Contents

1	Sum	mary description
2	Devi	ce description
	2.1	Read mode
	2.2	Standby mode
	2.3	Two-line output control
	2.4	System considerations
	2.5	Programming
	2.6	Presto II programming algorithm
	2.7	Program Inhibit
	2.8	Program Verify 10 Electronic Signature 10
	2.9	Electronic Signature
	2.10	Erasure operation (applies to UV FFROM)
3	Maxi	mum ratings
4	DC a	nd AC parameters
5	Pack	age mechanical data 17
	5.1	C2-pin Ceramic Frit-seal DIP, with round window (FDIP32WA) 17
	5.2	32-pin Plastic DIP, 600 mils width (PDIP32)
	5.3	32-lead Rectangular Plastic Leaded Chip Carrier (PLCC32) 19
105 ⁰	5.4	32-lead Plastic Thin Small Outline, 8x20 mm (TSOP32) 20
6	Part	numbering
7	Revis	sion history

List of figures

	Figure 1. Figure 2. Figure 3.	Logic Diagram	3
	Figure 4. Figure 5.	TSOP Connections	
	Figure 6.	AC Testing Input Output Waveform14	1
	Figure 7. Figure 8.	AC Testing Load Circuit	
	Figure 9.	Programming and Verify Modes AC Waveforms	
	Figure 10. Figure 11.	FDIP32WA package outline	7
	Figure 11. Figure 12.	PLCC32 package outline	,)
	Figure 13.	TSOP32 package outline	
		PDIP32 package outline	
		olete	
		Obse	
		*(5)	
		AUCL	
		Pla	
		10 T	
	inse		
C)~		

57

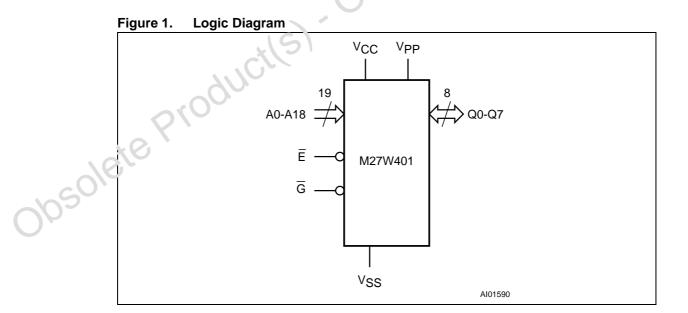
List of tables

Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13.	Signal descriptions6Operating modes8Electronic Signature11Absolute Maximum Ratings12Read Mode DC Characteristics13Programming Mode DC Characteristics13AC Measurement Conditions14Capacitance14Read Mode AC Characteristics15Programming Mode AC Characteristics16FDIP32WA package mechanical data17PDIP32 package mechanical data19TCOB22 package mechanical data19
Table 14. Table 15.	TSOP32 package mechanical data 20 Ordering Information Scheme. 21
Table 16.	Document revision history
	Ordering Information Scheme
0105019	ster

1 Summary description

signals connected to this device.

The M27W401 is a low voltage 4 Mbit EPROM offered in the two ranges UV (ultra violet erase) and OTP (one time programmable). It is ideally suited for microprocessor systems requiring large data or program storage and is organised as 524,288 by 8 bits.


The M27W401 operates in the read mode with a supply voltage as low as 2.7V at –40 to 85°C temperature range. The decrease in operating power allows either a reduction of the size of the battery or an increase in the time between battery recharges.

The FDIP32W (window ceramic frit-seal package) has a transparent lid which allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written to the device by following the programming procedure.

For application where the content is programmed only one time and erasure is not required, the M27W401 is offered in PDIP32, PLCC32 and TSOP32 (8 x 20 mm) packages.

In order to meet environmental requirements, ST offers the M27W401 in ECOPACK® packages. ECOPACK packages are Lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK® specifications are available at: www.st.com. See *Figure 1: Logic Diagram* and *Table 1: Signe I descriptions* for a brief overview of the

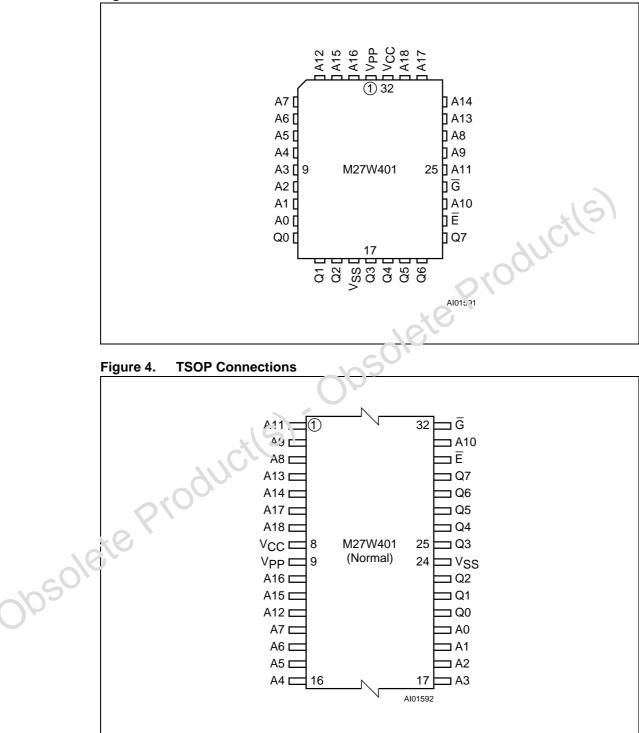

Signal	Description		
A0-A18	Address Inputs		
Q0-Q7	Data Outputs		
Ē	Chip Enable		
G	Output Enable		
V _{PP}	Program Supply		
V _{CC}	Supply Voltage		
V _{SS}	Ground		
Figure 2. DIP Connection			
Producti	A12 4 29 A14 A7 5 28 \widehat{A} (3) A6 6 27 \widehat{A} (3) A6 6 27 \widehat{A} (3) A5 7 26 \widehat{A} (3) A4 8 \widehat{A} (2) \widehat{A} (3) A4 8 \widehat{A} (2) \widehat{A} (3) A3 $\widehat{9}$ \widehat{A} (2) \widehat{A} (3) A2 $\widehat{10}$ 23 \widehat{A} (10) A1 $\widehat{11}$ 22 \widehat{E} A0 $\widehat{12}$ 21 \widehat{Q} (7) Q0 $\widehat{13}$ 20 \widehat{Q} (2) Q1 $\widehat{14}$ 19 \widehat{Q} (3) VSS $\widehat{16}$ $\widehat{17}$ \widehat{Q} (3)		

Table 1. Signal descriptions

6/23

57

Device description 2

Table 2 lists the operating modes of the M27W40. A single power supply is required in the read mode. All inputs are TTL levels except for V_{PP} and 12V on A9 for Electronic Signature.

Mode	Ē	G	A9	V _{PP}	Q7-Q0
Read	V _{IL}	V _{IL}	Х	$\rm V_{CC}$ or $\rm V_{SS}$	Data Out
Output Disable	V _{IL}	V _{IH}	Х	$\rm V_{CC}$ or $\rm V_{SS}$	Hi-Z
Program	V _{IL} Pulse	V _{IH}	Х	V _{PP}	Date In
Verify	V _{IH}	V _{IL}	Х	V _{PP}	Data Out
Program Inhibit	V _{IH}	V _{IH}	Х	V _{PP}	Hi-Z
Standby	V _{IH}	Х	Х	V _{CC} ()r V _{SS}	Hi-Z
Electronic Signature	V _{IL}	V _{IL}	V _{ID}	, v _{cc}	Codes
$X = V_{IH} \text{ or } V_{IL}, V_{ID} = 12V \pm 0.5V.$ Read mode					

Table 2. **Operating modes**

 $X = V_{IH} \text{ or } V_{IL}, V_{ID} = 12V \pm 0.5V.$ Note:

2.1 Read mode

The M27W401 has two control functions, both of which must be logically active in order to obtain data at the outputs. Chip Enable (E) is the power control and should be used for device selection. Output Enable (\overline{G}) is the output control and should be used to gate data to the output pins, independent of cevice selection. Assuming that the addresses are stable, the address access time (t_{AVQV}) is equal to the delay from E to output (t_{ELQV}) . Data is available at the cutout after a delay of t_{GLQV} from the falling edge of G, assuming that E has been low and the rodresses have been stable for at least tAVQV-tGLOV-

2.2 Standby mode

The M27W401 has a standby mode which reduces the supply current from 15mA to 15µA with low voltage operation $V_{CC} \le 3.6V$, see Read Mode DC Characteristics table for details. The M27W401 is placed in the standby mode by applying a CMOS high signal to the \overline{E} input. When in the standby mode, the outputs are in a high impedance state, independent of the \overline{G} input.

2.3 Two-line output control

Because EPROMs are usually used in larger memory arrays, this product features a 2 line control function which accommodates the use of multiple memory connection. The two line control function allows:

- the lowest possible memory power dissipation,
- complete assurance that output bus contention will not occur.

For the most efficient use of these two control lines, E should be decoded and used as the primary device selecting function, while G should be made a common connection to all

devices in the array and connected to the READ line from the system control bus. This ensures that all deselected memory devices are in their low power standby mode and that the output pins are only active when data is required from a particular memory device.

2.4 System considerations

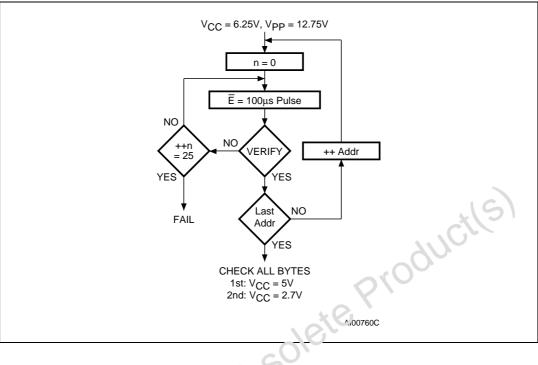
The power switching characteristics of Advanced CMOS EPROMs require careful decoupling of the devices. The supply current, I_{CC} , has three segments that are of interest to the system designer: the standby current level, the active current level, and transient current peaks that are produced by the falling and rising edges of \overline{E} . The magnitude of the transient current peaks is dependent on the capacitive and inductive loading of the device at the output.

The associated transient voltage peaks can be suppressed by complying with the two line output control and by properly selected decoupling capacitors. It is recommended that a 0.1µF ceramic capacitor be used on every device between V_{CC} and V_{SS} . This should be a high frequency capacitor of low inherent inductance and should be placed as close to the device as possible. In addition, a 4.7µF bulk electrolytic capacitor should be used between V_{CC} and V_{SS} for every eight devices. The bulk capacitor should be located near the power supply connection point. The purpose of the bulk capacitor is to overcome the voltage drop caused by the inductive effects of PCB traces.

2.5 Programming

The M27W401 has been designed to be fully compatible with the M27C4001 and has the same electronic signature. As a result the M27W401 can be programmed as the M27C4001 on the same programming equipment applying 12.75V on V_{PP} and 6.25V on V_{CC} by the use of the same PRESTO II algorithm.

When delivered (and after each '1's erasure for UV EPROM), all bits of the M27W401 are in the '1' state. Data it introduced by selectively programming '0's into the desired bit locations. Although chi, '0's will be programmed, both '1's and '0's can be present in the data word. The ori', way to change a '0' to a '1' is by die exposure to ultraviolet light (UV EPROM). The M27W401 is in the programming mode when V_{PP} input is at 12.75V, \overline{G} is at V_{IH} and \overline{E} is pulsed to V_{IL} . The data to be programmed is applied to 8 bits in parallel to the data output pins. The levels required for the address and data inputs are TTL. V_{CC} is specified to be 6.25V \pm 0.25V


2.6

Presto II programming algorithm

Presto II Programming Algorithm allows the whole array to be programmed with a guaranteed margin, in a typical time of 52.5 seconds. Programming with Presto II consists of applying a sequence of 100µs program pulses to each byte until a correct verify occurs (see *Figure 5*). During programming and verify operation, a Margin mode circuit is automatically activated in order to guarantee that each cell is programmed with enough margin. No overprogram pulse is applied since the verify in Margin mode at VCC much higher than 3.6V, provides the necessary margin to each programmed cell.

2.7 **Program Inhibit**

Programming of multiple M27W401s in parallel with different data is also easily accomplished. Except for \overline{E}_{12} all the inputs including \overline{G} of the parallel M27W401 may be common. A TTL low level pulse applied to a M27W401's \overline{E} input, with V_{PP} at 12.75V, will program that M27W401. A high level \overline{E} input inhibits the other M27W401s from being programmed.

2.8 **Program Verify**

A verify (read) should be performed on the programmed bits to determine that they were correctly programmed. The verify is accomplished with \overline{G} at V_{IL}, \overline{E} at V_{IH}, V_{PP} at 12.75V and V_{CC} at 6.25V.

2.9 Electronic Signature

The Electronic Signature (ES) mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and type. This mode is intended for use by programming equipment to automatically match the device to be programmed with its corresponding programming algorithm. The ES mode is functional in the 25°C \pm 5°C ambient temperature range that is required when programming the M27W401. To activate the ES mode, the programming equipment must force 11.5V to 12.5V on address line A9 of the M27W401 with V_{PP} = V_{CC} = 5V. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from V_{IL} to V_{IH}. All other address lines must be held at V_{IL} during Electronic Signature mode. Byte 0 (A0 = V_{IL}) represents the manufacturer code and byte 1 (A0 = V_{IH}) the device identifier code. For the STMicroelectronics

M27W401, these two identifier bytes are given in *Table 3* and can be read-out on outputs Q7 to Q0. Note that the M27W401 and M27C4001 have the same identifier bytes.

Table 3.	Electronic	Signature
----------	------------	-----------

Identifier	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0	Hex Data
Manufacturer's Code	V_{IL}	0	0	1	0	0	0	0	0	20h
Device Code	V_{IH}	0	1	0	0	0	0	0	1	41h

2.10 Erasure operation (applies to UV EPROM)

The erasure characteristics of the M27W401 are such that erasure begins when the calls are exposed to light with wavelengths shorter than approximately 4000 Å. It should be noted that sunlight and some type of fluorescent lamps have wavelengths in the 3000-4000 Å range. Data shows that constant exposure to room level fluorescent lighting could erase a typical M27W401 in about 3 years, while it would take approximately 1 week to cause erasure when exposed to direct sunlight. If the M27W401 is to be are sed to these types of lighting conditions for extended periods of time, it is suggested that opaque labels be put over the M27W401 window to prevent unintentional erasure. The recommended erasure procedure for the M27W401 is exposure to short wave united tight which has wavelength of 2537 Å. The integrated dose (i.e. UV intensity x are clust is approximately 15 to 20 minutes using an ultraviolet lamp with 12000 µ^W//cm² power rating. The M27W401 should be placed within 2.5 cm (1 inch) of the lamp ubes during the erasure. Some lamps have a filter on their tubes which should be removed before erasure.

3 Maximum ratings

Symbol	Parameter	Value	Unit
T _A	Ambient Operating Temperature ⁽²⁾	-40 to 85	°C
T _{BIAS}	Temperature Under Bias	-50 to 125	°C
T _{STG}	Storage Temperature	-65 to 150	°C
V _{IO} ⁽³⁾	Input or Output Voltage (except A9)	-2 to 7	V
V _{CC}	Supply Voltage	-2 to 7	V
V _{A9} ⁽³⁾	A9 Voltage	-2 to 13.5	51
V _{PP}	Program Supply Voltage	-2 to 14	V

Table 4.	Absolute	Maximum	Ratings (1)
----------	----------	---------	-----------	----

1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indirated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating on litic ns for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

2. Depends on range.

3. Minimum DC voltage on Input or Output is -0.5V with prissible overshoot to -2.0V for a period less than 20ns. Maximum DC voltage on Output is VCC +0.5V with prissible overshoot to VCC +2V for a period less than 20ns.

4 DC and AC parameters

 $T_A = -40$ to 85°C; $V_{CC} = 2.7V$ to 3.6V; $V_{PP} = V_{CC}$

Table 5.	Read Mode DC	Characteristics ⁽¹⁾
----------	--------------	--------------------------------

Symbol	Parameter	Test Condition	Min.	Max.	Unit
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{CC}$		±10	μA
I _{LO}	Output Leakage Current	$0V \le V_{OUT} \le V_{CC}$		±10	μΑ
I _{CC}	Supply Current	$\label{eq:E} \begin{split} \overline{E} = V_{IL}, \ \overline{G} = V_{IL}, \ I_{OUT} = 0 \text{mA}, \\ f = 5 \text{MHz}, \ V_{CC} \leq 3.6 \text{V} \end{split}$		15	mA
I _{CC1}	Supply Current (Standby) TTL	$\overline{E} = V_{IH}$		19	лA
I _{CC2}	Supply Current (Standby) CMOS	\overline{E} > V _{CC} – 0.2V, V _{CC} \leq 3.6V	X	15	μΑ
I _{PP}	Program Current	V _{PP} = V _{CC}	00	100	μA
V _{IL}	Input Low Voltage	<u> </u>	-0.6	0.2V _{CC}	V
V _{IH} ⁽²⁾	Input High Voltage	XO	$0.7V_{CC}$	$V_{CC} + 0.5$	V
V _{OL}	Output Low Voltage	I _{O¹} = 21/nA		0.4	V
V _{OH}	Output High Voltage TTL	и _{сч} – –400µА	2.4		V

1. V_{CC} must be applied simultaneously with (r be $\gamma_1 \gamma_{PP}$ and removed simultaneously or after V_{PP} .

2. Maximum DC voltage on Output is V_{CC} +0.5^{*}.

15	
$T_A = 25 \text{ °C}; V_{CC} = 6.25 \pm 0.25 $	V; V _{PP} = 12.75V ± 0.25V

 Table 6.
 Programming Mode DC Characteristics ⁽¹⁾

	Symbol	Parameter	Test Condition	Min	Max	Unit
	du .	Input Leakage Current	$0 \leq V_{IN} \leq V_{CC}$		±10	μA
10	'cc	Supply Current			50	mA
cO^{k}	I _{PP}	Program Current	$\overline{E} = V_{IL}$		50	mA
050	V _{IL}	Input Low Voltage		-0.3	0.8	V
0F	V _{IH}	Input High Voltage		2.0	V _{CC} + 0.5	V
	V _{OL}	Output Low Voltage	I _{OL} = 2.1 mA		0.4	V
	V _{OH}	Output High Voltage TTL	I _{OH} = -400 μA	2.4		V
	V _{ID}	A9 Voltage		11.5	12.5	V

1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

57

Table 7. **AC Measurement Conditions**

Parameter	High Speed	Standard
Input Rise and Fall Times	≤ 10ns	≤ 20ns
Input Pulse Voltages	0 to 3V	0.4V to 2.4V
Input and Output Timing Ref. Voltages	1.5V	0.8V and 2V

 $T_A = 25 \text{ °C}, f = 1 \text{ MHz}$

Capacitance (1) Table 8.

Symbol	Parameter	Test Condition	Min.	Max.	c'nit
C _{IN}	Input Capacitance	$V_{IN} = 0V$		6	pF
C _{OUT}	Output Capacitance	V _{OUT} = 0V	21	12	pF
1 Sampled only	(not 100% tostad				

1. Sampled only, not 100% tested.

AC Testing Input Output Waveform Figure 6.

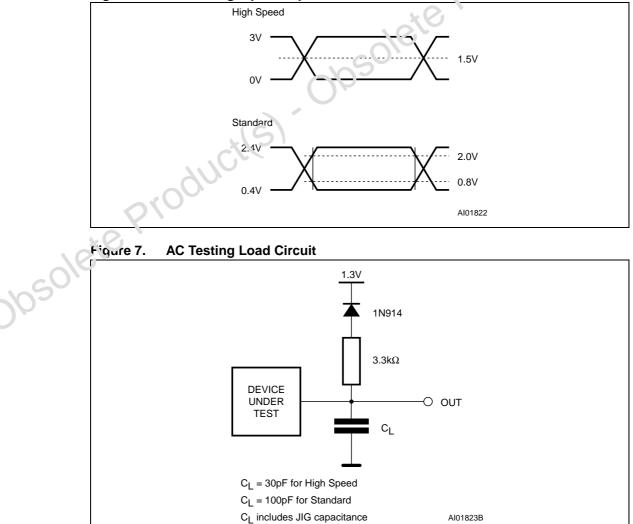
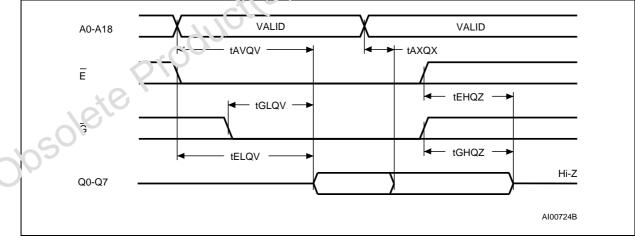


 Table 9.
 Read Mode AC Characteristics ⁽¹⁾


			Test		-80	(2)		-1((-120/-1	00 50/-200)	
Symbol	Alt	Parameter	Condition	V _{CC} = 3.0	V to 3.6V	V _{CC} = 2.7	V to 3.6V	V _{CC} = 2.7	V to 3.6V	Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
t _{AVQV}	t _{ACC}	Address Valid to Output Valid	$\overline{E} = V_{IL},$ $\overline{G} = V_{IL}$		70		80		100	ns
t _{ELQV}	t _{CE}	Chip Enable Low to Output Valid	$\overline{G} = V_{IL}$		70		80		100	ns
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid	$\overline{E} = V_{IL}$		40		50		60	ns
t _{EHQZ} ⁽³⁾	t _{DF}	Chip Enable High to Output Hi-Z	$\overline{G} = V_{IL}$	0	50	0	50		60	ns
t _{GHQZ} ⁽³⁾	t _{DF}	Output Enable High to Output Hi-Z	$\overline{E} = V_{IL}$	0	50	0	50	0	60	ns
t _{AXQX}	t _{OH}	Address Transition to Output Transition	$\frac{\overline{E}}{\overline{G}} = V_{IL},$ $\overline{G} = V_{IL}$	0		6		0		ns

1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

2. Speed obtained with High Speed AC measurement conditions.

3. Sampled only, not 100% tested.

Figure 8. Read Mode AC Waveform

57

Table TV.	Flogra									
Symbol	Alt	Parameter	Min.	Max.	Unit					
t _{AVPL}	t _{AS}	Address Valid to Program Low		2		μs				
t _{QVPL}	t _{DS}	Input Valid to Program Low		2		μs				
t _{VPHPL}	t _{VPS}	V _{PP} High to Program Low	V _{PP} High to Program Low							
t _{VCHPL}	t _{VCS}	V_{CC} High to Program Low		2		μs				
t _{ELPL}	t _{CES}	Chip Enable Low to Program Low		2		μs				
t _{PLPH}	t _{PW}	Program Pulse Width		95	105 🖣	μs				
t _{PHQX}	t _{DH}	Program High to Input Transition		2	10	sı				
t _{QXGL}	t _{OES}	Input Transition to Output Enable Low		2	C	μs				
t _{GLQV}	t _{OE}	Output Enable Low to Output Valid		00	100	ns				
t _{GHQZ} ⁽²⁾	t _{DFP}	Output Enable High to Output Hi-Z	20	00	130	ns				
t _{GHAX}	t _{AH}	Output Enable High to Address Transition		0		ns				

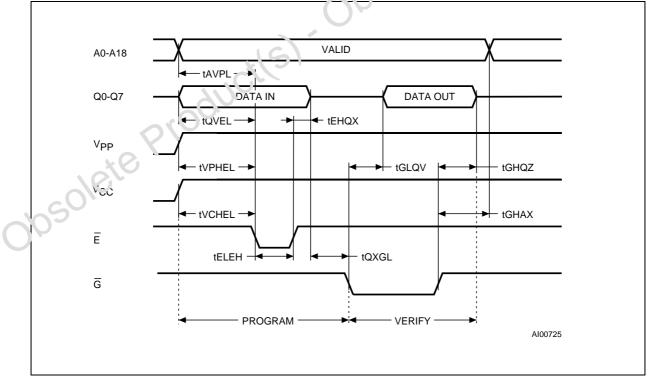

 $T_A = 25 \text{ °C}; V_{CC} = 6.25 \text{V} \pm 0.25 \text{V}; V_{PP} = 12.75 \text{V} \pm 0.25 \text{V}$

Table 10.	Programming Mode AC Characteristics ⁽¹⁾

1. V_{CC} must be applied simultaneously with or before V_{PP} and removed simultaneously or after V_{PP} .

2. Sampled only, not 100% tested.

Figure 9. Programming and Verify Modes AC Waveforins

16/23

5 Package mechanical data

5.1 32-pin Ceramic Frit-seal DIP, with round window (FDIP32WA)

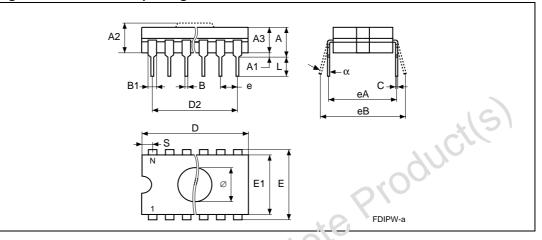
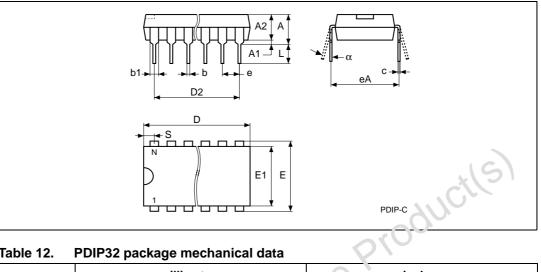


Figure 10. FDIP32WA package outline

Table 11.	FDIP32WA package mechanical	l'atè
-----------	-----------------------------	-------


	Symbol	millimeters			inches				
	Symbol	Min	Тур	Max	Min	Тур	Max		
	А			5.72			0.225		
	A1	0.51	5	1.40	0.020		0.055		
	A2	3.91		4.57	0.154		0.180		
	A3	3.83		4.50	0.153		0.177		
	В	0.41		0.56	0.016		0.022		
	Bi		1.45			0.057			
	С	0.23		0.30	0.009		0.012		
	D	41.73		42.04	1.643		1.655		
-\ <u>S</u> O`	D2		38.10			1.500			
<u>Ob</u>	е		2.54			0.100			
	E		15.24			0.600			
	E1	13.06		13.36	0.514		0.526		
	eA		14.99			0.590			
	eB	16.18		18.03	0.637		0.710		
	L	3.18		4.10	0.125		0.161		
	N		32			32			
	S	1.52		2.49	0.060		0.098		
	Ø		7.11			0.280			
	α	4°		11°	4°		11°		

17/23

32-pin Plastic DIP, 600 mils width (PDIP32) 5.2

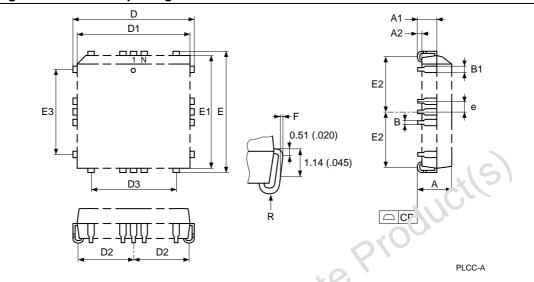

Figure 11. PDIP32 package outline

Table 12. PDIP32 package mechanical data

	Symbol	millimeters			xe		
	Symbol	Min	Тур	Max	Min	Тур	Max
	А			5.000			0.2000
	A1	0.381	(<u>N</u>	0.0150		
	A2		3.912			0.1540	
	b	0.406	G	0.559	0.0160		0.0220
	b1	1.168		1.372	0.0460		0.0540
	С	ר.0 <u>?</u> 0		0.356	0.0080		0.0140
	D	17.402		42.418	1.6300		1.6700
	L2		38.100			1.5000	
	E	15.240			0.6000		
10	E1	13.890		14.248	0.5469		0.5609
obsolie	е	-	2.540	-	-	0.1000	-
00	eA	-	15.240	-	-	0.6000	-
U.	L	3.175		3.429	0.1250		0.1350
	Ν		32			32	
	S	1.650		2.210	0.0650		0.0870
	α	0°		15°	0°		15°

5.3 32-lead Rectangular Plastic Leaded Chip Carrier (PLCC32)

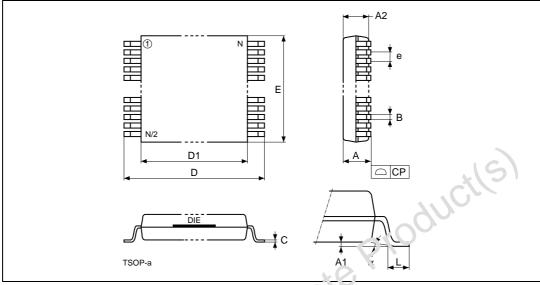

Figure 12. PLCC32 package outline

Table 13. PLCC32 package mechanical data

	Symbol		millimeters			inches				
	Symbol	Min	Тур	Max	Min	Тур	Max			
	А	3.18		3.56	0.125		0.140			
	A1	1.53	5	2.41	0.060		0.095			
	A2	0.28		-	0.015		_			
	В	0.35		0.53	0.013		0.021			
	B1	0.66		0.81	0.026		0.032			
	Сŀ			0.10			0.004			
	D	12.32		12.57	0.485		0.495			
	D1	11.35		11.51	0.447		0.453			
SO.	D2	4.78		5.66	0.188		0.223			
30-	D3	-	7.62	-	_	0.300	_			
	E	14.86		15.11	0.585		0.595			
	E1	13.89		14.05	0.547		0.553			
	E2	6.05		6.93	0.238		0.273			
	E3	-	10.16	-	_	0.400	_			
	е	-	1.27	-	-	0.050	-			
	F	0.00		0.13	0.000		0.005			
	R	-	0.89	-	_	0.035	_			
	Ν		32			32				

5.4 32-lead Plastic Thin Small Outline, 8x20 mm (TSOP32)

Figure 13. TSOP32 package outline

Table 14. TSOP32 package mechanical data

	Symbol		millimeters	5		inches	
	Symbol	Min	Тур	Max	Min	Тур	Max
	А			1.200			0.0472
	A1	0.050	5	0.150	0.0020		0.0059
	A2	0.950		1.050	0.0374		0.0413
	В	U 17J		0.250	0.0067		0.0098
	С	0.100		0.210	0.0039		0.0083
	CF			0.100			0.0039
	D	19.800		20.200	0.7795		0.7953
	D1	18.300		18.500	0.7205		0.7283
NSU!	е	-	0.500	-	-	0.0197	-
OP-	E	7.900		8.100	0.3110		0.3189
	L	0.500		0.700	0.0197		0.0276
	N		32			32	
	α	0°		5°	0°		5°

6 Part numbering

Table 15. Ordering Information Scheme

Example:	M27W401	-80 K 6
Device Type		
M27		
Supply Voltage		
W = 2.7V to 3.6V		
Device Function		
401 = 4 Mbit (512Kb x 8)		x (S)
Speed		
-80 ⁽¹⁾ ⁽²⁾ = 80 ns		
-100 = 100 ns		
Not For New Design ⁽³⁾		K i
-120 = 120 ns	XU	
-150 = 150 ns	16.	
-200 = 200 ns	<u> </u>	
Deckers	03	
Package F = FDIP32W ⁽⁴⁾		
B = PDIP32		
K = PLCC32		
N = TSOP32: 8 x 20 mm (4)		
N = 1001 32. 0 X 20 mm		
Temperature Range		
6 = −40 to 85 °C		

- 1. Figh Speed, see AC Characteristics section for further information.
- 2. This speed also guarantees 70ns access time at V_{CC} = 3.0V to 3.6V.
- 3. These speeds are replaced by the 100 ns.
- 4. Packages option available on request. Please contact STMicroelectronics local Sales Office.

For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.

ms

7 Revision history

Table 16. Document revision history

	Date	Revision	Changes	
	25-Jul-1999	1	First Issue	
	10-Mar-2000	2	FDIP32W Package Dimension, L Max added (<i>Table 11</i>) TSOP32 Package Dimension changed (<i>Table 14</i>) 0 to 70°C Temperature Range deleted	
	21-Apr-2006	3	Converted to new template. Added ECOPACK® information.	
obsole	stepro	Jucit	0 to 70°C Temperature Range deleted Converted to new template. Added ECOPACK® information.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and it's subsiliaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and ser rices described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and Services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property lights is granted under this document. If any part of this document refers to any third party products or services it shall not be depined a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered a license grant to vering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERKS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USF AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNE'S FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINCEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN MRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARP ALT. D. SOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS ON SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale cf. C1 products with provisions different from the statements and/or technical features set forth in this document shall immediately void any wan any granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any tracility of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

23/23