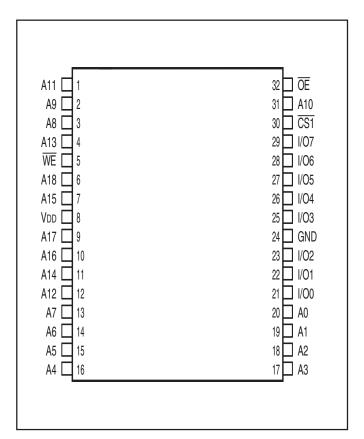



### **PIN DESCRIPTIONS**

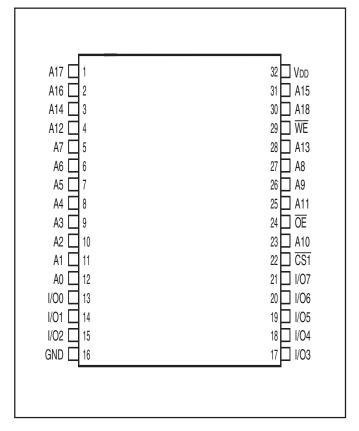
| A0-A18    | Address Inputs      |
|-----------|---------------------|
| CS1       | Chip Enable 1 Input |
| ŌĒ        | Output Enable Input |
| WE        | Write Enable Input  |
| 1/00-1/07 | Input/Output        |
| NC        | No Connection       |
| VDD       | Power               |
| GND       | Ground              |

# 36-pin mini BGA (B) (6mm x 8mm) (Package Code B)






#### PIN DESCRIPTIONS


| A0-A18    | Address Inputs      |
|-----------|---------------------|
| CS1       | Chip Enable 1 Input |
| ŌĒ        | Output Enable Input |
| WE        | Write Enable Input  |
| I/O0-I/O7 | Input/Output        |
| VDD       | Power               |
| GND       | Ground              |

#### PIN CONFIGURATION

32-pin TSOP (TYPE I), (Package Code T) 32-pin sTSOP (TYPE I) (Package Code H)



32-pin SOP (Package Code Q) 32-pin TSOP (TYPE II) (Package Code T2)





### **OPERATING RANGE (VDD)**

| Range      | Ambient Temperature | IS62WV5128ALL | IS62WV5128BLL |  |
|------------|---------------------|---------------|---------------|--|
| Commercial | 0°C to +70°C        | 1.65V - 2.2V  | 2.5V - 3.6V   |  |
| Industrial | –40°C to +85°C      | 1.65V - 2.2V  | 2.5V - 3.6V   |  |

#### **ABSOLUTE MAXIMUM RATINGS**(1)

| Symbol | Parameter                            | Value           | Unit |  |
|--------|--------------------------------------|-----------------|------|--|
| VTERM  | Terminal Voltage with Respect to GND | -0.2 to VDD+0.3 | V    |  |
| VDD    | VDD Related to GND                   | -0.2 to VDD+0.3 | V    |  |
| Тѕтс   | Storage Temperature                  | -65 to +150     | °C   |  |
| Рт     | Power Dissipation                    | 1.0             | W    |  |

#### Note:

### DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

| Symbol             | Parameter           | <b>Test Conditions</b>        | V <sub>DD</sub> | Min.       | Max.                  | Unit |
|--------------------|---------------------|-------------------------------|-----------------|------------|-----------------------|------|
| Vон                | Output HIGH Voltage | Iон = -0.1 mA                 | 1.65-2.2V       | 1.4        | _                     | V    |
|                    |                     | IOH = -1  mA                  | 2.5-3.6V        | 2.2        | _                     | V    |
| Vol                | Output LOW Voltage  | IoL = 0.1 mA                  | 1.65-2.2V       | _          | 0.2                   | V    |
|                    |                     | lol = 2.1  mA                 | 2.5-3.6V        | _          | 0.4                   | V    |
| VIH                | Input HIGH Voltage  |                               | 1.65-2.2V       | 1.4        | V <sub>DD</sub> + 0.2 | V    |
|                    |                     |                               | 2.5-3.6V        | 2.2        | $V_{DD} + 0.3$        | V    |
| VIL <sup>(1)</sup> | Input LOW Voltage   |                               | 1.65-2.2V       | -0.2       | 0.4                   | V    |
|                    |                     |                               | 2.5-3.6V        | -0.2       | 0.6                   | V    |
| ILI                | Input Leakage       | $GND \leq V_{IN} \leq V_{DD}$ |                 | -1         | 1                     | μA   |
| ILO                | Output Leakage      | GND≤Vout≤Vdd, Ou              | utputs Disabled | <b>–</b> 1 | 1                     | μΑ   |

#### Notes:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is
a stress rating only and functional operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

<sup>1.</sup>  $V_{IL}$  (min.) = -1.0V for pulse width less than 10 ns.



### CAPACITANCE(1)

| Symbol | Parameter                | Conditions    | Max. | Unit |  |
|--------|--------------------------|---------------|------|------|--|
| CIN    | Input Capacitance        | $V_{IN} = 0V$ | 8    | рF   |  |
| Соит   | Input/Output Capacitance | Vout = 0V     | 10   | рF   |  |

#### Note:

#### **AC TEST CONDITIONS**

| Parameter                                   | IS62WV5128ALL<br>(Unit) | IS62WV5128BLL<br>(Unit) |  |
|---------------------------------------------|-------------------------|-------------------------|--|
| Input Pulse Level                           | 0.4V to VDD-0.2V        | 0.4V to VDD-0.3V        |  |
| Input Rise and Fall Times                   | 5 ns                    | 5ns                     |  |
| Input and Output Timing and Reference Level | VREF                    | VREF                    |  |
| Output Load                                 | See Figures 1 and 2     | See Figures 1 and 2     |  |

|                 | IS62WV5128ALL | IS62WV5128BLL |
|-----------------|---------------|---------------|
|                 | 1.65 - 2.2V   | 2.5V - 3.6V   |
| R1(Ω)           | 3070          | 3070          |
| R2(Ω)           | 3150          | 3150          |
| VREF            | 0.9V          | 1.5V          |
| V <sub>TM</sub> | 1.8V          | 2.8V          |

### **AC TEST LOADS**

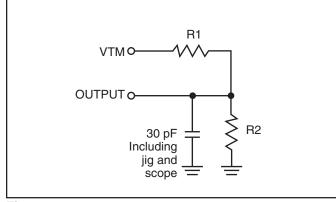



Figure 1

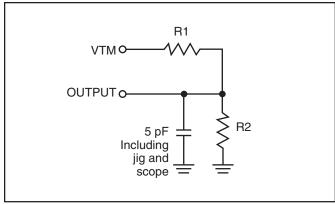



Figure 2

<sup>1.</sup> Tested initially and after any design or process changes that may affect these parameters.



### POWER SUPPLY CHARACTERISTICS<sup>(1)</sup> (Over Operating Range)

62WV5128ALL (1.65V-2.2V)

| Symbol | Parameter                             | <b>Test Conditions</b>                                                                                                  |                | Max.<br>70 ns | Unit |
|--------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------|---------------|------|
| lcc    | VDD Dynamic Operating Supply Current  | VDD=Max.,<br>IOUT=0 mA, f=fMAX                                                                                          | Com.<br>Ind.   | 25<br>30      | mA   |
| lcc1   | Operating Supply<br>Current           | V <sub>DD</sub> =Max., <del>CS1</del> =0.2<br><del>WE</del> =V <sub>DD</sub> -0.2V<br>f=1M+z                            | V Com.<br>Ind. | 10<br>10      | mA   |
| ISB1   | TTL Standby Current<br>(TTL Inputs)   | VDD=Max.,<br>VIN=VIHOTVIL<br>CS1=VIH,<br>f=1 MHz                                                                        | Com.<br>Ind.   | 0.35<br>0.35  | mA   |
| ISB2   | CMOS Standby<br>Current (CMOS Inputs) | $V_{DD}$ =Max.,<br>$\overline{CS1} \ge V_{DD} - 0.2V$ ,<br>$V_{IN} \ge V_{DD} - 0.2V$ , or<br>$V_{IN} \le 0.2V$ , f = 0 | Com.<br>Ind.   | 15<br>15      | μΑ   |

#### Note

## POWER SUPPLY CHARACTERISTICS<sup>(1)</sup> (Over Operating Range)

62WV5128BLL (2.5V-3.6V)

| Symbol | Parameter                             | <b>Test Conditions</b>                                                                                                                                                                   |              | Max.<br>55 ns | Unit |
|--------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------|
| Icc    | VDD Dynamic Operating Supply Current  | $V_{DD} = Max.,$ $I_{OUT} = 0 \text{ mA}, f = f_{MAX}$                                                                                                                                   | Com.<br>Ind. | 40<br>45      | mA   |
| lcc1   | Operating Supply<br>Current           | $V_{DD} = Max., \overline{CS1} = 0.2V$ $\overline{WE} = V_{DD}-0.2V$ $f=1_{MHZ}$                                                                                                         | Com.<br>Ind. | 15<br>15      | mA   |
| ISB1   | TTL Standby Current<br>(TTL Inputs)   | VDD = Max.,<br>VIN = VIH OR VIL<br>CS1 = VIH,<br>f = 1 MHz                                                                                                                               | Com.<br>Ind. | 0.35<br>0.35  | mA   |
| IsB2   | CMOS Standby<br>Current (CMOS Inputs) | $\begin{split} & \begin{array}{l} V_{DD} = Max., \\ \hline \textbf{CS1} \geq V_{DD} - 0.2V, \\ & V_{IN} \geq V_{DD} - 0.2V, \text{ or} \\ & V_{IN} \leq 0.2V, \text{ f} = 0 \end{split}$ | Com.<br>Ind. | 15<br>15      | μΑ   |

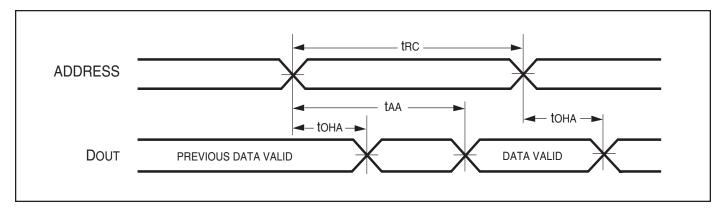
#### Note:

<sup>1.</sup> At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

<sup>1.</sup> At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.



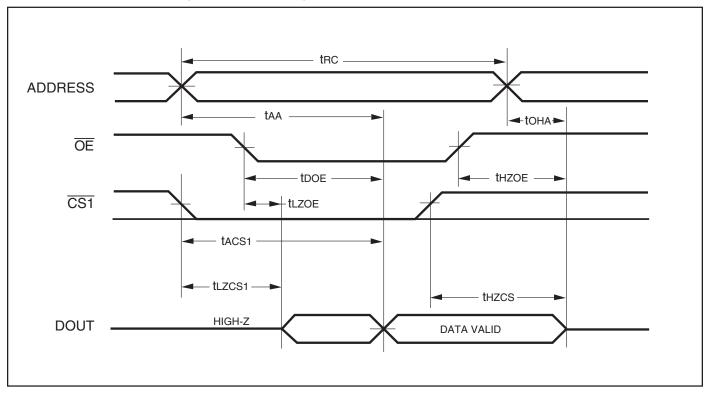
## READ CYCLE SWITCHING CHARACTERISTICS<sup>(1)</sup> (Over Operating Range)


|                      |                      | 55 ו | ns   | 70 ns | s    |      |
|----------------------|----------------------|------|------|-------|------|------|
| Symbol               | Parameter            | Min. | Max. | Min.  | Max. | Unit |
| trc                  | Read Cycle Time      | 55   | _    | 70    | _    | ns   |
| taa                  | Address Access Time  | _    | 55   | _     | 70   | ns   |
| <b>t</b> oha         | Output Hold Time     | 10   | _    | 10    | _    | ns   |
| t <sub>ACS1</sub>    | CS1 Access Time      | _    | 55   | _     | 70   | ns   |
| tDOE                 | OE Access Time       | _    | 25   | _     | 35   | ns   |
| thzoe(2)             | OE to High-Z Output  | _    | 20   | _     | 25   | ns   |
| tLZOE <sup>(2)</sup> | OE to Low-Z Output   | 5    | _    | 5     | _    | ns   |
| thzcs1               | CS1 to High-Z Output | 0    | 20   | 0     | 25   | ns   |
| tLZCS1               | CS1 to Low-Z Output  | 10   | _    | 10    | _    | ns   |

#### Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

#### **AC WAVEFORMS**


**READ CYCLE NO. 1**(1,2) (Address Controlled) ( $\overline{CS1} = \overline{OE} = VIL, \overline{WE} = VIH)$ 





#### **AC WAVEFORMS**

READ CYCLE NO. 2<sup>(1,3)</sup> (CS1, OE Controlled)

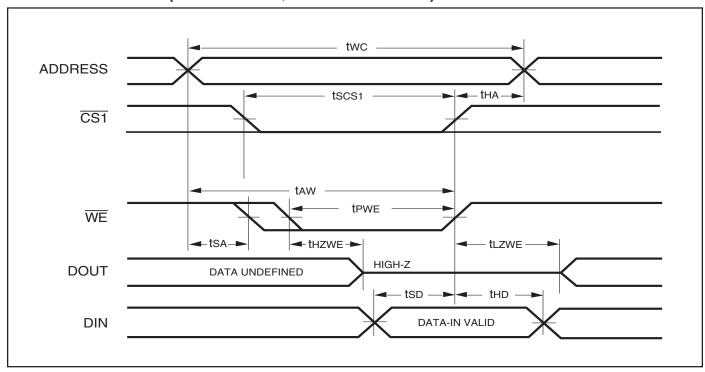


#### Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected.  $\overline{OE}$ ,  $\overline{CS1}$ = VIL.  $\overline{WE}$ =VIH.
- 3. Address is valid prior to or coincident with  $\overline{\text{CS1}}$  LOW transition.

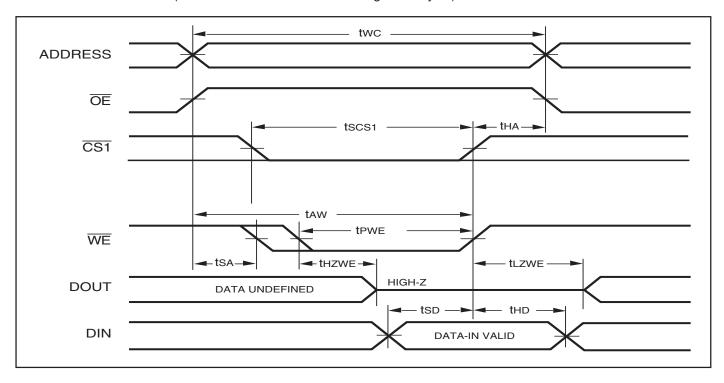


## WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

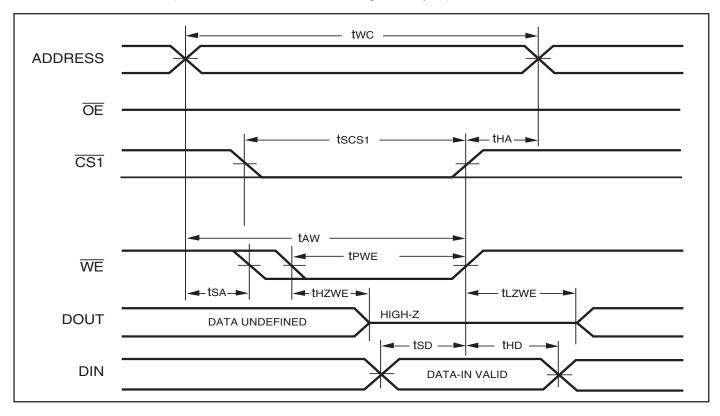

|                      |                                 | 55   | ns   | 70   | ns   |      |
|----------------------|---------------------------------|------|------|------|------|------|
| Symbol               | Parameter                       | Min. | Max. | Min. | Max. | Unit |
| twc                  | Write Cycle Time                | 55   | _    | 70   | _    | ns   |
| tscs1                | CS1 to Write End                | 45   | _    | 60   | _    | ns   |
| taw                  | Address Setup Time to Write End | 45   | _    | 60   | _    | ns   |
| <b>t</b> HA          | Address Hold from Write End     | 0    | _    | 0    | _    | ns   |
| <b>t</b> sa          | Address Setup Time              | 0    | _    | 0    | _    | ns   |
| <b>t</b> PWE         | WE Pulse Width                  | 40   | _    | 50   | _    | ns   |
| <b>t</b> sd          | Data Setup to Write End         | 25   | _    | 30   | _    | ns   |
| tho                  | Data Hold from Write End        | 0    | _    | 0    | _    | ns   |
| thzwe <sup>(3)</sup> | WE LOW to High-Z Output         | _    | 20   | _    | 20   | ns   |
| tLZWE <sup>(3)</sup> | WE HIGH to Low-Z Output         | 5    | _    | 5    | _    | ns   |

#### Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4V to VDD-0.2V/VDD-0.3V and output loading specified in Figure 1.
- 2. The internal write time is defined by the overlap of CS1 LOW and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.


#### **AC WAVEFORMS**

## WRITE CYCLE NO. 1 (CS1 Controlled, OE = HIGH or LOW)

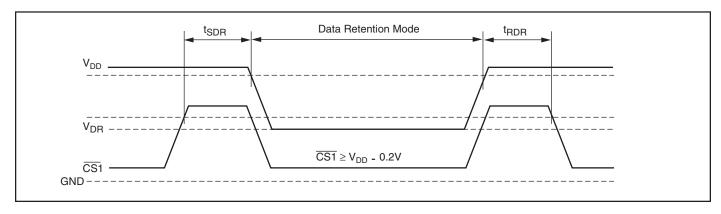





## WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)



## WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)






#### DATA RETENTION SWITCHING CHARACTERISTICS

| Symbol | Parameter                 | <b>Test Condition</b>                             | Min. | Max. | Unit |
|--------|---------------------------|---------------------------------------------------|------|------|------|
| VDR    | VDD for Data Retention    | See Data Retention Waveform                       | 1.2  | 3.6  | V    |
| IDR    | Data Retention Current    | $V_{DD} = 1.2V, \overline{CS1} \ge V_{DD} - 0.2V$ | _    | 15   | μΑ   |
| tsdr   | Data Retention Setup Time | See Data Retention Waveform                       | 0    | _    | ns   |
| trdr   | Recovery Time             | See Data Retention Waveform                       | trc  | _    | ns   |

## DATA RETENTION WAVEFORM (CS1 Controlled)





# ORDERING INFORMATION IS62WV5128ALL (1.65V-2.2V)

Industrial Range: -40°C to +85°C

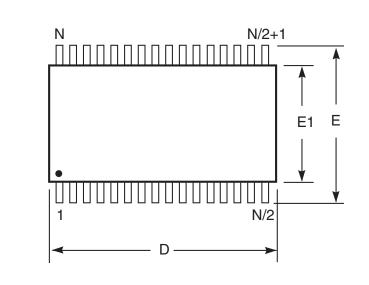
| Speed (ns) | Order Part No.      | Package            |
|------------|---------------------|--------------------|
| 70         | IS62WV5128ALL-70TI  | TSOP, TYPE I       |
| 70         | IS62WV5128ALL-70T2I | TSOP, TYPE II      |
| 70         | IS62WV5128ALL-70HI  | sTSOP, TYPE I      |
| 70         | IS62WV5128ALL-70BI  | mini BGA (6mmx8mm) |

## ORDERING INFORMATION

IS62WV5128BLL (2.5V - 3.6V)

Commercial Range: 0°C to +70°C

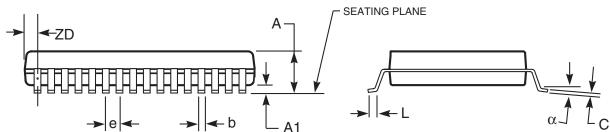
| Speed (ns) | Order Part No.    | Package       |
|------------|-------------------|---------------|
| 55         | IS62WV5128BLL-55H | sTSOP, TYPE I |


Industrial Range: -40°C to +85°C

| Speed (ns) | Order Part No.       | Package                       |
|------------|----------------------|-------------------------------|
| 55         | IS62WV5128BLL-55TI   | TSOP, TYPE I                  |
| 55         | IS62WV5128BLL-55TLI  | TSOP, TYPE I, Lead-free       |
| 55         | IS62WV5128BLL-55QLI  | SOP, Lead-free                |
| 55         | IS62WV5128BLL-55T2I  | TSOP, TYPE II                 |
| 55         | IS62WV5128BLL-55T2LI | TSOP, TYPE II, Lead-free      |
| 55         | IS62WV5128BLL-55HI   | sTSOP, TYPE I                 |
| 55         | IS62WV5128BLL-55HLI  | sTSOP, TYPE I, Lead-free      |
| 55         | IS62WV5128BLL-55BI   | mini BGA (6mmx8mm)            |
| 55         | IS62WV5128BLL-55BLI  | mini BGA (6mmx8mm), Lead-free |



**Plastic TSOP** 

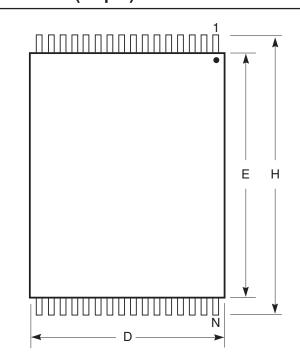

Package Code: T (Type II)

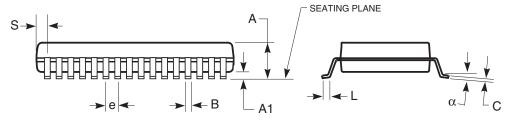


#### Notes:

- 1. Controlling dimension: millimieters, unless otherwise specified.
- unless otherwise specified.

  BSC = Basic lead spacing between centers.
- Dimensions D and E1 do not include mold flash protrusions and should be measured from the bottom of the package.
- 4. Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.





|           |        |       |         |       | Plastic T | SOP (T - | Type II) |       |        |        |       |       |
|-----------|--------|-------|---------|-------|-----------|----------|----------|-------|--------|--------|-------|-------|
|           | Millim | eters | Inche   | es    | Millim    | eters    | Inche    | es    | Millin | neters | Inch  | es    |
| Symbol    | Min    | Max   | Min     | Max   | Min       | Max      | Min      | Max   | Min    | Max    | Min   | Max   |
| Ref. Std. |        |       |         |       |           |          |          |       |        |        |       |       |
| No. Leads | (N)    | 32    |         |       |           | 44       | ļ        |       |        |        | 50    |       |
| Α         | _      | 1.20  | _       | 0.047 | _         | 1.20     | _        | 0.047 | _      | 1.20   | _     | 0.047 |
| A1        | 0.05   | 0.15  | 0.002   | 0.006 | 0.05      | 0.15     | 0.002    | 0.006 | 0.05   | 0.15   | 0.002 | 0.006 |
| b         | 0.30   | 0.52  | 0.012   | 0.020 | 0.30      | 0.45     | 0.012    | 0.018 | 0.30   | 0.45   | 0.012 | 0.018 |
| С         | 0.12   | 0.21  | 0.005   | 0.008 | 0.12      | 0.21     | 0.005    | 0.008 | 0.12   | 0.21   | 0.005 | 0.008 |
| D         | 20.82  | 21.08 | 0.820   | 0.830 | 18.31     | 18.52    | 0.721    | 0.729 | 20.82  | 21.08  | 0.820 | 0.830 |
| E1        | 10.03  | 10.29 | 0.391   | 0.400 | 10.03     | 10.29    | 0.395    | 0.405 | 10.03  | 10.29  | 0.395 | 0.405 |
| Е         | 11.56  | 11.96 | 0.451   | 0.466 | 11.56     | 11.96    | 0.455    | 0.471 | 11.56  | 11.96  | 0.455 | 0.471 |
| е         | 1.27 l | BSC   | 0.050 l | BSC   | 0.80      | BSC      | 0.032    | BSC   | 0.80   | BSC    | 0.031 | BSC   |
| L         | 0.40   | 0.60  | 0.016   | 0.024 | 0.41      | 0.60     | 0.016    | 0.024 | 0.40   | 0.60   | 0.016 | 0.024 |
| ZD        | 0.95   | REF   | 0.037   | 7 REF | 0.81      | REF      | 0.03     | 2 REF | 0.88   | REF    | 0.035 | REF   |
| α         | 0°     | 5°    | 0°      | 5°    | 0°        | 5°       | 0°       | 5°    | 0°     | 5°     | 0°    | 5°    |



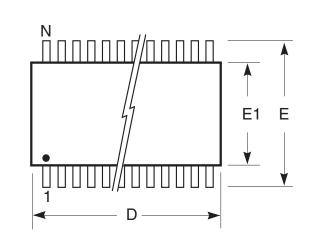
Plastic TSOP-Type I

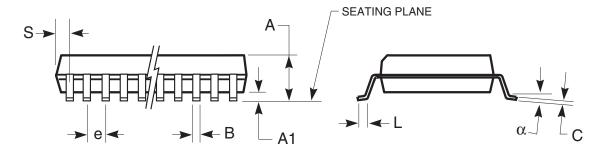
Package Code: T (32-pin)





|           | MILLIM   | ETERS |    | INC   | HES   |
|-----------|----------|-------|----|-------|-------|
| Symbol    | Min.     | Max.  |    | Min.  | Max.  |
| No. Leads |          |       | 32 |       |       |
| Α         | _        | 1.20  |    | _     | 0.047 |
| A1        | 0.05     | 0.25  |    | 0.002 | 0.010 |
| В         | 0.17     | 0.23  |    | 0.007 | 0.009 |
| С         | 0.12     | 0.17  |    | 0.005 | 0.007 |
| D         | 7.90     | 8.10  |    | 0.311 | 0.319 |
| Е         | 18.30    | 18.50 |    | 0.720 | 0.728 |
| Н         | 19.80    | 20.20 |    | 0.780 | 0.795 |
| е         | 0.50 BSC |       |    | 0.020 | BSC   |
| L         | 0.40     | 0.60  |    | 0.016 | 0.024 |
| α         | 0°       | 8°    |    | 0°    | 8°    |
| S         | 0.25 l   | REF   |    | 0.010 | REF   |


#### Notes:


- 1. Controlling dimension: millimeters, unless otherwise specified.
- 2. BSC = Basic lead spacing between centers.
- Dimensions D and E do not include mold flash protrusions and should be measured from the bottom of the package.
- Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

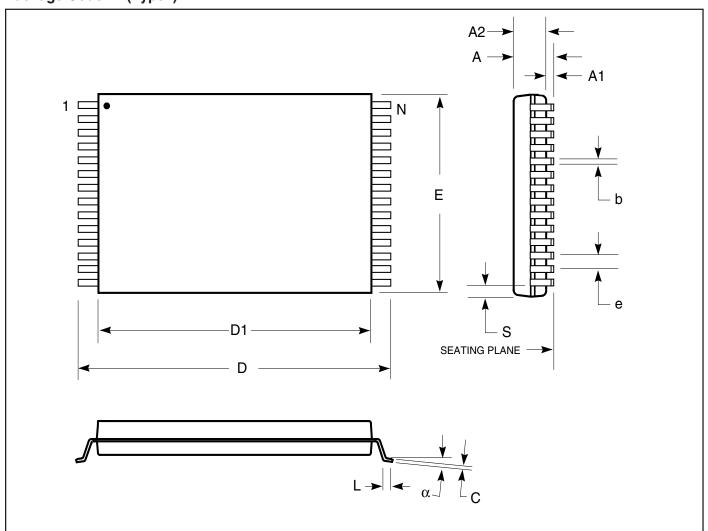


450-mil Plastic SOP

Package Code: Q (32-pin)






|           | MILLIN | IETERS   |    | INC   | HES   |
|-----------|--------|----------|----|-------|-------|
| Symbol    | Min.   | Max.     |    | Min.  | Max.  |
| No. Leads |        |          | 32 |       |       |
| A         | _      | 3.00     |    | _     | 0.118 |
| A1        | 0.10   | _        |    | 0.004 | _     |
| В         | 0.36   | 0.51     |    | 0.014 | 0.020 |
| С         | 0.15   | 0.30     |    | 0.006 | 0.012 |
| D         | 20.14  | 20.75    |    | 0.793 | 0.817 |
| Е         | 13.87  | 14.38    |    | 0.546 | 0.566 |
| E1        | 11.18  | 11.43    |    | 0.440 | 0.450 |
| е         | 1.27   | 1.27 BSC |    | 0.050 | BSC   |
| L         | 0.58   | 0.99     |    | 0.023 | 0.039 |
| α         | 0°     | 10°      |    | 0°    | 10°   |
| S         | _      | 0.86     |    | _     | 0.034 |

#### Notes:

- 1. Controlling dimension: inches, unless otherwise specified.
- 2. BSC = Basic lead spacing between centers.
- 3. Dimensions D and E1 do not include mold flash protrusions and should be measured from the bottom of the package.
- Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

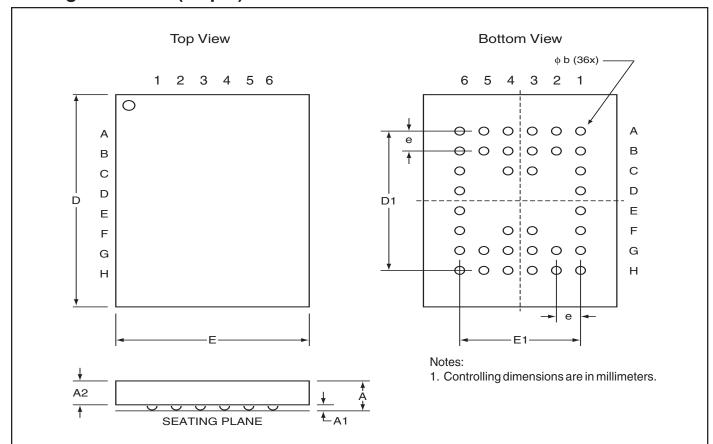


Plastic STSOP - 32 pins Package Code: H (Type I)



| Plastic STSOP (H - Type I) |        |       |       |          |  |  |  |
|----------------------------|--------|-------|-------|----------|--|--|--|
|                            | Millim | eters | I     | nches    |  |  |  |
| Symbol                     | Min    | Max   | Min   | Max      |  |  |  |
| Ref. Std.                  |        |       |       |          |  |  |  |
| N                          |        |       | 32    |          |  |  |  |
| Α                          | _      | 1.25  | _     | 0.049    |  |  |  |
| A1                         | 0.05   | _     | 0.002 | 2 —      |  |  |  |
| A2                         | 0.95   | 1.05  | 0.037 | 7 0.041  |  |  |  |
| b                          | 0.17   | 0.23  | 0.007 | 7 0.009  |  |  |  |
| С                          | 0.14   | 0.16  | 0.005 | 5 0.0063 |  |  |  |
| D                          | 13.20  | 13.60 | 0.520 | 0.535    |  |  |  |
| D1                         | 11.70  | 11.90 | 0.461 | 0.469    |  |  |  |
| Е                          | 7.90   | 8.10  | 0.31  | 0.319    |  |  |  |
| е                          | 0.50   | BSC   | 0.0   | )20 BSC  |  |  |  |
| L                          | 0.30   | 0.70  | 0.012 | 2 0.028  |  |  |  |
| S                          | 0.28   | Тур.  | 0.0   | 011 Typ. |  |  |  |
| α                          | 0°     | 5°    | 0°    | 5°       |  |  |  |

#### Notes:


- Controlling dimension: millimeters, unless otherwise specified.
- 2. BSC = Basic lead spacing between centers.
- Dimensions D1 and E do not include mold flash protrusions and should be measured from the bottom of the package.
- 4. Formed leads shall be planar with respect to one another within 0.004 inches at the seating plane.

Integrated Silicon Solution, Inc.



**Mini Ball Grid Array** 

Package Code: B (36-pin)



#### mBGA - 6mm x 8mm

|              | MILLIMETERS |       |      | INCHES            |
|--------------|-------------|-------|------|-------------------|
| Sym.         | Min.        | Тур.  | Max. | Min. Typ. Max.    |
| N0.<br>Leads |             | 36    |      | 36                |
| Α            | _           | _     | 1.20 | <b>— —</b> 0.047  |
| A1           | 0.24        | _     | 0.30 | 0.009 — 0.012     |
| A2           | 0.60        | _     | _    | 0.024 — —         |
| D            | 7.90        | 8.00  | 8.10 | 0.311 0.315 0.319 |
| D1           | 5           | .25BS | 2    | 0.207BSC          |
| E            | 5.90        | 6.00  | 6.10 | 0.232 0.236 0.240 |
| E1           | 3.75BSC     |       |      | 0.148BSC          |
| е            | 0.75BSC     |       |      | 0.030BSC          |
| b            | 0.30        | 0.35  | 0.40 | 0.012 0.014 0.016 |

#### mBGA - 8mm x 10mm

|              | MILLIMETER |         |       | INCHES            |
|--------------|------------|---------|-------|-------------------|
| Sym.         | Min.       | Тур.    | Max.  | Min. Typ. Max.    |
| N0.<br>Leads |            | 36      |       | 36                |
| Α            | _          | _       | 1.20  | <b>— —</b> 0.047  |
| A1           | 0.24       | _       | 0.30  | 0.009 — 0.012     |
| A2           | 0.60       | _       | _     | 0.024 — —         |
| D            | 9.90       | 10.00   | 10.10 | 0.390 0.394 0.398 |
| D1           | 5          | .25BSC  | )     | .207BSC           |
| E            | 7.90       | 8.00    | 8.10  | 0.311 0.315 0.319 |
| E1           | 3          | 3.75BS0 | )     | 0.148BSC          |
| е            | 0.75BSC    |         |       | 0.030BSC          |
| b            | 0.30       | 0.35    | 0.40  | 0.012 0.014 0.016 |