
Figure 2. Block Diagram



**Table 3. Absolute Maximum Ratings** 

| Symbol             | Parameter                                                                         | Value              | Unit |
|--------------------|-----------------------------------------------------------------------------------|--------------------|------|
| V <sub>CC</sub>    | DC Supply Voltage                                                                 | 41                 | V    |
| - Vcc              | Reverse DC Supply Voltage                                                         | - 0.3              | V    |
| - I <sub>GND</sub> | DC Reverse Ground Pin Current                                                     | - 200              | mA   |
| lout               | DC Output Current                                                                 | Internally Limited | Α    |
| - I <sub>OUT</sub> | Reverse DC Output Current                                                         | - 25               | Α    |
| I <sub>IN</sub>    | DC Input Current                                                                  | +/- 10             | mA   |
| ISTAT              | DC Status Current                                                                 | +/- 10             | mA   |
|                    | Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)                      |                    |      |
|                    | - INPUT                                                                           | 4000               | V    |
| V <sub>ESD</sub>   | - CURRENT SENSE                                                                   | 4000               | V    |
|                    | - OUTPUT                                                                          | 5000               | V    |
|                    | - V <sub>CC</sub>                                                                 | 5000               | V    |
| E                  | Maximum Switching Energy                                                          | 362                | m.l  |
| E <sub>MAX</sub>   | (L=0.25mH; $R_L$ =0 $\Omega$ ; $V_{bat}$ =13.5V; $T_{jstart}$ =150°C; $I_L$ =45A) | 302                | mJ   |
| P <sub>tot</sub>   | Power Dissipation T <sub>C</sub> =25°C                                            | 96.1               | W    |
| Tj                 | Junction Operating Temperature                                                    | Internally Limited | °C   |
| T <sub>c</sub>     | Case Operating Temperature                                                        | - 40 to 150        | °C   |
| T <sub>stg</sub>   | Storage Temperature                                                               | - 55 to 150        | °C   |

Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins

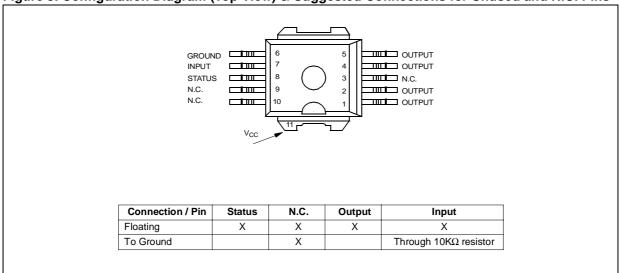
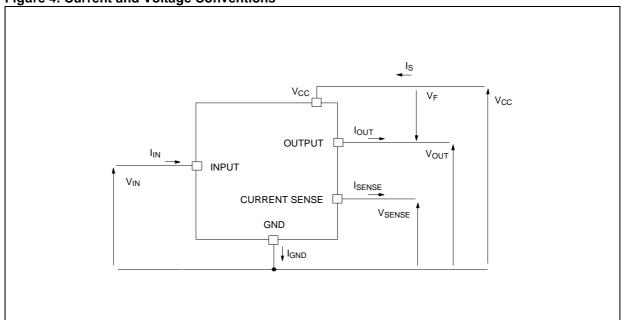




Figure 4. Current and Voltage Conventions



**Table 4. Thermal Data** 

| Symbol Parameter      |                                         | Value                                           | Unit |
|-----------------------|-----------------------------------------|-------------------------------------------------|------|
| R <sub>thj-case</sub> | Thermal Resistance Junction-case Max    | 1.3                                             | °C/W |
| R <sub>thj-amb</sub>  | Thermal Resistance Junction-ambient Max | Resistance Junction-ambient Max 51.3 (1) 37 (2) |      |

Note: <sup>(1)</sup> When mounted on a standard single-sided FR-4 board with 0.5cm<sup>2</sup> of Cu (at least 35µm thick).

Note: (2) When mounted on a standard single-sided FR-4 board with 6 cm<sup>2</sup> of Cu (at least 35µm thick).

47/

 $\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \\ (8V < V_{CC} < 36V; -40^{\circ}\text{C} < T_{j} < 150^{\circ}\text{C} \text{ unless otherwise specified)}$ 

Table 5. Power

| Symbol               | Parameter                         | Test Conditions                                                           | Min | Тур | Max | Unit |
|----------------------|-----------------------------------|---------------------------------------------------------------------------|-----|-----|-----|------|
| V <sub>CC</sub>      | Operating Supply Voltage          |                                                                           | 5.5 | 13  | 36  | V    |
| V <sub>USD</sub>     | Undervoltage Shut-down            |                                                                           | 3   | 4   | 5.5 | V    |
| VuSDhyst             | Undervoltage Shut-down hysteresis |                                                                           |     | 0.5 |     | V    |
| Vov                  | Overvoltage Shut-down             |                                                                           | 36  |     |     | V    |
|                      |                                   | I <sub>OUT</sub> =10A; T <sub>j</sub> =25°C                               |     |     | 16  | mΩ   |
| Ron                  | On State Resistance               | I <sub>OUT</sub> =10A                                                     |     |     | 30  | mΩ   |
|                      |                                   | I <sub>OUT</sub> =3A; V <sub>CC</sub> =6V                                 |     |     | 50  | mΩ   |
|                      |                                   | Off State; V <sub>CC</sub> =13V; V <sub>IN</sub> =V <sub>OUT</sub> =0V    |     | 10  | 25  | μΑ   |
| Is                   | Supply Current                    | Off State; $V_{CC}=13V$ ; $V_{IN}=V_{OUT}=0V$ ; $T_j=25^{\circ}C$         |     | 10  | 20  | μΑ   |
|                      |                                   | On State; V <sub>CC</sub> =13V; V <sub>IN</sub> =5V; I <sub>OUT</sub> =0A |     |     | 5   | mA   |
| I <sub>L(off1)</sub> | Off State Output Current          | V <sub>IN</sub> =V <sub>OUT</sub> =0V                                     | 0   |     | 50  | μΑ   |
| I <sub>L(off2)</sub> | Off State Output Current          | V <sub>IN</sub> =0V; V <sub>OUT</sub> =3.5V                               | -75 |     | 0   | μΑ   |
| I <sub>L(off3)</sub> | Off State Output Current          | $V_{IN}=V_{OUT}=0V; V_{CC}=13V; T_j=125^{\circ}C$                         |     |     | 5   | μΑ   |
| I <sub>L(off4)</sub> | Off State Output Current          | $V_{IN}=V_{OUT}=0V; V_{CC}=13V; T_j=25$ °C                                |     |     | 3   | μΑ   |

# Table 6. Switching (V<sub>CC</sub>=13V)

| Symbol                                     | Parameter              | Test Conditions      | Min | Тур                        | Max | Unit |
|--------------------------------------------|------------------------|----------------------|-----|----------------------------|-----|------|
| t <sub>d(on)</sub>                         | Turn-on Delay Time     | R <sub>L</sub> =1.3Ω |     | 50                         |     | μs   |
| t <sub>d(off)</sub>                        | Turn-off Delay Time    | R <sub>L</sub> =1.3Ω |     | 50                         |     | μs   |
| dV <sub>OUT</sub> /<br>dt <sub>(on)</sub>  | Turn-on Voltage Slope  | R <sub>L</sub> =1.3Ω |     | See<br>relative<br>diagram |     | V/μs |
| dV <sub>OUT</sub> /<br>dt <sub>(off)</sub> | Turn-off Voltage Slope | R <sub>L</sub> =1.3Ω |     | See<br>relative<br>diagram |     | V/μs |

## Table 7. Input Pin

| Symbol               | Parameter                | Test Conditions        | Min  | Тур  | Max  | Unit |
|----------------------|--------------------------|------------------------|------|------|------|------|
| V <sub>IL</sub>      | Input Low Level          |                        |      |      | 1.25 | V    |
| I <sub>IL</sub>      | Low Level Input Current  | V <sub>IN</sub> =1.25V | 1    |      |      | μΑ   |
| V <sub>IH</sub>      | Input High Level         |                        | 3.25 |      |      | V    |
| lін                  | High Level Input Current | V <sub>IN</sub> =3.25V |      |      | 10   | μΑ   |
| V <sub>I(hyst)</sub> | Input Hysteresis Voltage |                        | 0.5  |      |      | V    |
| \/.~.                | Innut Clamp Valtage      | I <sub>IN</sub> =1mA   | 6    | 6.8  | 8    | V    |
| V <sub>ICL</sub>     | Input Clamp Voltage      | I <sub>IN</sub> =-1mA  |      | -0.7 |      | V    |

### **ELECTRICAL CHARACTERISTICS** (continued)

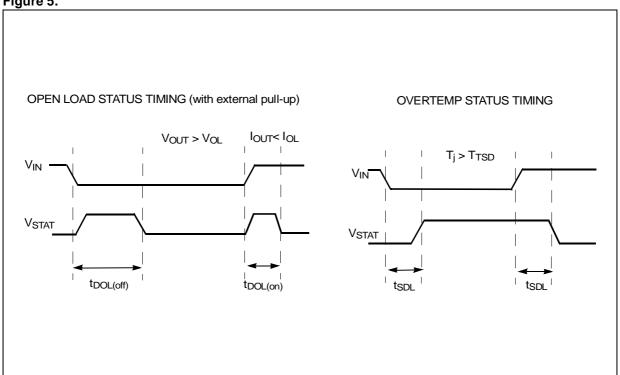
### Table 8. VCC - Output Diode

| Symbol | Parameter          | Test Conditions                              | Min | Тур | Max | Unit |
|--------|--------------------|----------------------------------------------|-----|-----|-----|------|
| VF     | Forward on Voltage | -l <sub>OUT</sub> =5A; T <sub>j</sub> =150°C |     |     | 0.6 | V    |

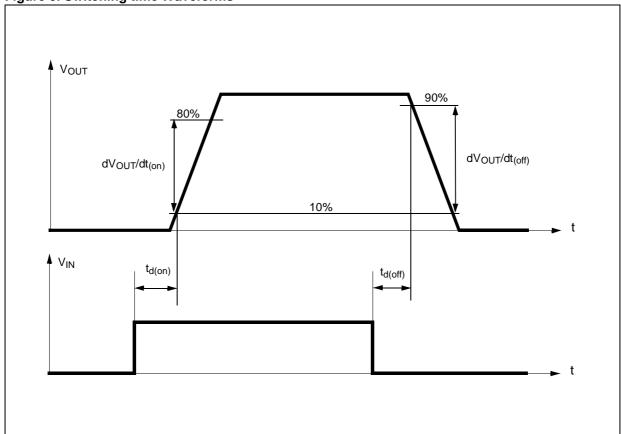
#### Table 9. Status Pin

| Symbol            | Parameter                       | Test Conditions                        | Min | Тур  | Max | Unit |
|-------------------|---------------------------------|----------------------------------------|-----|------|-----|------|
| V <sub>STAT</sub> | Status Low Output Voltage       | I <sub>STAT</sub> =1.6mA               |     |      | 0.5 | V    |
| ILSTAT            | Status Leakage Current          | Normal Operation V <sub>STAT</sub> =5V |     |      | 10  | μΑ   |
| C <sub>STAT</sub> | Status Pin Input<br>Capacitance | Normal Operation V <sub>STAT</sub> =5V |     |      | 100 | pF   |
| Vac               | Status Clamp Voltage            | I <sub>STAT</sub> =1mA                 | 6   | 6.8  | 8   | V    |
| V <sub>SCL</sub>  |                                 | I <sub>STAT</sub> =-1mA                |     | -0.7 |     | V    |

### Table 10. Protections (see note 1)


| Symbol             | Parameter                          | Test Conditions                                  | Min                 | Тур                 | Max                 | Unit   |
|--------------------|------------------------------------|--------------------------------------------------|---------------------|---------------------|---------------------|--------|
| T <sub>TSD</sub>   | Shut-down Temperature              |                                                  | 150                 | 175                 | 200                 | °C     |
| T <sub>R</sub>     | Reset Temperature                  |                                                  | 135                 |                     |                     | °C     |
| T <sub>hyst</sub>  | Thermal Hysteresis                 |                                                  | 7                   | 15                  |                     | °C     |
| t <sub>SDL</sub>   | Status delay in overload condition | T <sub>j</sub> >T <sub>TSD</sub>                 |                     |                     | 20                  | μs     |
| I <sub>lim</sub>   | Current limitation                 | 5.5V <v<sub>CC&lt;36V</v<sub>                    | 30                  | 45                  | 75<br>75            | A<br>A |
| V <sub>demag</sub> | Turn-off Output Clamp<br>Voltage   | I <sub>OUT</sub> =2A; V <sub>IN</sub> =0V; L=6mH | V <sub>CC</sub> -41 | V <sub>CC</sub> -48 | V <sub>CC</sub> -55 | V      |

Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles.


#### **Table 11. Openload Detection**

| Symbol                | Parameter                            | Test Conditions     | Min | Тур | Max  | Unit  |
|-----------------------|--------------------------------------|---------------------|-----|-----|------|-------|
| la                    | Openload ON State                    | V <sub>IN</sub> =5V | 300 | 500 | 700  | mA    |
| I <sub>OL</sub>       | Detection Threshold                  | VIN-3V              | 300 | 300 | 700  | 111/4 |
| tnou                  | Openload ON State                    | IOUT=0A             |     |     | 200  | 116   |
| t <sub>DOL(on)</sub>  | Detection Delay                      | 1001=0A             |     |     | 200  | μs    |
|                       | Openload OFF State                   |                     |     |     |      |       |
| $V_{OL}$              | Voltage Detection                    | V <sub>IN</sub> =0V | 1.5 | 2.5 | 3.5  | V     |
|                       | Threshold                            |                     |     |     |      |       |
| t <sub>DOL(off)</sub> | Openload Detection Delay at Turn Off |                     |     |     | 1000 | μs    |

Figure 5.

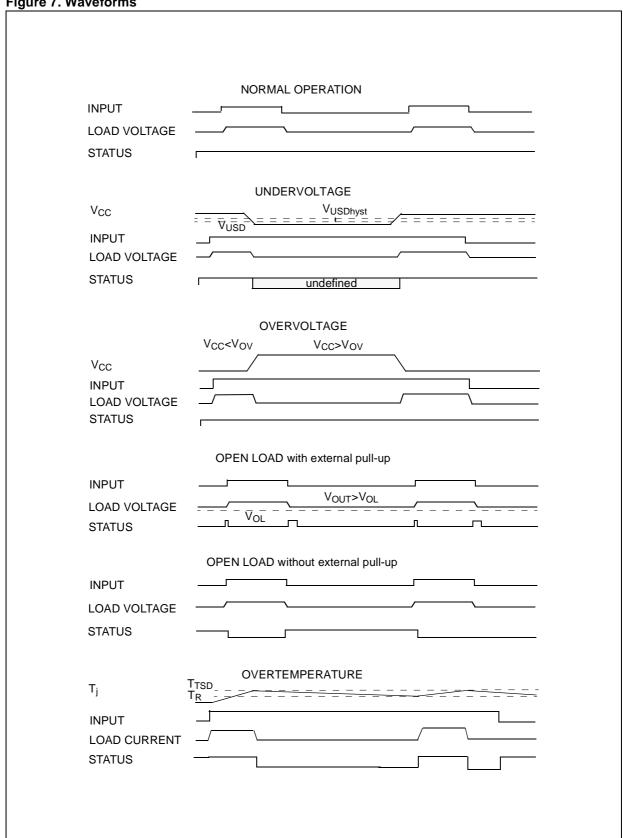






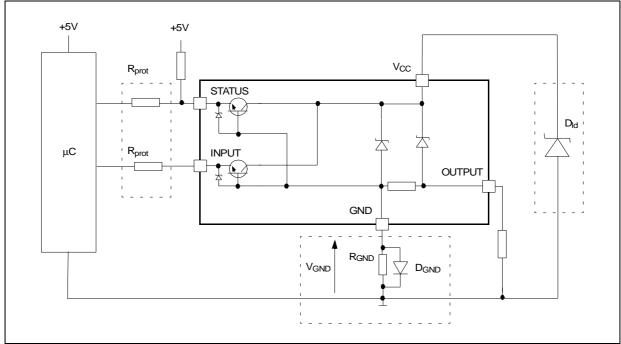
**Table 12. Truth Table** 

| CONDITIONS                       | INPUT | OUTPUT | STATUS                                     |
|----------------------------------|-------|--------|--------------------------------------------|
| Normal Operation                 | L     | L      | Н                                          |
| Normal Operation                 | Н     | Н      | H                                          |
|                                  | L     | L      | Н                                          |
| Current Limitation               | H     | X      | $(T_j < T_{TSD}) H$<br>$(T_j > T_{TSD}) L$ |
|                                  | Н     | X      | $(T_j > T_{TSD}) L$                        |
| Overtemperature                  | L     | L      | Н                                          |
| Overtemperature                  | Н     | L      | L                                          |
| Undervoltage                     | L     | L      | X                                          |
| Oridervoltage                    | Н     | L      | X                                          |
| Overvoltage                      | L     | L      | Н                                          |
| Overvoltage                      | Н     | L      | H                                          |
| Output Voltage > Vo              | L     | Н      | L                                          |
| Output Voltage > V <sub>OL</sub> | Н     | Н      | Н                                          |
| Output Current < I <sub>OL</sub> | L     | L      | Н                                          |
| Output Current < 10L             | Н     | Н      | L                                          |


Table 13. Electrical Transient Requirements On  $\rm V_{\rm CC}$  Pin

| ISO T/R 7637/1 | TEST LEVELS |         |         |         |                         |  |  |  |
|----------------|-------------|---------|---------|---------|-------------------------|--|--|--|
| Test Pulse     | I           | II      | III     | IV      | Delays and<br>Impedance |  |  |  |
| 1              | -25 V       | -50 V   | -75 V   | -100 V  | 2 ms 10 Ω               |  |  |  |
| 2              | +25 V       | +50 V   | +75 V   | +100 V  | 0.2 ms 10 Ω             |  |  |  |
| 3a             | -25 V       | -50 V   | -100 V  | -150 V  | 0.1 μs 50 Ω             |  |  |  |
| 3b             | +25 V       | +50 V   | +75 V   | +100 V  | 0.1 μs 50 Ω             |  |  |  |
| 4              | -4 V        | -5 V    | -6 V    | -7 V    | 100 ms, 0.01 $\Omega$   |  |  |  |
| 5              | +26.5 V     | +46.5 V | +66.5 V | +86.5 V | 400 ms, 2 $\Omega$      |  |  |  |

| ISO T/R 7637/1 |   | TEST LEVELS RESULTS |     |    |  |  |  |  |
|----------------|---|---------------------|-----|----|--|--|--|--|
| Test Pulse     | I | II                  | III | IV |  |  |  |  |
| 1              | С | С                   | С   | С  |  |  |  |  |
| 2              | С | С                   | С   | С  |  |  |  |  |
| 3a             | С | С                   | С   | С  |  |  |  |  |
| 3b             | С | С                   | С   | С  |  |  |  |  |
| 4              | С | С                   | С   | С  |  |  |  |  |
| 5              | С | E                   | E   | E  |  |  |  |  |


| CLASS | CONTENTS                                                                                                                                                                |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С     | All functions of the device are performed as designed after exposure to disturbance.                                                                                    |
| Е     | One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. |





47/ 8/19

Figure 8. Application Schematic



# GND PROTECTION NETWORK AGAINST REVERSE BATTERY

Solution 1: Resistor in the ground line (R<sub>GND</sub> only). This can be used with any type of load.

The following is an indication on how to dimension the R<sub>GND</sub> resistor.

- 1)  $R_{GND} \le 600 \text{mV} / (I_{S(on)max})$ .
- 2)  $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where  $-I_{\rm GND}$  is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet.

Power Dissipation in  $R_{GND}$  (when  $V_{CC}$ <0: during reverse battery situations) is:

 $P_D = (-V_{CC})^2 / R_{GND}$ 

This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where  $I_{S(on)max}$  becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not common with the device ground then the  $R_{GND}$  will produce a shift ( $I_{S(on)max} \ ^* R_{GND}$ ) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same  $R_{GND}.$ 

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below).

Solution 2: A diode ( $D_{GND}$ ) in the ground line.

A resistor (RGND=1k $\Omega$ ) should be inserted in parallel to DGND if the device will be driving an inductive load.

This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (≃600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.

Series resistor in INPUT line is also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating.

Safest configuration for unused INPUT pin is to leave it unconnected, while unused SENSE pin has to be connected to Ground pin.

#### LOAD DUMP PROTECTION

 $D_{ld}$  is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds  $V_{CC}$  max DC rating. The same applies if the device will be subject to transients on the  $V_{CC}$  line that are greater than the ones shown in the ISO T/R 7637/1 table.

#### μC I/Os PROTECTION:

If a ground protection network is used and negative transient are present on the  $V_{CC}$  line, the control pins will be pulled negative. ST suggests to insert a resistor ( $R_{prot}$ ) in line to prevent the  $\mu C$  I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of  $\mu C$  and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of  $\mu C$  I/Os.

- $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$  Calculation example:

For V<sub>CCpeak</sub>= - 100V and I<sub>Iatchup</sub>  $\geq$  20mA; V<sub>OHµC</sub>  $\geq$  4.5V  $5k\Omega \leq R_{prot} \leq 65k\Omega$ .

Recommended  $R_{prot}$  value is  $10k\Omega$ .

Figure 9. Off State Output Current

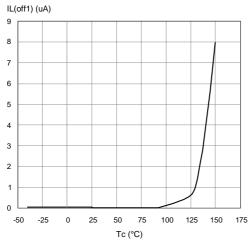



Figure 11. Input Low Level

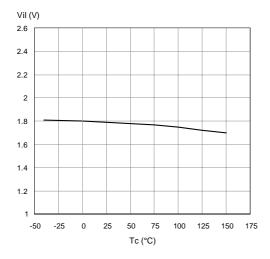



Figure 12. Input Clamp Voltage

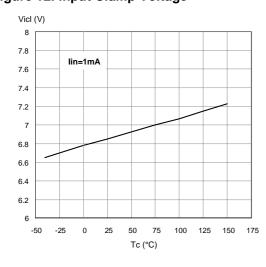



Figure 10. High Level Input Current

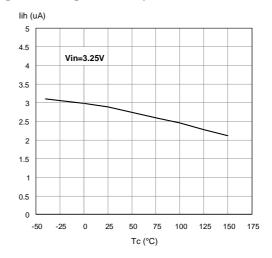



Figure 13. Input High Level

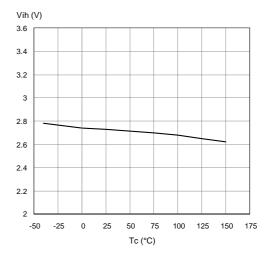



Figure 14. Input Hysteresis Voltage

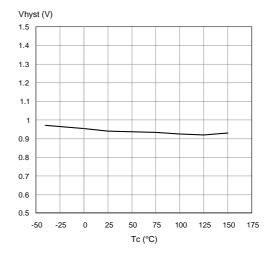



Figure 15. Overvoltage Shutdown

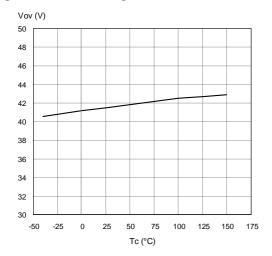



Figure 16. Turn-on Voltage Slope

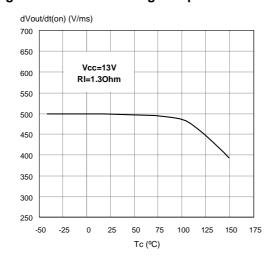



Figure 17. On State Resistance Vs Tcase

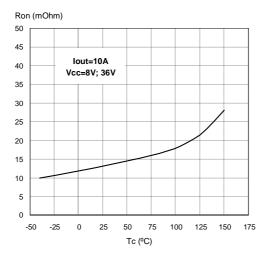



Figure 18. I<sub>LIM</sub> Vs T<sub>case</sub>

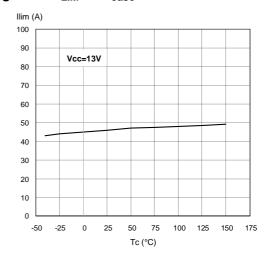



Figure 19. Turn-off Voltage Slope

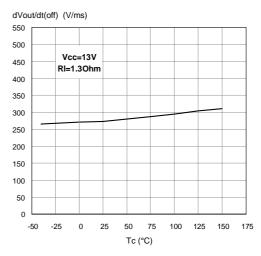



Figure 20. On State Resistance Vs V<sub>CC</sub>

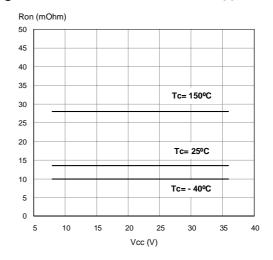



Figure 21. Status Leakage Current

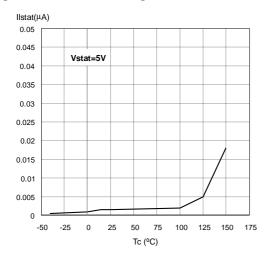



Figure 23. Status Low Output Voltage

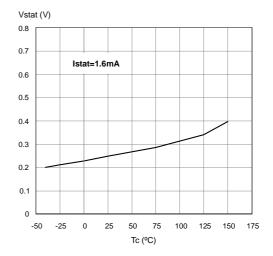
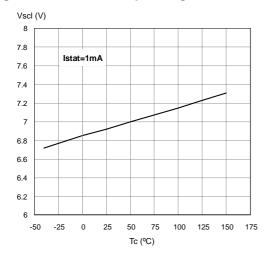




Figure 22. Status Clamp Voltage



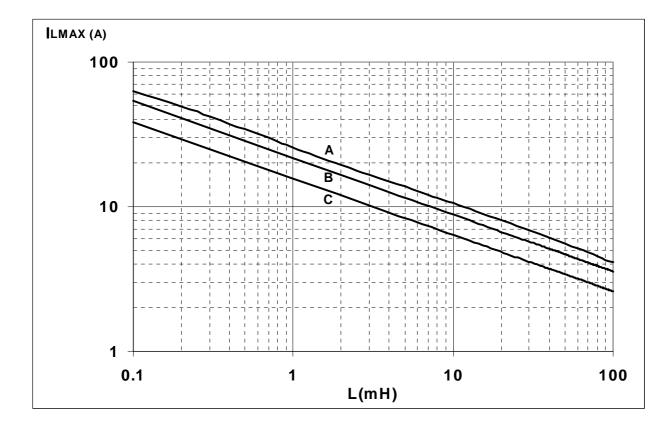
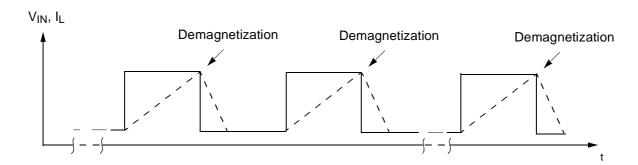




Figure 24. Maximum turn off current versus load inductance

A = Single Pulse at  $T_{Jstart}$ =150°C B= Repetitive pulse at  $T_{Jstart}$ =100°C C= Repetitive Pulse at  $T_{Jstart}$ =125°C Conditions:  $V_{CC}$ =13.5V Values are generated with  $R_L$ = $0\Omega$ 

In case of repetitive pulses,  $T_{jstart}$  (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.



#### PowerSO-10™ Thermal Data

Figure 25. PowerSO-10™ PC Board

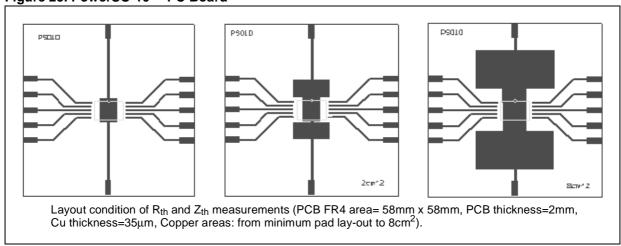
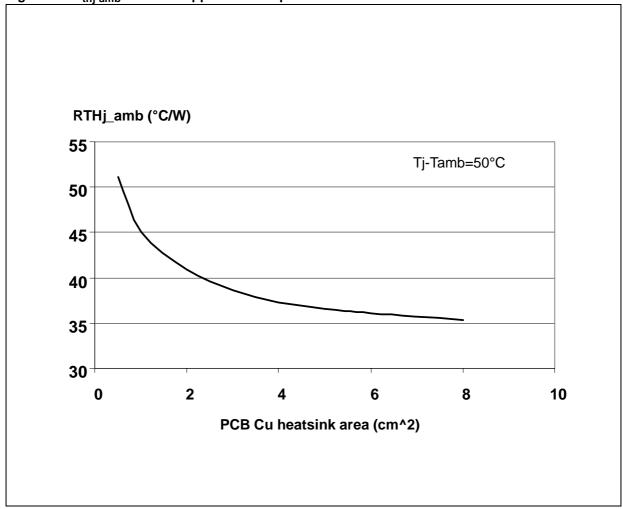




Figure 26.  $R_{thj\text{-}amb}$  Vs PCB copper area in open box free air condition



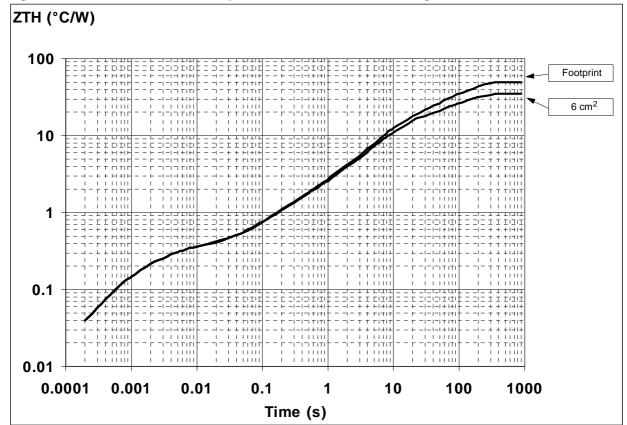
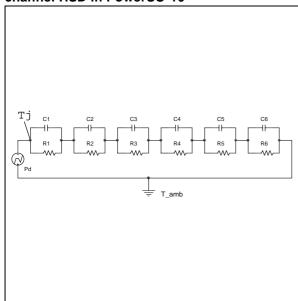




Figure 27. PowerSO-10 Thermal Impedance Junction Ambient Single Pulse

Figure 28. Thermal fitting model of a double channel HSD in PowerSO-10



### Pulse calculation formula

$$\begin{split} Z_{TH\delta} &= R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ \text{where} \quad \delta &= t_p / T \end{split}$$

**Table 14. Thermal Parameter** 

| Area/island (cm <sup>2</sup> ) | Footprint | 6  |
|--------------------------------|-----------|----|
| R1 (°C/W)                      | 0.02      |    |
| R2 (°C/W)                      | 0.1       |    |
| R3( °C/W)                      | 0.2       |    |
| R4 (°C/W)                      | 0.8       |    |
| R5 (°C/W)                      | 12        |    |
| R6 (°C/W)                      | 37        | 22 |
| C1 (W.s/°C)                    | 0.0015    |    |
| C2 (W.s/°C)                    | 7.00E-03  |    |
| C3 (W.s/°C)                    | 0.015     |    |
| C4 (W.s/°C)                    | 0.3       |    |
| C5 (W.s/°C)                    | 0.75      |    |
| C6 (W.s/°C)                    | 3         | 5  |

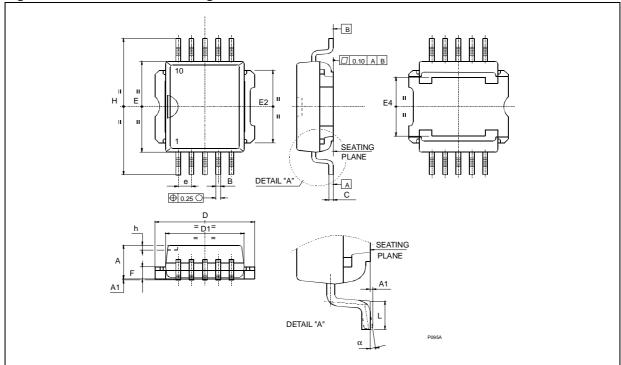

### **PACKAGE MECHANICAL**

Table 15. PowerSO-10™ Mechanical Data

| Complete | millimeters |      |       |
|----------|-------------|------|-------|
| Symbol   | Min         | Тур  | Max   |
| A        | 3.35        |      | 3.65  |
| A (*)    | 3.4         |      | 3.6   |
| A1       | 0.00        |      | 0.10  |
| В        | 0.40        |      | 0.60  |
| B (*)    | 0.37        |      | 0.53  |
| C        | 0.35        |      | 0.55  |
| C (*)    | 0.23        |      | 0.32  |
| D        | 9.40        |      | 9.60  |
| D1       | 7.40        |      | 7.60  |
| Е        | 9.30        |      | 9.50  |
| E2       | 7.20        |      | 7.60  |
| E2 (*)   | 7.30        |      | 7.50  |
| E4       | 5.90        |      | 6.10  |
| E4 (*)   | 5.90        |      | 6.30  |
| е        |             | 1.27 |       |
| F        | 1.25        |      | 1.35  |
| F (*)    | 1.20        |      | 1.40  |
| Н        | 13.80       |      | 14.40 |
| H (*)    | 13.85       |      | 14.35 |
| h        |             | 0.50 |       |
| L        | 1.20        |      | 1.80  |
| L (*)    | 0.80        |      | 1.10  |
| a        | 00          |      | 8°    |
| α (*)    | 2º          |      | 80    |

Note: (\*) Muar only POA P013P

Figure 29. PowerSO-10™ Package Dimensions



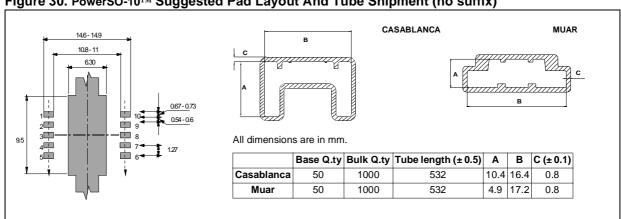
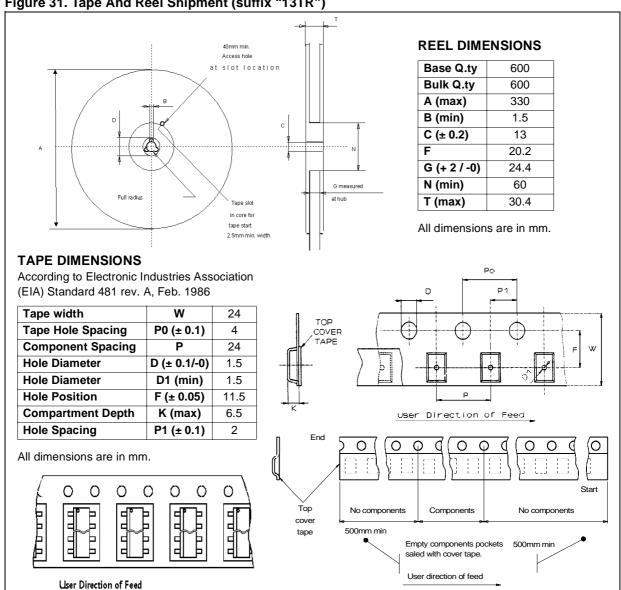




Figure 30. PowerSO-10™ Suggested Pad Layout And Tube Shipment (no suffix)

Figure 31. Tape And Reel Shipment (suffix "13TR")



47/ 17/19

# VN920DSP

### **REVISION HISTORY**

| Date        | Revision | Description of Changes |
|-------------|----------|------------------------|
| Sep. 2004   | 1        | - First Issue.         |
| Oct. 2004   | 2        | - Minor text change.   |
| 24-Sep-2013 | 3        | - Updated Disclaimer   |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

47/

DocID10683 Rev 3Á

19/19

Downloaded from Arrow.com.