

PIN CONFIGURATIONS: 512K x 16 48-Pin mini BGA (6mm x 8mm)

44-Pin TSOP (Type II)

PIN DESCRIPTIONS

A0-A18	Address Inputs
I/O0-I/O	15 Data Inputs/Outputs
CS1, CS	S2 Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
UB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
GND	Ground

TRUTH TABLE

						I/O PIN			
Mode	WE	CS ₁	CS2	ŌĒ	ĪΒ	UB	1/00-1/07	I/O8-I/O15	VDD Current
Not Selected	Х	Н	Х	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
	Χ	Χ	L	Χ	Χ	Χ	High-Z	High-Z	ISB1, ISB2
	Χ	Χ	Χ	Х	Н	Н	High-Z	High-Z	Isb1, Isb2
Output Disabled	Н	L	Н	Н	L	Х	High-Z	High-Z	Icc
	Н	L	Н	Н	Χ	L	High-Z	High-Z	Icc
Read	Н	L	Н	L	L	Н	D оит	High-Z	Icc
	Н	L	Н	L	Н	L	High-Z	Dout	
	Н	L	Н	L	L	L	Dоит	D оит	
Write	L	L	Н	Х	L	Н	Din	High-Z	Icc
	L	L	Н	Χ	Н	L	High-Z	DIN	
	L	L	Н	Χ	L	L	DIN	DIN	

OPERATING RANGE (VDD)

Range	Ambient Temperature	(70ns)	(55ns)	(70ns)
Commercial	0°C to +70°C	1.7V - 1.95V	2.5V - 3.6V	
Industrial	–40°C to +85°C	1.7V - 1.95V	2.5V - 3.6V	
Automotive	-40°C to +105°C			2.5V-3.6V

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.2 to VDD+0.3	V
TBIAS	Temperature Under Bias	-40 to +85	°C
VDD	VDD Related to GND	-0.2 to +3.8	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Note:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	V DD	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA	1.7-1.95V	1.4	_	V
		IOH = -1 mA	2.5-3.6V	2.2	_	V
Vol	Output LOW Voltage	IoL = 0.1 mA	1.7-1.95V	_	0.2	V
		IoL = 2.1 mA	2.5-3.6V	_	0.4	V
VIH	Input HIGH Voltage		1.7-1.95V	1.4	V _{DD} + 0.2	V
			2.5-3.6V	2.2	$V_{DD} + 0.3$	V
VIL ⁽¹⁾	Input LOW Voltage		1.7-1.95V	-0.2	0.4	V
			2.5-3.6V	-0.2	0.6	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$		-1	1	μA
ILO	Output Leakage	$GND \leq Vout \leq Vdd$, (Outputs Disabled	-1	1	μA

Notes:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} V_{IL} (min.) = -1.0V for pulse width less than 10 ns.

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit	
CIN	Input Capacitance	$V_{IN} = 0V$	8	pF	
Соит	Input/Output Capacitance	Vout = 0V	10	pF	

Note

ACTEST CONDITIONS

Parameter	1.7V-1.95V (Unit)	2.5V-3.6V (Unit)	
Input Pulse Level	0.4V to VDD-0.2	0.4V to VDD-0.3V	
Input Rise and Fall Times	5 ns	5ns	
Input and Output Timing and Reference Level	VREF	VREF	
Output Load	See Figures 1 and 2	See Figures 1 and 2	

	1.7V - 1.95V	2.5V - 3.6V
R1(Ω)	3070	1029
R2(Ω)	3150	1728
VREF	0.9V	1.4V
Vтм	1.8V	2.8V

ACTEST LOADS

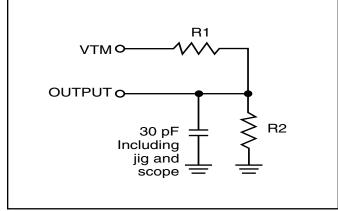


Figure 1

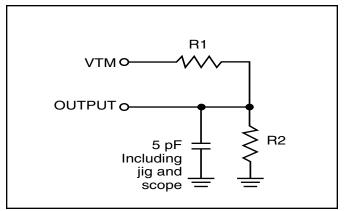


Figure 2

^{1.} Tested initially and after any design or process changes that may affect these parameters.

1.7V-1.95V POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Symbol	Parameter	Test Conditions		Max. 70ns	Unit
Icc	VDD Dynamic Operating Supply Current	VDD = Max., IOUT = 0 mA, f = fMAX All Inputs 0.4V or VDD - 0.2V	Com. Ind. Auto. typ. (1)	20 25 30	mA
Icc1	Operating Supply Current	$\frac{V_{DD} = Max., \overline{CS1} = 0.2V}{\overline{WE} = V_{DD} - 0.2V}$ $CS2 = V_{DD} - 0.2V, f = 1_{MHZ}$	Com. Ind.	4 4 10	mA
ISB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} &V_{DD} = Max., \\ &V_{IN} = V_{IH} \text{ or } V_{IL} \\ &\overline{CS1} = V_{IH} \text{ , } CS2 = V_{IL}, \\ &f = 1 \text{ MHz} \end{aligned}$	Com. Ind. Аυто.	0.6 0.6 1	mA
	OR				
	ULB Control	$\frac{V_{DD} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}}{CS1} = V_{IL}, f = 0, \overline{UB} = V_{IH}, \overline{L}$	<u>.B</u> = Vıн		
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & \frac{\text{V}_{\text{DD}} = \text{Max.,}}{\text{CS1}} \geq \text{V}_{\text{DD}} - 0.2\text{V,}\\ & \text{CS2} \leq 0.2\text{V,}\\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{DD}} - 0.2\text{V, or}\\ & \text{V}_{\text{IN}} \leq 0.2\text{V, f} = 0 \end{split}$	Com. Ind. Auto. typ. ⁽¹⁾	100 120 150	μΑ
	OR				
	ULB Control	$\begin{aligned} &V_{DD} = Max., \ \overline{CS1} = V_{IL}, \ C\\ &\underline{V_{IN}} \geq V_{DD} - 0.2V, \ or \ V_{IN} \leq \\ &\overline{UB} / \overline{LB} = V_{DD} - 0.2V \end{aligned}$			

Note:

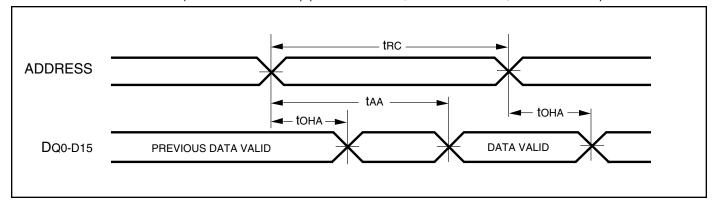
^{1.} Typical values are measured at $V_{DD} = 1.8V$, $T_A = 25$ °C and not 100% tested.

2.5V-3.6V POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)

Symbol	Parameter	Test Conditions		Max. 55ns	Unit
Icc	VDD Dynamic Operating Supply Current	VDD = Max., IOUT = 0 mA, f = fmax All Inputs 0.4V or VDD - 0.3V	Com. Ind. Auto. typ. ⁽²⁾	25 28 35 15	mA
Icc1	Operating Supply Current	$V_{DD} = Max., \overline{CS1} = 0.2V$ $\overline{WE} = V_{DD} - 0.2V$ $CS2 = V_{DD} - 0.2V, f = 1Mi$	Com. Ind. нzАито.	5 5 10	mA
ISB1	TTL Standby Current (TTL Inputs)	$V_{DD} = Max.,$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $\overline{CS1} = V_{IH}, CS2 = V_{IL},$ $f = 1 \text{ MHz}$	Com. Ind. Auto.	0.6 0.6 1	mA
	OR				
	ULB Control	$\frac{V_{DD}}{CS1} = Max., V_{IN} = V_{IH} \text{ or } V_{IN}$			
ISB2	CMOS Standby Current (CMOS Inputs)	$\begin{split} & \frac{\text{V}_{\text{DD}} = \text{Max.,}}{\text{CS1}} \geq \text{V}_{\text{DD}} - 0.2\text{V,}\\ & \text{CS2} \leq 0.2\text{V,}\\ & \text{V}_{\text{IN}} \geq \text{V}_{\text{DD}} - 0.2\text{V, or}\\ & \text{V}_{\text{IN}} \leq 0.2\text{V, f} = 0 \end{split}$	Com. Ind. Auto. typ. ⁽²⁾	100 130 150 75	μА
	OR				
	ULB Control	$\begin{split} V_{DD} &= Max., \ \overline{CS1} = V_{IL}, \ CS2 = V_{IH} \\ V_{IN} &\geq V_{DD} - 0.2V, \ or \ V_{IN} \leq 0.2V, \ f = 0; \\ \overline{UB} \ / \ \overline{LB} = V_{DD} - 0.2V \end{split}$			

At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.
 Typical values are measured at VDD = 3.0V, TA = 25°C and not 100% tested.

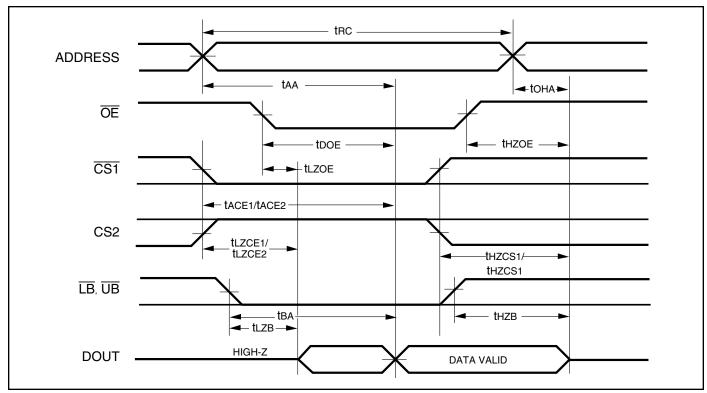
READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)


		55 n	S	70 ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	55	_	70	_	ns
taa	Address Access Time	_	55	_	70	ns
tона	Output Hold Time	10	_	10	_	ns
tacs1/tacs2	CS1/CS2 Access Time	_	55	_	70	ns
t DOE	OE Access Time	_	25	_	35	ns
thzoe(2)	OE to High-Z Output	_	20	_	25	ns
tLZOE ⁽²⁾	OE to Low-Z Output	5	_	5	_	ns
thzcs1/thzcs2 ⁽²⁾	CS1/CS2 to High-Z Output	0	20	0	25	ns
tLZCS1/tLZCS2 ⁽²⁾	CS1/CS2 to Low-Z Output	10	_	10	_	ns
t BA	LB, UB Access Time	_	55	_	70	ns
tнzв	LB, UB to High-Z Output	0	20	0	25	ns
t LZB	LB, UB to Low-Z Output	0		0	_	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS


READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CS1} = \overline{OE} = V_{IL}$, $\overline{CS2} = \overline{WE} = V_{IH}$, \overline{UB} or $\overline{LB} = V_{IL}$)

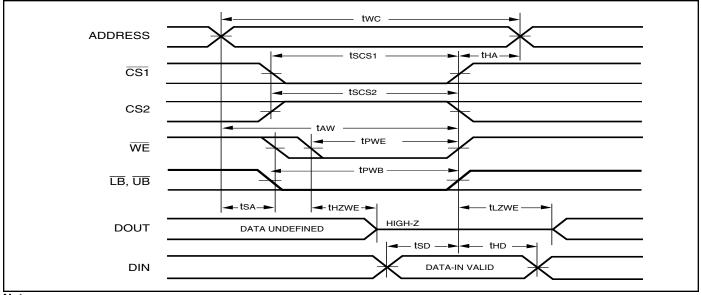
AC WAVEFORMS

READ CYCLE NO. 2(1,3) $(\overline{CS1}, CS2, \overline{OE}, AND \overline{UB}/\overline{LB} Controlled)$

Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$, \overline{UB} , or $\overline{LB} = V_{IL}$. $CS2=\overline{WE}=V_{IH}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CS1}}$ LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range)

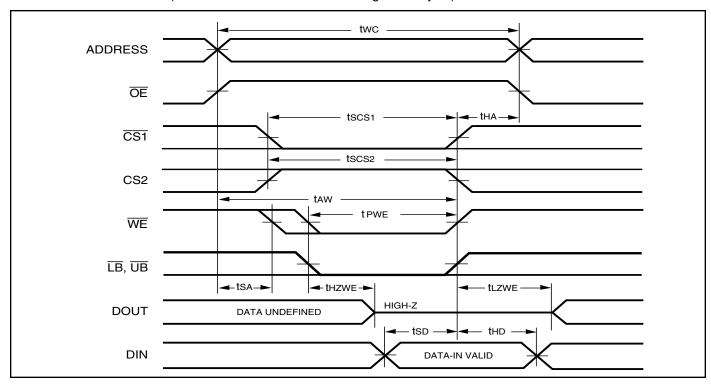

		55 ı	าร	70 ns	
Symbol	Parameter	Min.	Max.	Min. Max.	Unit
twc	Write Cycle Time	55	_	70 —	ns
tscs1/tscs	S2 CS1/CS2 to Write End	45	_	60 —	ns
taw	Address Setup Time to Write End	45	_	60 —	ns
tha	Address Hold from Write End	0	_	0 —	ns
t sa	Address Setup Time	0	_	0 —	ns
t PWB	LB, UB Valid to End of Write	45	_	60 —	ns
tpwE ⁽⁴⁾	WE Pulse Width	45	_	60 —	ns
tsp	Data Setup to Write End	25	_	30 —	ns
thd	Data Hold from Write End	0	_	0 —	ns
thzwe ⁽³⁾	WE LOW to High-Z Output	_	20	— 30	ns
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	5	_	5 —	ns
				•	·

Notes:

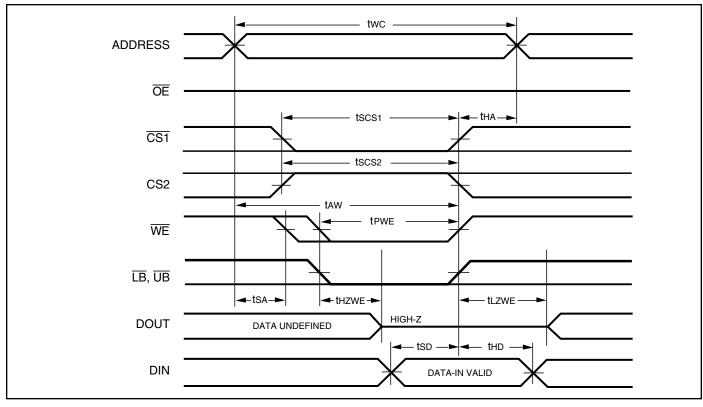
- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1. ____
- 2. The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 3. Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.
- 4. $t_{PWE} > t_{HZWE} + t_{SD}$ when \overline{OE} is LOW.

AC WAVEFORMS

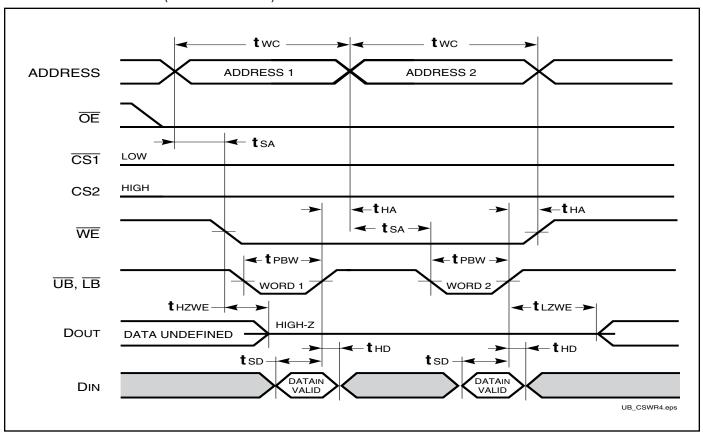
WRITE CYCLE NO. $1^{(1,2)}$ ($\overline{CS1}$ Controlled, \overline{OE} = HIGH or LOW)



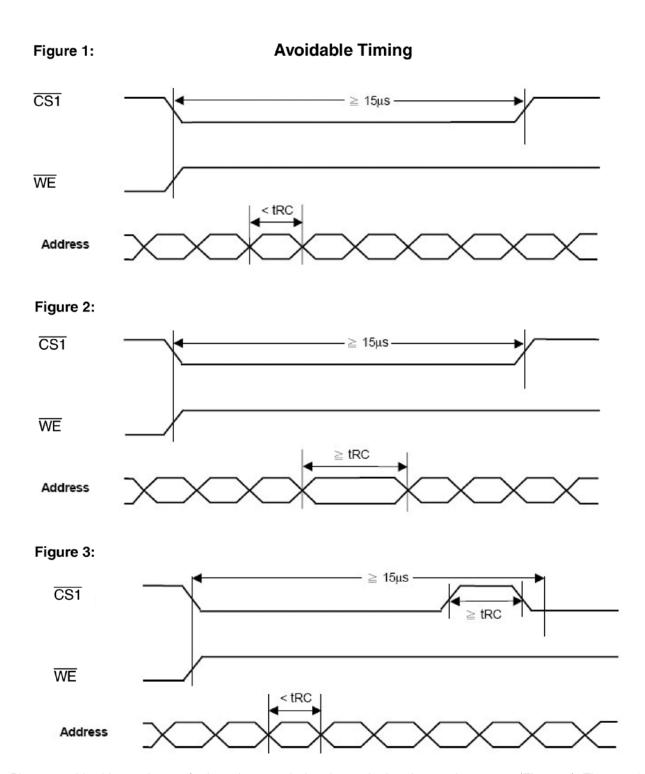
Notes:


- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the $\overline{\text{CS1}}$, CS2 and $\overline{\text{WE}}$ inputs and at least one of the LB and UB inputs being in the LOW state.
- 2. WRITE = $(\overline{CS1})$ [(\overline{LB}) = (\overline{UB})] (\overline{WE}) .

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)



WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

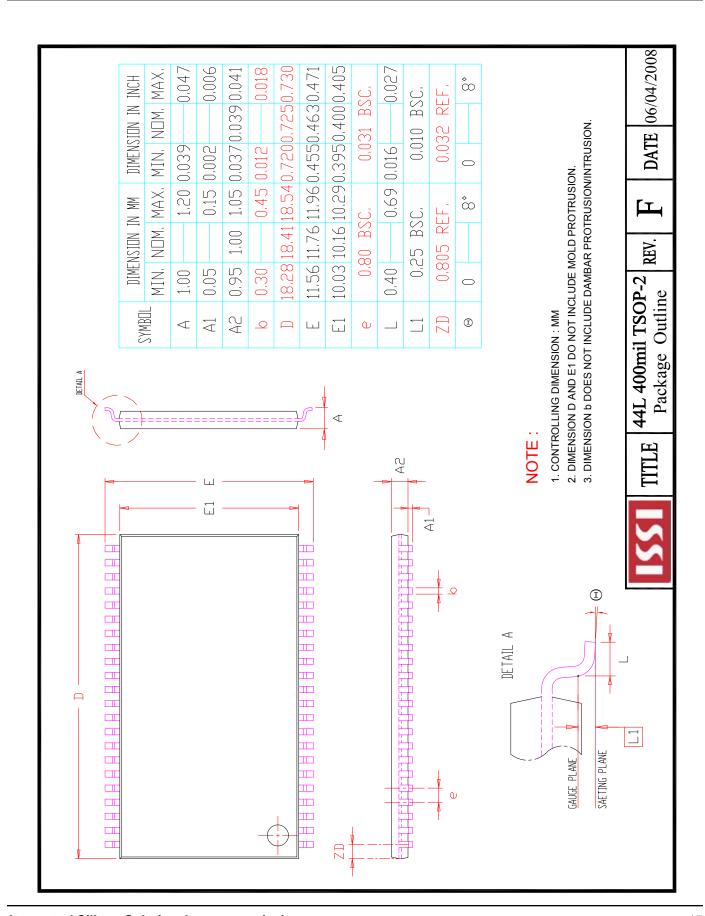


WRITE CYCLE NO. 4 (UB/LB Controlled)

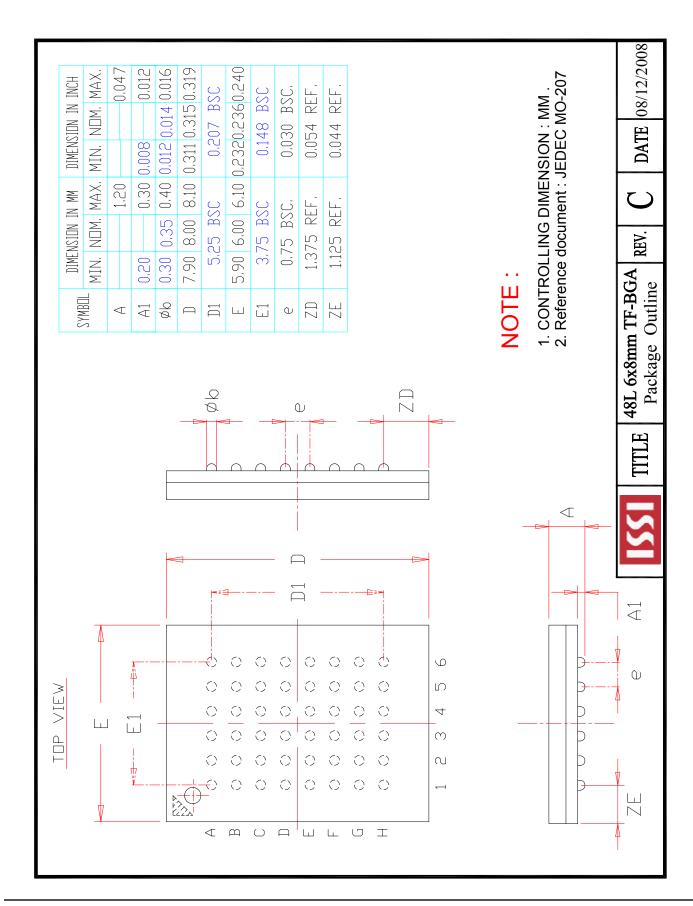
Please avoid address change for less than tRC during the cycle time longer than 15 μs (Figure 1). Figure 2 & 3 provide work around solution for this issue.

IS66WV51216ALL

Industrial Range: -40°C to +85°C Voltage Range: 1.7V to 1.95V


Speed (ns)	Order Part No.	Package
70	IS66WV51216ALL-70TLI	TSOP-II, Lead-free
	IS66WV51216ALL-70BLI	mini BGA (6mm x 8mm), Lead-free

IS66WV51216BLL


Industrial Range: -40°C to +85°C Voltage Range: 2.5V to 3.6V

Speed (ns)	Order Part No.	Package
55	IS66WV51216BLL-55TLI	TSOP-II, Lead-free
	IS66WV51216BLL-55BLI	mini BGA (6mm x 8mm), Lead-free

