#### **Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

| Storage Temperature65°C to +150°C                   | 1 |
|-----------------------------------------------------|---|
| Ambient Temperature with Power Applied40°C to +85°C | ļ |
| Supply Voltage to Ground Potential0.5V to +4.6V     |   |
| DC Input Voltage0.5V to +6.0V                       |   |
| DC Output Current                                   |   |
| Power Dissipation0.5W                               | , |

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

## DC Electrical Characteristics, 3.3V Supply

(Over the Operating Range,  $T_A = -40^{\circ}C$  to  $+85^{\circ}C$ ,  $V_{DD} = 3.3V \pm 10\%$ )

| Parameters       | Description                         | Test Conditions <sup>(1)</sup>                                                                                                                       | Min. | Typ. <sup>(2)</sup> | Max. | Units |
|------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|------|-------|
| V <sub>IH</sub>  | Input HIGH Voltage                  | Guaranteed Logic HIGH Level                                                                                                                          | 1.3  |                     |      |       |
| V <sub>IL</sub>  | Input LOW Voltage                   | Guaranteed Logic LOW Level                                                                                                                           |      |                     | 0.6  | V     |
| V <sub>IK</sub>  | Clamp Diode Voltage                 | $V_{DD} = Min., I_{ N} = -18 \text{ mA}$                                                                                                             |      | -1.3                | -1.8 |       |
| I <sub>IH</sub>  | Input HIGH Current                  | $V_{DD} = Max., V_{IN} = V_{DD}$                                                                                                                     |      |                     | ±1   |       |
| I <sub>IL</sub>  | Input LOW Current                   | $V_{DD} = Max., V_{ N} = GND$                                                                                                                        |      |                     | ±1   | μA    |
| I <sub>OZH</sub> | High Impedance Output Current       | $0 \le Y$ , In $\le V_{DD}$                                                                                                                          |      |                     | ±1   |       |
| R <sub>ON</sub>  | Switch On-Resistance <sup>(4)</sup> | $\label{eq:VDD} \begin{split} V_{\text{DD}} &= \text{Min., -0.4V} \leq \text{Vinput} \leq 0.4\text{V}, \\ I_{\text{ON}} &= -40\text{mA} \end{split}$ |      | 4                   | 6    | Ω     |
|                  |                                     | $0V \le Vinput \le V_{DD}$ , $ION = -40mA$                                                                                                           |      | 5                   | 8    |       |

| Parameters <sup>(5)</sup> | Description                 | Test Conditions           | Тур. | Units |
|---------------------------|-----------------------------|---------------------------|------|-------|
| C <sub>IN</sub>           | Input Capacitance           | acitance ance, Switch Off |      |       |
| C <sub>OFF(IN)</sub>      | In Capacitance, Switch Off  |                           |      | чЪ    |
| C <sub>OFF(Y)</sub>       | Y Capacitance, Switch Off   | $v_{\rm IN} = 0v$         | 4    | рг    |
| C <sub>ON</sub>           | Y/In Capacitance, Switch On |                           | 8    |       |

## Capacitance $(T_A = 25^{\circ}C f = 1 MHz)$

Notes

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at  $\rm V_{DD}$  = 3.3V,  $\rm T_A$  = 25°C ambient and maximum loading.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. Measured by the voltage drop between Y and In pin at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the two (Y, In) pins.

5. This parameter is determined by device characterization but is not production tested.

#### **Power Supply Characteristics**

| Parameters      | Description                    | Test Conditions <sup>(1)</sup>              | Min. | Typ. <sup>(2)</sup> | Max. | Units |
|-----------------|--------------------------------|---------------------------------------------|------|---------------------|------|-------|
| I <sub>CC</sub> | Quiescent Power Supply Current | $V_{DD}$ = 3.6V, $V_{IN}$ = GND or $V_{DD}$ |      |                     | 60   | μΑ    |

Notes:

1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.

2. Typical values are at VDD = 3.3V, +25°C ambient.

3. Per LVTTL driven input (control inputs only); Y and In pins do not contribute to ICC. This parameter is guaranteed, but not production tested.

## **Dynamic Electrical Characteristics Over the Operating Range**

(T<sub>A</sub> = -40° to +85°, V<sub>DD</sub> = 3.3V  $\pm$  10%)

| Parameter         | Description    | Test Condition                   | Min. | Тур. | Max. | Units |
|-------------------|----------------|----------------------------------|------|------|------|-------|
| X <sub>TALK</sub> | Crosstalk      | DR at 480Mbps, See Test Diagram  |      | -35  |      | αι    |
| O <sub>IRR</sub>  | Off-Isolation  | DR at 480Mbps , See Test Diagram |      | -35  |      | aв    |
| BW                | -3dB Bandwidth | See Test Diagram                 |      | 815  |      | MHz   |
| IN                | Insertion Loss | <i>f</i> = 240MHz, DR = 480Mbps  |      | -0.5 |      | dB    |

#### Switching Characteristics over 3.3V Operating Range

|                  |                                             |                           | Com. |      |      |       |
|------------------|---------------------------------------------|---------------------------|------|------|------|-------|
| Parameters       | Description                                 | Conditions <sup>(1)</sup> | Min. | Тур. | Max. | Units |
| t <sub>PLH</sub> | Propagation $Delay^{(2,3)} V$ to In In to V | See Test Diagram          |      |      | 0.3  | ne    |
| t <sub>PHL</sub> |                                             |                           |      |      | 0.5  | 115   |

Notes:

1. See test circuit and waveforms.

2. This parameter is guaranteed but not tested on Propagation Delays.

3. The switch contributes no propagational delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.30ns for 10pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

## Test Circuit for Electrical Characteristics<sup>(1)</sup>



#### Notes:

- 1. CL = Load capacitance: includes jig and probe capacitance.
- 2. RT = Termination resistance: should be equal to ZOUT of the Pulse Generator
- 3. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. All input impulses are supplied by generators having the following characteristics:  $PRR \le MHz$ ,  $ZO = 50\Omega$ ,  $tR \le 2.5ns$ ,  $tF \le 2.5ns$ .
- 5. The outputs are measured one at a time with one transition per measurement.

#### **Switch Positions**

| Test                                | Switch |
|-------------------------------------|--------|
| t <sub>PLZ</sub> , t <sub>PZL</sub> | 6.0V   |
| t <sub>PHZ</sub> , t <sub>PZH</sub> | GND    |
| Prop Delay                          | Open   |

#### **Test Circuit for Dynamic Electrical Characteristics**



## **Switching Waveforms**



## **Applications Information**

#### **Logic Inputs**

The logic control inputs can be driven up to 3.6V regardless of the supply voltage. For example, given a +3.3V supply,  $\overline{\text{EN}}$  maybe driven LOW to 0V and HIGH to 3.6V. Driving  $\overline{\text{EN}}$  Rail-to-Rail<sup>®</sup> minimizes power consumption.

## **Power Supply-Sequencing**

Proper power supply sequencing is recommended for all CMOS devices. Always apply VDD before applying signals to the input/ output or control pins.



# Packaging Mechanical: 16-pin QSOP (Q)

## Packaging Mechanical: 16-pin TSSOP (L)



## Packaging Mechanical: 20-Contact TQFN (ZH)



#### **Ordering Information**

| Ordering Code | Packaging Type | Package Description                    |
|---------------|----------------|----------------------------------------|
| PI3USB14-AQE  | Q              | Pb-free & Green, 150-mil, 16-pin QSOP  |
| PI3USB14-ALE  | L              | Pb-free & Green, 173-mil, 16-pin TSSOP |
| PI3USB14-AZHE | ZH             | Pb-free & Green, 20-Contact TQFN       |

#### Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- "E" denotes Pb-free and Green
- Adding an "X" at the end of the ordering code denotes tape and reel packaging

#### Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com