

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	–65°C to +150°C
Maximum Junction Temperature (T_1)	+150°C
Case Temperature under Bias (T _C)	0°C to +85°C
V _{EE} Pin Potential to Ground Pin	-7.0V to +0.5V
V _{TTL} Pin Potential to Ground Pin	-0.5V to +6.0V
ECL Input Voltage (DC)	V _{EE} to +0.5V
TTL Input Voltage	-0.5V to +7.0V
Output Current	
(DC Output HIGH)	+130 mA
ESD (Note 2)	≥ 2000V

Recommended Operating Conditions

Case Temperature (T _C)	0°C to +85°C				
Supply Voltage					
V _{EE}	-5.7V to -4.2V				
V _{TTL}	+4.5V to +5.5V				

100395

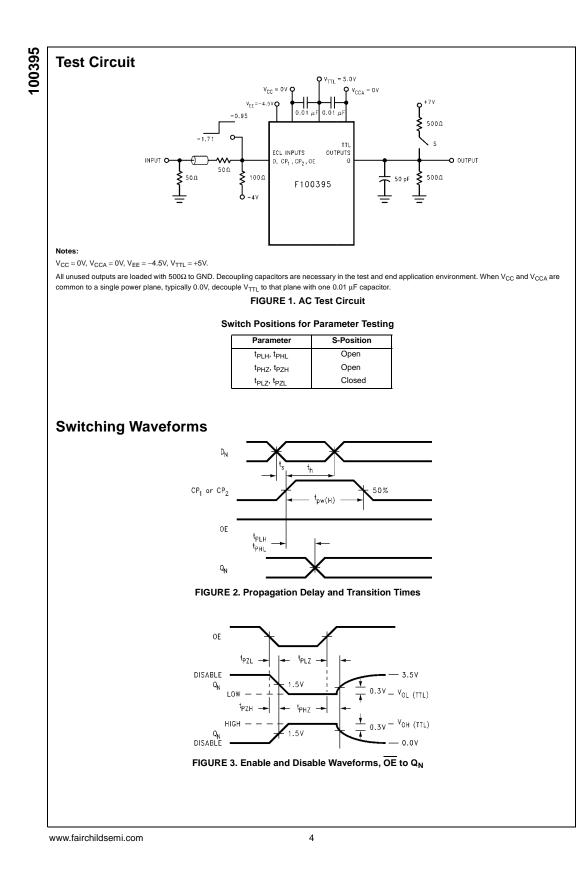
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

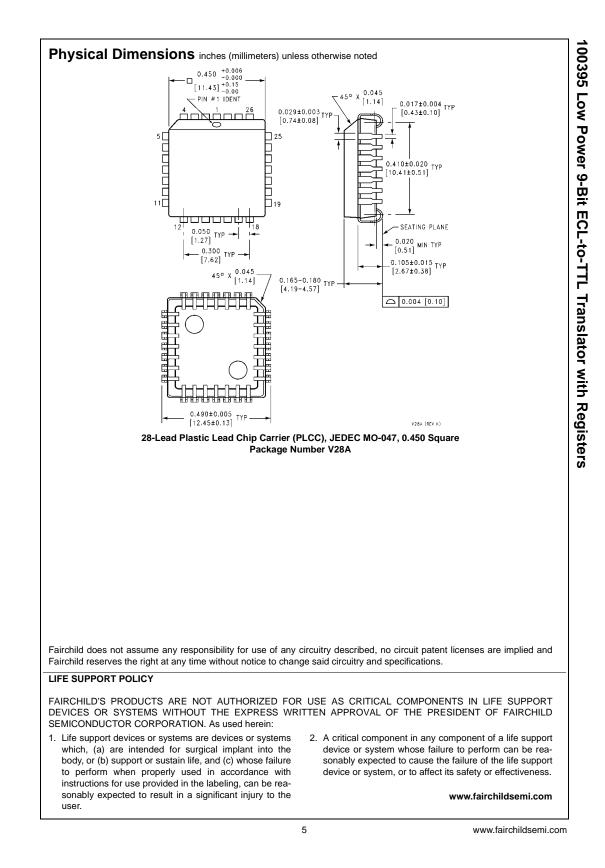
Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V$ to $-5.7V,~V_{CC} = V_{CCA} = GND,~T_C = 0^\circ C$ to $+85^\circ C$


Symbol	Parameter	Min	Тур	Max	Units	Co	nditions	
V _{OH}	Output HIGH Voltage	2.4			V	$I_{OH} = -15 \text{ mA}$	$V_{IN} = V_{IH}$ (Max)	
V _{OL}	Output LOW Voltage			0.55	V	I _{OL} = 64 mA	or V _{IL} (Min)	
VIH	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Si	gnal for All Inputs	
VIL	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs		
IIL	Input LOW Current	0.5			μΑ	$V_{IN} = V_{IL}$ (Min)		
Ι _{ΙΗ}	Input HIGH Current			240	μΑ	V _{IN} = V _{IH} (Max)		
I _{OZL}	3-STATE Current Output HIGH			-50	μΑ	$V_{OUT} = +0.4V$		
I _{OZH}	3-STATE Current Output LOW			+50	μΑ	$V_{OUT} = +2.7V$		
I _{CEX}	Output HIGH Leakage Current			250	μΑ	$V_{OUT} = V_{CC}$		
I _{OS}	Output Short-Circuit Current	-100		-225	mA			
I _{EE}	V _{EE} Power Supply Current	-67		-29	mA	Inputs OPEN		
I _{CCH}	V _{TTL} Power Supply Current HIGH			29	mA			
I _{CCL}	V _{TTL} Power Supply Current LOW			65	mA			
I _{CCZ}	V _{TTL} Power Supply Current 3-STATE			49	mA			


Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

PLCC AC Electrical Characteristics

 $\mathsf{V}_{\mathsf{EE}}=-4.2\mathsf{V}$ to $-5.7\mathsf{V},\,\mathsf{V}_{\mathsf{CC}}=\mathsf{GND},\,\mathsf{V}_{\mathsf{TTL}}=+4.5\mathsf{V}$ to $+5.5\mathsf{V}$

Symbol	Parameter	T _C =	$T_C = 0^{\circ}C$		T _C = +25°C		T _C = +85°C		Conditions
		Min	Max	Min	Max	Min	Max	Units	Conditions
t _{PLH}	Propagation Delay	2.30	5.00	2.30	5.00	2.30	5.00	ns	Figures 1. 0
t _{PHL}	Clock to Output	3.00	5.60	3.00	5.60	3.40	6.40		Figures 1, 2
t _{PZL}	Output Enable Time	3.20	7.60	3.20	7.60	3.20	7.60	ns	Figures 1, 3
t _{PZH}	$\overline{OE}\downarrow$ to Q_N	2.40	5.60	2.40	5.60	2.40	5.60		
t _{PLZ}	Output Disable Time	3.20	7.60	3.20	7.60	3.20	7.60	ns	Figures 1, 3
t _{PHZ}	$\overline{OE} \uparrow to Q_{N}$	2.40	5.60	2.40	5.60	2.40	5.60		
t _H	Data to CP EN	1.5		1.5		1.5	ns Figures 1, 2		
	Hold Time	1.5		1.5		1.5		ns	Figures 1, 2
t _S	Data to CP EN	0.5		0.5		0.5			s Figures 1, 2
S	Setup Time	0.5		0.5		0.5		ns	
t _{PW} (H)	Clock Pulse Width	2.0		2.0		2.0		ns	Figures 1Figur

