

Figure 1. PTIC Functional Block Diagram

Table 1. SIGNAL DESCRIPTIONS

Ball / Pad Number	Pin Name	Description	
A1	DC Bias 1	DC Bias Voltage	
B1	RF2	RF Input / Output	
A2	NC	Not Connected	
B2	RF1	RF Input / Output	

TYPICAL SPECIFICATIONS

Representative Performance Data at 25°C

Table 2. PERFORMANCE DATA

Parameter	Min	Тур	Max	Units
Operating Bias Voltage	1.0		24	V
Capacitance (V _{bias} = 2 V)	7.38	8.20	9.02	pF
Capacitance (V _{bias} = 24 V)	1.570	1.745	1.919	pF
Tuning Range (1 V - 24 V)	4.80	5.30	6.00	
Tuning Range (2 V - 24 V)	4.20	4.70	5.30	
Leakage Current (WLCSP)			0.5	μΑ
Operating Frequency	700		2700	MHz
Quality Factor @ 700 MHz, 10 V		100		
Quality Factor @ 2.4 GHz, 10 V		70		
IP3 $(V_{bias} = 2 V)^{[1,3]}$		70		dBm
IP3 (V _{bias} = 24 V) ^[1,3]		85		dBm
2nd Harmonic (V _{bias} = 2 V) [2,3]		-75		dBm
2nd Harmonic (V _{bias} = 24 V) [2,3]		-85		dBm
3rd Harmonic (V _{bias} = 2 V) ^[2,3]		-40		dBm
3rd Harmonic (V _{bias} = 24 V) [2,3]		-70		dBm
Transition Time (Cmin → Cmax) [4]		80		μs
Transition Time (Cmax → Cmin) [4]		70		μs

^{1.} f_1 = 850 MHz, f_2 = 860 MHz, Pin 25 dBm/Tone 2. 850 MHz, Pin +34 dBm 3. IP3 and Harmonics are measured in the shunt configuration in a 50 Ω environment 4. RF_{IN} and RF_{OUT} are both connected to DC ground

Representative performance data at 25°C for 8.2 pF WLCSP Package

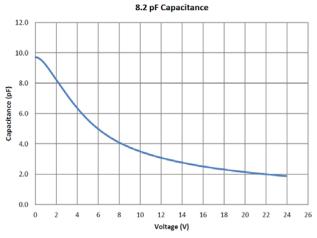


Figure 2. Capacitance

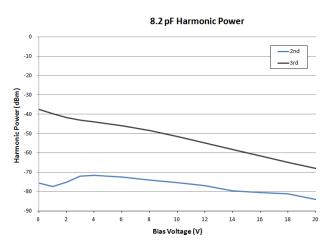


Figure 3. Harmonic Power*

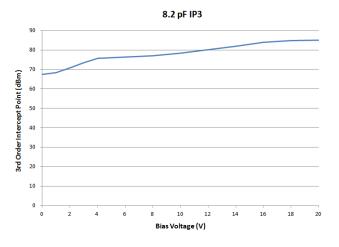


Figure 4. IP3*

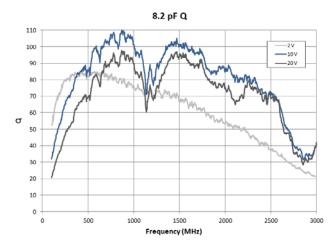


Figure 5. Q*

Table 3. ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Units
Input Power	+40	dBm
Bias Voltage	+25 (Note 5)	V
Operating Temperature Range	-30 to +85	°C
Storage Temperature Range	-55 to +125	°C
ESD – Human Body Model	Class 1B JEDEC HBM Standard (Note 6)	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 5. WLCSP: Recommended Bias Voltage not to exceed 24 V.
- 6. Class 1B defined as passing 500 V, but may fail after exposure to 1000 V ESD pulse.

^{*}Data shown is representative only.

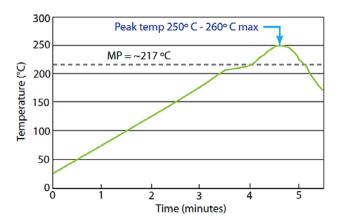
ASSEMBLY CONSIDERATIONS AND REFLOW PROFILE

The following assembly considerations should be observed:

Cleanliness

These chips should be handled in a clean environment.

Electro-static Sensitivity


ON Semiconductor's PTICs are ESD Class 1B sensitive. The proper ESD handling procedures should be used.

Mounting

The WLCSP PTIC is fabricated for Flip Chip solder mounting. Connectivity to the RF and Bias terminations on the PTIC die is established through SAC305 solder balls with 65 μ m nominal height (45 μ m to 85 μ m height variation). The PTIC die is RoHS-compliant and compatible with lead-free soldering profile.

Molding

The PTIC die is compatible for over-molding or under-fill.

This reflow profile is a guideline for Pb-free solder materials. Adjustments to this profile are necessary based on specific process requirements and board size, thickness and density. Not to exceed 260° C for 5 seconds.

Figure 6. Reflow Profile

ORIENTATION OF THE PTIC FOR OPTIMUM LOSSES

When configuring the PTIC in your specific circuit design, at least one of the RF terminals must be connected to DC ground. If minimum transition times are required, DC ground on both RF terminals is recommended. To minimize losses, the PTIC should be oriented such that RF2 is at the lower RF impedance of the two RF nodes. A shunt PTIC, for example, should have RF2 connected to RF ground.

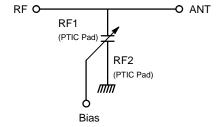
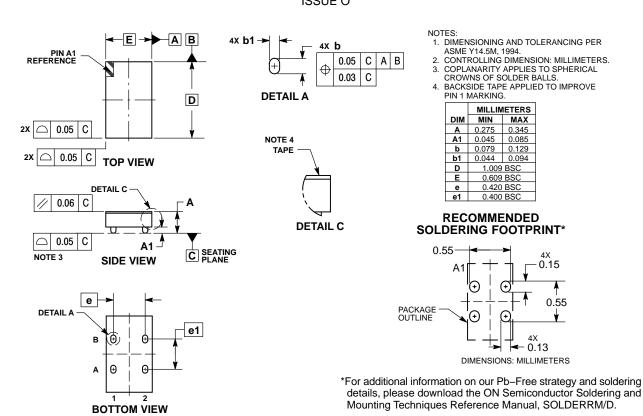


Figure 7. PTIC Orientation Functional Block
Diagram

PART NUMBER DEFINITION

Table 4. PART NUMBERS


	Capacitance		
Part Number	2 V	24 V	Package*
TCP-4182UB-DT	8.20	1.822	4-bump WLCSP

^{*}See PTIC package dimensions on following page.

For information on device numbering and ordering codes, please download the *Device Nomenclature* technical note (TND310/D) from www.onsemi.com.

PACKAGE DIMENSIONS

WLCSP4, 1.009x0.609 CASE 567LZ ISSUE O

ParaScan is a trademark of Paratek Microwave, Inc.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnif

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ TCP-4182UB/D