Occurs First
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, Each S
Continuous Current D, ADG729 80 mA
Continuous Current D, ADG728 120 mA
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature

TSSOP Package

θ_{JA} Thermal Impedance	 150.4°C/W
θ_{JC} Thermal Impedance	 . 27.6°C/W

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG728/ADG729 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TERMINOLOGY

$\overline{V_{DD}}$	Most Positive Power Supply Potential.	C_D , C_S (ON)	"ON" Switch Capacitance. Measured with refer-
I_{DD}	Positive Supply Current.		ence to ground.
GND	Ground (0 V) Reference.	C_{IN}	Digital Input Capacitance.
S	Source Terminal. May be an input or output.	t_{ON}	Delay time between the 50% and 90% points of the STOP condition and the switch "ON"
D	Drain Terminal. May be an input or output.		condition.
$V_D(V_S)$	Analog Voltage on Terminals D, S.	$t_{ m OFF}$	Delay time between the 50% and 90% points
R_{ON}	Ohmic Resistance between D and S.		of the STOP condition and the switch "OFF"
$\Delta R_{\rm ON}$	On Resistance Match Between any Two Chan-		condition.
	nels, i.e., R_{ON} max – R_{ON} min.	t_{D}	"OFF" time measured between the 80% points of both switches when switching from one switch to
$R_{FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of on resistance		another.
	as measured over the specified analog signal range.	Charge	A measure of the glitch impulse transferred from
I _S (OFF)	Source Leakage Current with the Switch "OFF."	Injection	the digital input to the analog output during switching.
I _D (OFF)	Drain Leakage Current with the Switch "OFF."	Off Isolation	A measure of unwanted signal coupling through
$I_D, I_S (ON)$	Channel Leakage Current with the Switch "ON."	On Isolation	an "OFF" switch.
V_{INL}	Maximum Input Voltage for Logic "0."	Crosstalk	A measure of unwanted signal which is coupled
V_{INH}	Minimum Input Voltage for Logic "1."		through from one channel to another as a result
$I_{INL}\left(I_{INH}\right)$	Input Current of the Digital Input.		of parasitic capacitance.
C _S (OFF)	"OFF" Switch Source Capacitance. Measured with reference to ground.	Bandwidth	The frequency at which the output is attenuated by 3 dBs.
C _D (OFF)	"OFF" Switch Drain Capacitance. Measured	On Response	The frequency response of the "ON" switch.
	with reference to ground.	Insertion Loss	The loss due to the ON resistance of the switch.

-6- REV. C

Typical Performance Characteristics—ADG728/ADG729

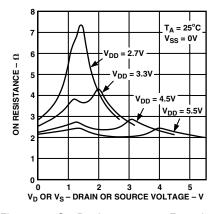


Figure 2. On Resistance as a Function of V_D (V_S) for Single Supply

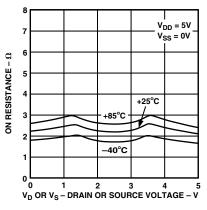


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

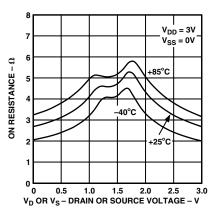


Figure 4. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

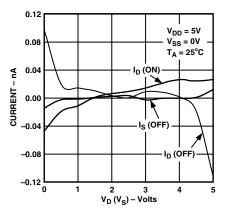


Figure 5. Leakage Currents as a Function of V_D (V_S)

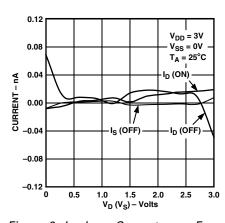


Figure 6. Leakage Currents as a Function of V_D (V_S)

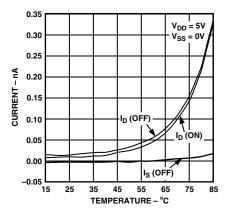


Figure 7. Leakage Currents as a Function of Temperature

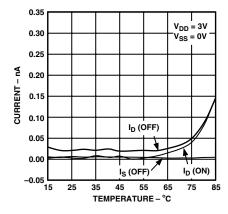


Figure 8. Leakage Currents as a Function of Temperature

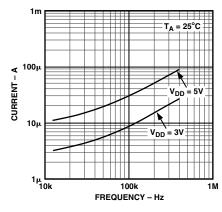


Figure 9. Input Current vs. Switching Frequency

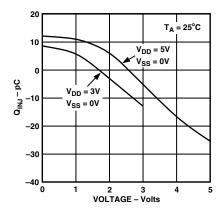


Figure 10. Charge Injection vs. Source Voltage

REV. C

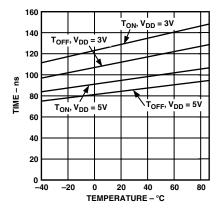


Figure 11. T_{ON}/T_{OFF} Times vs. Temperature

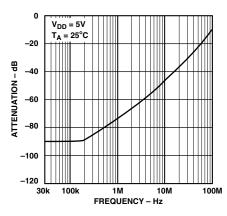


Figure 12. Off Isolation vs. Frequency

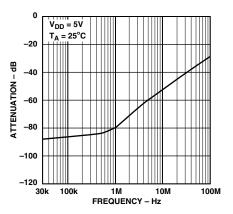


Figure 13. Crosstalk vs. Frequency

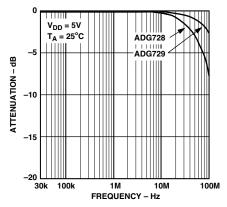


Figure 14. On Response vs. Frequency

GENERAL DESCRIPTION

The ADG728 and ADG729 are serially controlled, 8-channel and dual 4-channel matrix switches respectively. While providing the normal multiplexing and demultiplexing functions, these devices also provide the user with more flexibility as to where their signal may be routed. Each bit of the serial word corresponds to one switch of the device. A Logic 1 in the particular bit position turns on the switch, while a Logic 0 turns the switch off. Because each switch is independently controlled by an individual bit, this provides the option of having any, all, or none of the switches ON. This feature may be particularly useful in the demultiplexing application where the user may wish to direct one signal from the drain to a number of outputs (sources). Care must be taken, however, in the multiplexing situation where a number of inputs may be shorted together (separated only by the small on resistance of the switch).

When changing the switch conditions, a new 8-bit word is written to the input shift register. Some of the bits may be the same as the previous write cycle, as the user may not wish to change the state of some switches. In order to minimize glitches on the output of these switches, the part cleverly compares the state of switches from the previous write cycle. If the switch is already in the ON condition, and is required to stay ON, there will be minimal glitches on the output of the switch.

POWER-ON RESET

On power-up of the device, all switches will be in the OFF condition and the internal shift register is filled with zeros and will remain so until a valid write takes place.

SERIAL INTERFACE

2-Wire Serial Bus

The ADG728/ADG729 are controlled via an I²C compatible serial bus. These parts are connected to this bus as a slave device (no clock is generated by the multiplexer).

The ADG728/ADG729 have different 7-bit slave addresses. The five MSBs of the ADG728 are 10011, while the MSBs of the ADG729 are 10001 and the two LSBs are determined by the state of the A0 and A1 pins.

The 2-wire serial bus protocol operates as follows:

The master initiates data transfer by establishing a START condition which is when a high-to-low transition on the SDA line occurs while SCL is high. The following byte is the address byte, which consists of the 7-bit slave address followed by a R/W bit (this bit determines whether data will be read from or written to the slave device).

The slave whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is termed the Acknowledge bit). At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to or read from its serial register. If the R/W bit is high, the master will read from the slave device. However, if the R/\overline{W} bit is low, the master will write to the slave device.

- Data is transmitted over the serial bus in sequences of nine clock pulses (eight data bits followed by an acknowledge bit).
 The transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL.
- 3. When all data bits have been read or written, a STOP condition is established by the master. A STOP condition is defined as a low-to-high transition on the SDA line while SCL is high. In Write mode, the master will pull the SDA line high during the 10th clock pulse to establish a STOP condition. In Read mode, the master will issue a No Acknowledge for the ninth clock pulse (i.e., the SDA line remains high). The master will then bring the SDA line low before the tenth clock pulse and then high during the tenth clock pulse to establish a STOP condition.

See Figures 18 to 21 below for a graphical explanation of the serial interface.

A repeated write function gives the user flexibility to update the matrix switch a number of times after addressing the part only once. During the write cycle, each data byte will update the configuration of the switches. For example, after the matrix switch has acknowledged its address byte, and receives one data byte, the switches will update after the data byte, if another data byte is written to the matrix switch while it is still the addressed slave device, this data byte will also cause an switch configuration update. Repeat read of the matrix switch is also allowed.

INPUT SHIFT REGISTER

The input shift register is eight bits wide. Figure 15 illustrates the contents of the input shift register. Data is loaded into the device as an 8-bit word under the control of a serial clock input, SCL. The timing diagram for this operation is shown in Figure 1. The 8-bit word consists of eight data bits each controlling one switch. MSB (Bit 7) is loaded first.

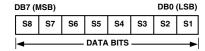


Figure 15. ADG728/ADG729 Input Shift Register Contents

REV. C _9_

WRITE OPERATION

When writing to the ADG728/ADG729, the user must begin with an address byte and R/\overline{W} bit, after which the switch will acknowledge that it is prepared to receive data by pulling SDA low. This address byte is followed by the 8-bit word. The write operations for each matrix switch are shown in the figures below.

ADDRESS BYTE

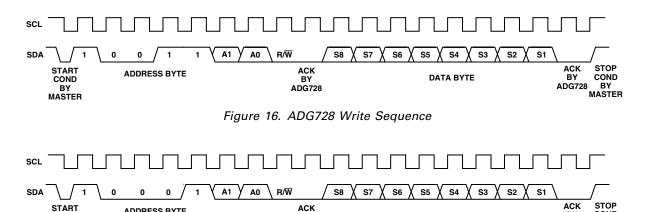


Figure 17. ADG729 Write Sequence

DATA BYTE

BY ADG729

READ OPERATION

BY MASTER

When reading data back from the ADG728/ADG729, the user must begin with an address byte and R/W bit, after which the matrix switch will acknowledge that it is prepared to transmit data by pulling SDA low. The readback operation is a single byte that consists of the eight data bits in the input register. The read operations for each part are shown in Figures 18 and 19.

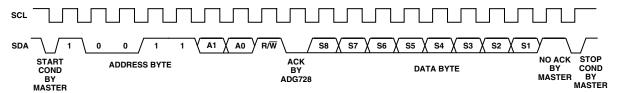


Figure 18. ADG728 Readback Sequence

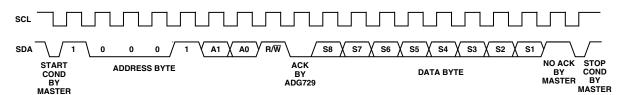


Figure 19. ADG729 Readback Sequence

-10-

COND

BY MASTER

BY

ADG729

MULTIPLE DEVICES ON ONE BUS

Figure 20 shows four ADG728s devices on the same serial bus. Each has a different slave address since the state of their A0 and A1 pins is different. This allows each Matrix Switch to be written to or read from independently. Because the ADG729 has a different address to the ADG728, it would be possible for four of each of these devices to be connected to the same bus.

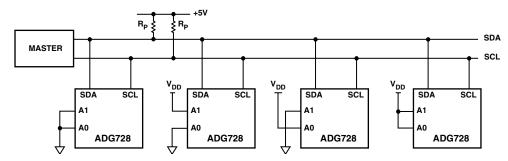
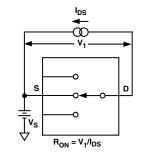
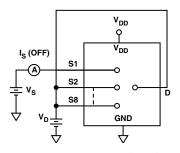
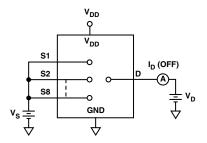
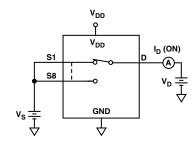
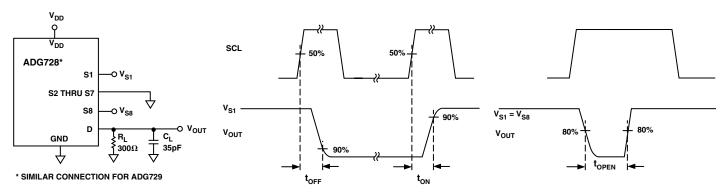
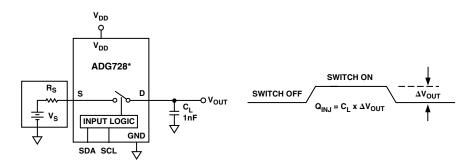




Figure 20. Multiple ADG728s on the Same Bus

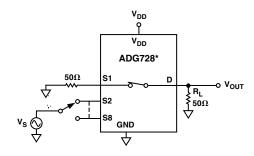

TEST CIRCUITS


Test Circuit 1. On Resistance


Test Circuit 2. I_D (OFF)

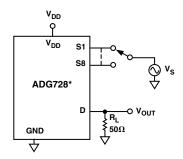

Test Circuit 3. I_S (OFF)

Test Circuit 4. I_D (ON)



Test Circuit 5. Switching Times and Break-Before-Make Times

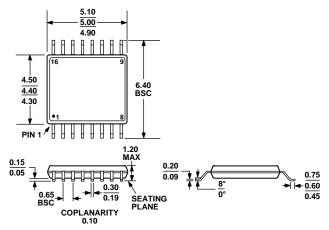
* SIMILAR CONNECTION FOR ADG729


Test Circuit 6. Charge Injection

* SIMILAR CONNECTION FOR ADG729

CHANNEL-TO-CHANNEL CROSSTALK = $20LOG_{10}(V_{OUT}/V_S)$

Test Circuit 7. Channel-to-Channel Crosstalk



*SIMILAR CONNECTION FOR ADG729 S1 IS SWITCHED OFF FOR OFF ISOLATION MEASUREMENTS AND ON FOR BANDWIDTH MEASUREMENTS OFF ISOLATION = $20\text{LOG}_{10}(\text{V}_{\text{OUT}}/\text{V}_{\text{S}})$

INSERTION LOSS = $20LOG_{10} \left(\frac{V_{OUT}}{V_{OUT}} WITH SWITCH}{V_{OUT}} WITHOUT SWITCH \right)$

Test Circuit 8. Off Isolation and Bandwidth

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 1. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADG728BRU	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG728BRU-REEL	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG728BRU-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG728BRUZ	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG728BRUZ-REEL	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG728BRUZ-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG728WBRUZ-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG729BRU	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG729BRU-REEL	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG729BRU-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG729BRUZ	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG729BRUZ-REEL7	-40°C to +85°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

¹ Z = RoHS Compliant Part.

AUTOMOTIVE PRODUCTS

The ADG728W model is available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for this model.

REVISION HISTORY

 10/11-Rev. A to Rev. B

Change to Features Section	1
Changes to Absolute Maximum Ratings Section	6
Updated Outline Dimensions	13
Changes to Ordering Guide	13
Added Automotive Products Section	13

©2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D01002-0-6/12(C)

www.analog.com

REV. C –13–

² W = Qualified for Automotive Applications.