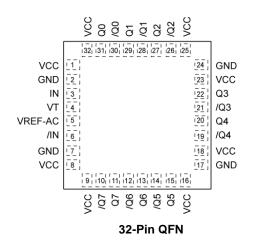

Typical Application

Ordering Information⁽¹⁾


Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89858UMG	QFN-32	Industrial	SY89858 with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY89858UMGTR ⁽²⁾	QFN-32	Industrial	SY89858 with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals Only.

2. Tape and Reel.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function	
3, 6	IN, /IN	Differential Input: This differential input accepts AC- or DC-coupled signals as small as 100mV (200mV _{PP}). Each pin of this pair internally terminates to a VT pin through 50 \Box . Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.	
4	VT	Input Termination Center-Tap: Each side of the differential input pair termination to this VT pin. The VT pin provides a center-tap to a termination network f maximum interface flexibility. See the "Input Interface Applications" section f more details.	
5	VREF-AC	Reference Voltage: This output biases to V_{CC} -1.2V (typical). It is used for AC-coupling inputs IN and /IN. Connect VREF-AC directly to the corresponding VT pin. Bypass with 0.01uF low ESR capacitor to V_{CC} . Maximum sink/source capability is 1.5mA.	
1, 8, 9, 16, 18, 23, 25, 32	VCC	Positive Power Supply: Bypass with $0.1 \Box F//0.01 \Box F$ low ESR capacitors as close to the VCC pins as possible.	
31, 30, 29, 28, 27, 26, 22, 21, 20, 19, 15, 14, 13, 12, 11, 10	Q0, /Q0, Q1, /Q1, Q2, /Q2, Q3, /Q3, Q4, /Q4, Q5, /Q5, Q6, /Q6, Q7, /Q7	100k LVPECL Differential Outputs: Differential buffered output copy of the input signal. The LVPECL output swing is typically 800mV into 50 Ω to V _{CC} -2V. Unused output pairs may be left floating with no impact on jitter. See "LVPECL Output" section.	
2, 7, 17, 24	GND Exposed Pad	Ground: Ground pins and exposed pad must be connected to the same ground plane.	

Oct. 1, 2013

Absolute Maximum Ratings⁽¹⁾

Supply Voltage (V_{CC})0.5V to +4.0V Input Voltage (V_{IN})0.5V to V_{CC} Termination Current
Source or sink current on V _T ±100mA
Reference Current ⁽³⁾
Source or sink current on V _{REF-AC} ±1.5mA
LVPECL Output Current (I _{OUT})
Continuous 50mA
Surge 100mA
Lead Temperature (soldering, 20 sec.)+260°C
Storage Temperature (T _s)–65°C to 150°C

Operating Ratings⁽²⁾

Supply Voltage (V _{CC})	. +2.375V to +2.625V
	+3.0V to +3.6V
Ambient Temperature (T _A)	–40°C to +85°C
Package Thermal Resistance ⁽⁴⁾	
QFN (θ_{JA})	
Still-Air	35°C/W
QFN (ψ _{JB})	
Junction-to-Board	

DC Electrical Characteristics⁽⁵⁾

 $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply		2.375	2.5	2.625	V
			3.0	3.3	3.6	V
Icc	Power Supply Current	No load, max. V _{CC}		95	150	mA
R _{IN}	Input Resistance (IN-to-V _T)		45	50	55	Ω
$R_{\text{DIFF}_{IN}}$	Differential Input Resistance (IN-to-/IN)		90	100	110	Ω
VIH	Input High Voltage (IN, /IN)	Note 6	V _{CC} –1.6		V _{CC}	V
VIL	Input Low Voltage (IN, /IN)		0		V _{IH} –0.1	V
V _{IN}	Input Voltage Swing (IN, /IN)	See Figure 1a.	0.1		1.7	V
$V_{\text{DIFF}_\text{IN}}$	Differential Input Voltage Swing IN-/IN	See Figure 1b.	0.2			V
$V_{T_{\rm IN}}$	IN-to-V _T (IN, /IN)				1.28	V
V_{REF-AC}	Output Reference Voltage		V _{cc} -1.3V	V _{cc} -1.2V	V _{cc} -1.1V	V

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

3. Due to the limited drive capability use for input of the same package only.

4. Package Thermal Resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB. θ_{JA} and ψ_{JB} values are determined for a 4-layer board in still air, unless otherwise stated.

5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

6. V_{IH} (min) not lower than 1.2V.

LVPECL Outputs DC Electrical Characteristics⁽⁷⁾

 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to + 85°C; R_L = 50 Ω to V_{CC} -2V, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage Q, /Q		V _{CC} -1.145		V _{CC} -0.895	V
V _{OL}	Output LOW Voltage Q, /Q		V _{cc} -1.945		V _{CC} -1.695	V
V _{OUT}	Output Voltage Swing Q, /Q	See Figure 1a.	500	800		mV
V _{DIFF-OUT}	Differential Output Voltage Swing Q, /Q	See Figure 1b.	1000	1600		mV

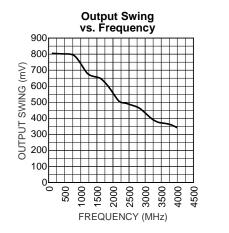
Note:

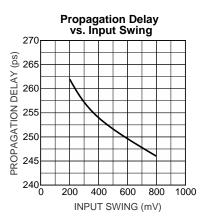
7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics⁽⁸⁾

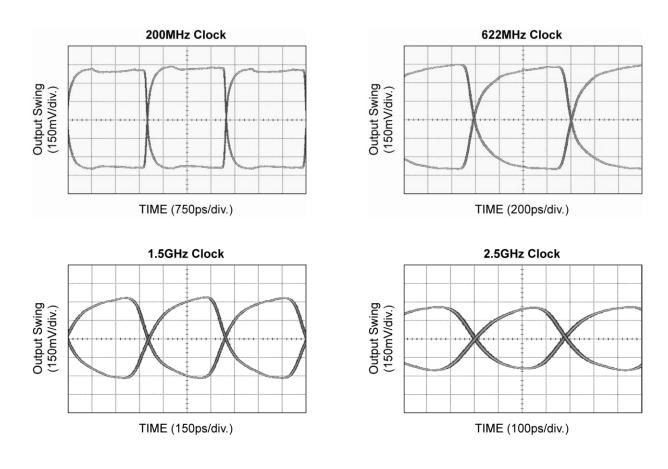
 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_{A} = –40°C to + 85°C, R_{L} = 50 Ω to V_{CC} –2V, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Operating Frequency	V _{OUT} ≥ 400mV	2.0	3.0		GHz
t _{PD}	Propagation Delay (IN-to-Q)		180	260	380	ps
T _{pd} Tempco	Differential Propagation Delay Temperature Coefficient			115		fs/°C
т	Output-to-Output Skew	Note 9			30	
T _{skew}	Part-to-Part Skew	Note 10			150	ps
t _{Jitter}	RMS Phase Jitter	Output = 25MHz		740		6
		Integration Range 12kHz – 20MHz		710		fs
t _{R,} t _F	Output Rise/Fall Time (20% to 80%)	At full output swing.	75	130	200	ps


Notes:


8. High-frequency AC-parameters are guaranteed by design and characterization.

9. Output-to-output skew is measured between outputs under identical conditions.


10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs. Part-to-part skew includes variation in t_{pd}.

Typical Operating Characteristics

Functional Characteristics

Singled-Ended and Differential Swings

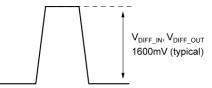
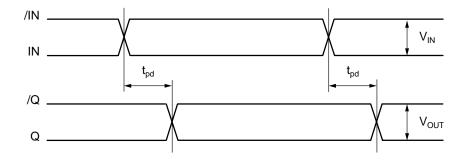



Figure 1b. Differential Voltage Swing

Timing Diagram

Input and Output Stages



Figure 2a. Simplified Differential Input Stage

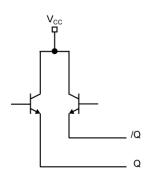
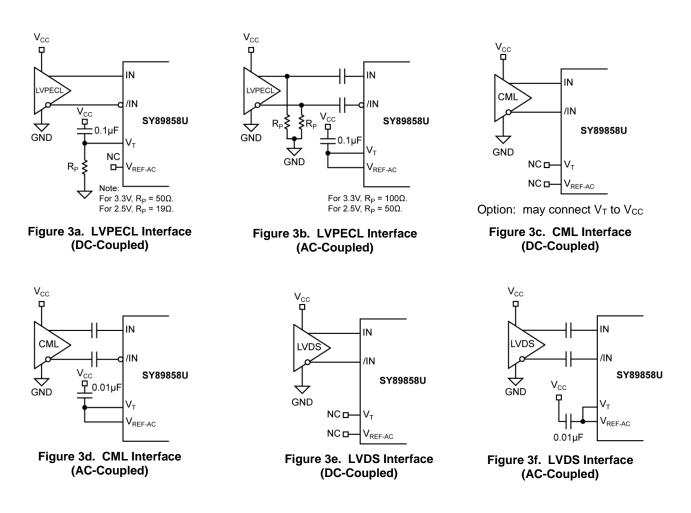



Figure 2b. Simplified LVPECL Output Stage

Input Interface Applications

LVPECL Output Interface Applications

LVPECL has high input impedance, and very low output impedance (open emitter), and small signal swing which results in low EMI. LVPECL is ideal for driving 50 Ω and 100 Ω controlled impedance transmission lines. There are several techniques for terminating the LVPECL output: Parallel

Termination-Thevenin Equivalent, Parallel Termination (3-resistor), and AC-coupled Termination. Unused output pairs may be left floating. However, single-ended outputs must be terminated, or balanced.

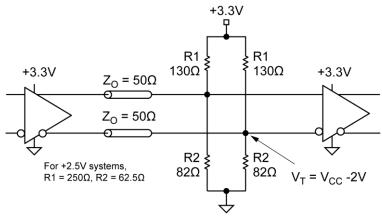
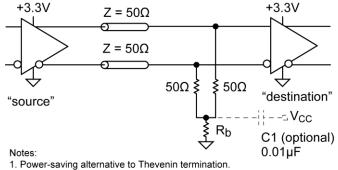
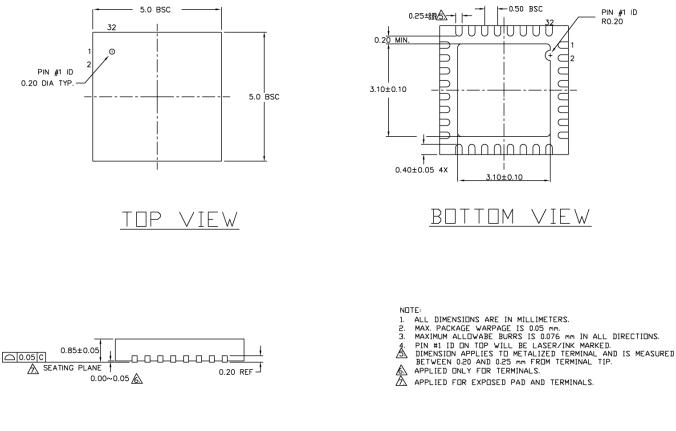



Figure 4a. Parallel Termination-Thevenin Equivalent

2. Place termination resistors as close to destination inputs as possible.

3. $R_{\rm b}$ resistor sets the DC bias voltage, equal to $V_{\rm T}$


4. For 2.5V systems, R_b = 19 Ω , For 3.3V systems, R_b = 50 Ω

Related Product and Support Documentation

Part Number	Function	Datasheet Link
SY58032U	Ultra-Precision 1:8 LVPECL Fanout Buffer w/Internal Termination	www.micrel.com/product-info/products/sy58032u.shtml
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

Package Information

32-Pin (5mm x 5mm)

Package Notes:

- 1. Package meets Level 2 Moisture Sensitivity Classification.
- 2. All parts are dry-packaged before shipment.
- 3. Exposed pad must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2004 Micrel, Incorporated.

Oct. 1, 2013