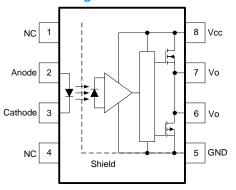


Photocouplers LTV-3150 series

1. DESCRIPTION

The LTV-3150 optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications and inverters in power supply system. It contains an AlGaAs LED optically coupled to an integrated circuit with a power output stage. The 1.0A peak output current is capable of directly driving most IGBTs with ratings up to 1200 V/50 A. For IGBTs with higher ratings, the LTV-3150 series can be used to drive a discrete power stage which drives the IGBT gate.

The Optocoupler operational parameters are guaranteed over the temperature range from $-40^{\circ}C \sim +105^{\circ}C$.


1.1 Features

- 1.0 A maximum peak output current
- 0.8A minimum peak output current
- Rail-to-rail output voltage
- 400 ns maximum propagation delay
- 150 ns maximum propagation delay difference
- Under Voltage Lock-Out protection (UVLO) with hysteresis
- 15 kV/us minimum Common Mode Rejection (CMR) at V_{CM} = 1500 V
- I_{CC} = 3.0 mA maximum supply current
- Wide operating range: 15 to 30 Volts (V_{CC})
- Guaranteed performance over temperature -40°C ~ +105°C.
- Offer low power dissipation with $R_{ON} \le 1\Omega$
- MSL Level 1
- Safety approval:
- UL/ cUL Recognized 5000 V_{RMS}/1 min
- IEC/EN/DIN EN 60747-5-5 V_{IORM} = 630 Vpeak

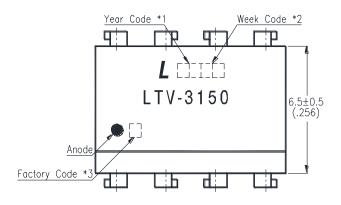
1.2 Applications

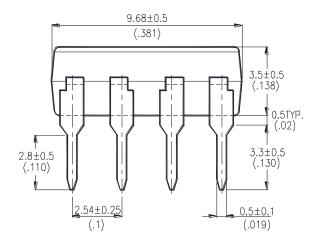
- IGBT/MOSFET gate drive
- Uninterruptible power supply (UPS)
- Industrial Inverter
- AC/Brushless DC motor drives

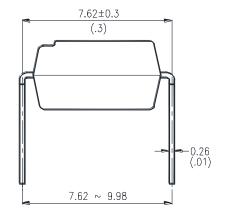
Functional Diagram

A 0.1μ F bypass Capacitor must be connected between Pin 5 and 8. See note 11.

Truth Table


LED	V _{cc} -GND (Turn-ON, +ve going)	V _{cc} -GND (Turn-OFF, -ve going)	Vo
OFF	0 - 30 V	0 - 30 V	Low
ON	0 – 11 V	0 – 9 V	Low
ON	11 - 13.5 V	9 - 12 V	Transition
ON	13.5 - 30 V	12 - 30 V	High




Photocouplers LTV-3150 series

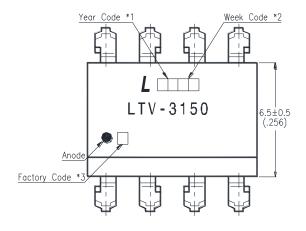
2. PACKAGE DIMENSIONS

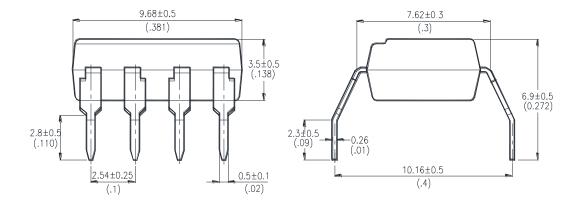
2.1 LTV-3150

Notes :

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark

```
(Y: Thailand).
```


Dimensions are in Millimeters and (Inches).


2/16

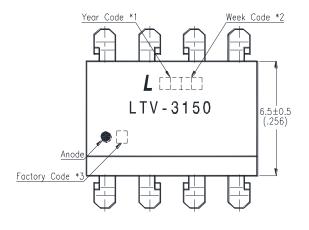
Photocouplers LTV-3150 series

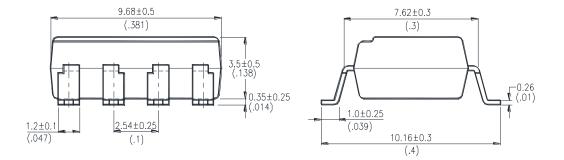
2.2 LTV-3150M

Notes

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark

(Y: Thailand).


Dimensions are in Millimeters and (Inches).


3/16

Photocouplers LTV-3150 series

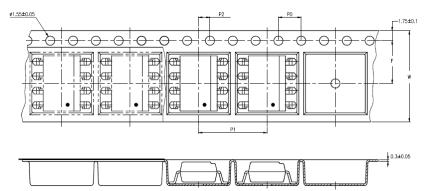
2.3 LTV-3150S

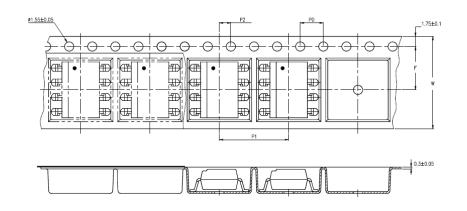
Notes :

- *1. Year date code.
- *2. 2-digit work week.
- *3. Factory identification mark

(Y: Thailand).

Dimensions are in Millimeters and (Inches).


4/1


Photocouplers LTV-3150 series

3. TAPING DIMENSIONS

3.1 LTV-3150S-TA

3.2 LTV-3150S-TA1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P ₂	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.47)

Quantities Per Reel

Package Type	LTV-3150
Quantities (pcs)	1000

Photocouplers LTV-3150 series

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	T _{stg}	-55	+125	°C	
Operating Temperature	T _{opr}	-40	+105	°C	
Output IC Junction Temperature	TJ		125	°C	
Isolation Voltage	V _{iso}	5000		V _{RMS}	
Total Output Supply Voltage	(V _{CC} –V _{EE})	0	35	V	
Average Forward Input Current	I _F		25	mA	
Reverse Input Voltage	V _R		5	V	
Peak Transient Input Current	I		1	А	
(<1 µs pulse width, 300 pps)	I _{F(TRAN)}		I	A	
"High" Peak Output Current	I _{OH(PEAK)}		1.0	A	1
"Low" Peak Output Current	I _{OL(PEAK)}		1.0	А	1
Input Current (Rise/Fall Time)	t _{r(IN)} /t _{f(IN)}		500	ns	
Output Voltage	V _{O(PEAK)}	-0.5	V _{cc}	V	
Power Dissipation	Pı		40	mW	
Output Power Dissipation	Po		250	mW	
Total Power Dissipation	PT		295	mW	
Lead Solder Temperature	T _{sol}		260	°C	

Ambient temperature = 25°C, unless otherwise specified. Stresses exceeding the absolute maximum ratings can cause permanent damage to the device. Exposure to absolute maximum ratings for long periods of time can adversely affect reliability.

4.2 Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	105	°C
Supply Voltage	V _{cc}	15	30	V
Input Current (ON)	I _{FL(ON)}	7	16	mA
Input Voltage (OFF)	V _{F(OFF)}	-3.0	0.8	V

6/16

Photocouplers LTV-3150 series

4.3 ELECTRICAL OPTICAL CHARACTERISTICS

	Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
	Input Forward Voltage	V _F	1.2	1.37	1.8	V	I _F = 10mA	13	
Input Forward Voltage Temperature Coefficient	ΔV _F / ΔΤ		-1.237		mV/ ^o C	I _F = 10mA			
	Input Reverse Voltage	BV _R	5			V	I _R = 10μΑ		
Input	Input Threshold Current (Low to High)	I _{FLH}		1.4	5	mA	R _g = 10Ω,	6, 7 ,18	
	Input Threshold Voltage (High to Low)	V _{FHL}	0.8			V	C _g = 25nF, V _O > 5V		
	Input Capacitance	C _{IN}		33		pF	$f = 1 \text{ MHz}, V_F = 0 \text{ V}$		
	High Level Supply Current	I _{CCH}		1.9	3.0	mA	$R_g = 10\Omega$, $C_g = 25$ nF, I _F = 10mA	4, 5	
	Low Level Supply Current	I _{CCL}		2.1	3.0	mA	$R_g = 10\Omega,$ $C_g = 25nF, V_F = 0V$., 0	
					-0.3	A	$V_{O} = (V_{CC} - 2.5 \text{ V})$		1
	High level output current	I _{OH}		-	-0.8		V _{CC} - V _O ≤15V	16	2
	Low level output current	I _{OL}	0.3			А	V ₀ = (V _{CC} + 2.0 V)	17	1
Output		IOL	0.8			~	V _{CC} – V _{EE} ≤15V	17	3
	High level output voltage	V _{он}	V _{CC -} 0.25	V _{cc -} 0.1		V	I _F = 10mA, I _O = -100mA	1, 2, 14	4
	Low level output voltage	V _{OL}		V _{EE +} 0.1	V _{EE +} 0.25	V	I _F = 0mA, I _O = 100mA	3, 15	
		V _{UVLO+}	11.0	12.7	13.5	V	$V_{\rm O} > 5V$, $I_{\rm F} = 10 \text{ mA}$		
	UVLO Threshold	V _{UVLO-}	9.0	11.2	12	V	V _O < 5V, I _F = 10 mA	19	
	UVLO Hysteresis	UVLO _{HYS}		1.5		V			

All Typical values at $T_A = 25^{\circ}$ C and $V_{CC} - V_{EE} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (As page 6)

Photocouplers LTV-3150 series

5. SWITCHING SPECIFICATION

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Figure	Note
Propagation Delay Time to High Output Level	t _{PHL}	100	242	400				
Propagation Delay Time to Low Output Level	t _{PLH}	100	183	400		R _g = 10Ω,	8, 9, 10,	
Pulse Width Distortion	PWD		-60	-120		$C_g = 25$ nF, f = 20 kHz,	11, 12, 20	10
Propagation delay difference between any two parts or channels	PDD	-150		150	ns	Duty Cycle = 50% $I_F = 7$ to 16 mA, $V_{CC} = 15$ to 30V		7
Output Rise Time (20 to 80%)	Tr		42			V _{EE} = ground	20	
Output Fall Time (80 to 20%)	Tf		50				20	
Common mode transient immunity at high level output	(СМН)	15			KV/µs	$T_A = 25^{\circ}C,$ $I_F = 10 \text{ to } 16 \text{ mA},$ $V_{CM} = 1500 \text{ V},$ $V_{CC} = 30 \text{ V}$	- 21	8
Common mode transient immunity at low level output	CML	15			KV/µs	$V_{CC} = 30 \text{ V}$ $T_A = 25^{\circ}\text{C},$ $V_F = 0 \text{ V},$ $V_{CM} = 1500 \text{ V},$ $V_{CC} = 30 \text{ V}$	21	9

All Typical values at $T_A = 25$ °C and $V_{CC} - V_{EE} = 30$ V, unless otherwise specified; all minimum and maximum specifications are at recommended operating condition. (As page 6)

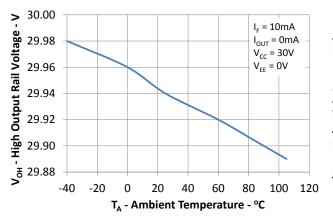
8/16

Photocouplers LTV-3150 series

6. ISOLATION CHARACTERISTIC

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition	Note
Withstand Insulation Test	V	5000			V	RH ≤ 50%, t = 1min,	5, 6
Voltage	V _{ISO}	5000	_	_	v	$T_A = 25^{\circ}C$	5, 6
Input-Output Resistance	R _{I-O}	—	6.5x10 ¹¹	_	Ω	V _{I-O} = 500V DC	5
Input-Output Capacitance	C _{I-O}	_	1.0		pF	f = 1MHz	

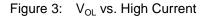
All Typical values at $T_A = 25^{\circ}$ C unless otherwise specified. All minimum and maximum specifications are at recommended operating condition. (As page 6)


Notes:

- 1) Maximum pulse width = $10\mu s$, maximum duty cycle = 0.2%.
- 2) Output is sourced at -0.8 A with a maximum pulse width = $10\mu s$. V_{CC} - V_{O} is measured to ensure 15 V or below.
- 3) Output is sourced at 0.8A with a maximum pulse width = $10\mu s$. V_O-V_{EE} is measured to ensure 15 V or below.
- 4) In this test V_{OH} is measured with a DC load current. When driving capacitive loads, V_{OH} will approach V_{CC} as I_{OH} approaches zero amps.
- 5) Device is considered a two terminal device: pins 1, 2, 3 and 4 are shorted together and pins 5, 6, 7 and 8 are shorted together.
- 6) According to UL1577, each photocoupler is tested by applying an insulation test voltage 5250 V_{RMS} for one second (leakage current less than 10µA). This test is performed before the 100% production test for partial discharge
- 7) The difference between T_{PHL} and T_{PLH} between any two LTV-3150 parts under same test conditions.
- Common mode transient immunity in high stage is the maximum tolerable negative dV_{CM}/dt on the trailing edge of the common mode impulse signal, V_{CM}, to assure that the output will remain high.
- Common mode transient immunity in low stage is the maximum tolerable positive dV_{CM}/dt on the leading edge of the common mode impulse signal, V_{CM}, to assure that the output will remain low.
- 10) Pulse Width Distortion is defined as T_{PHL} T_{PLH} for any given device.
- 11) At least a 0.1µF or bigger bypass capacitor must be connected/ closed across pin 8 and pin 5. Failure to provide the bypass may impair the switching property. Normally, it is recommended to place a 1µF multi-layer ceramic capacitor. To parallel one larger capacitor (>1µF) to optimize performance is better.

Photocouplers LTV-3150 series

7. TYPICAL PERFORMANCE CURVES & TEST CIRCUITS



ITEON[®]

OPTOELECTRONICS

Figure 1: High output rail voltage vs. Temperature

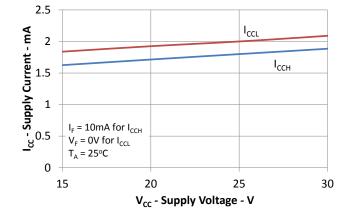
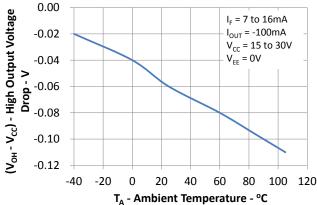
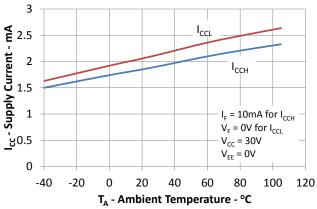
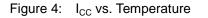
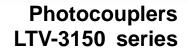
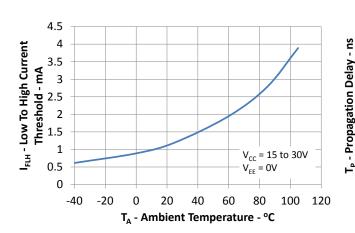
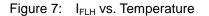


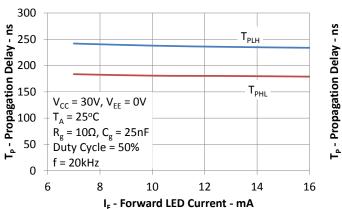
Figure 5: I_{CC} vs. V_{CC}

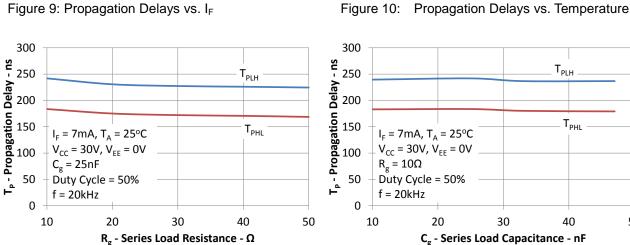

Figure 2: V_{OH} vs. Temperature




T_{PLH}


T_{PHL}

30



 $R_g = 10\Omega$, $C_g = 25nF$ Duty Cycle = 50% 50 f = 20kHz 0 15 20 25 V_{cc} - Supply Voltage - V

Cg - Series Load Capacitance - nF

Figure 12: Propagation Delays vs. C_q

11/1

Part No. : LTV-3150 series BNC-OD-FC002/A4

50

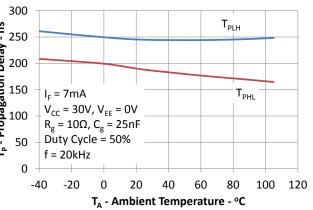
T_{PLH}

T_{PHL}

40

Figure 11: Propagation Delays vs. R_a

300


250

200

150

100

I_F = 7mA T_A = 25°C

Photocouplers LTV-3150 series

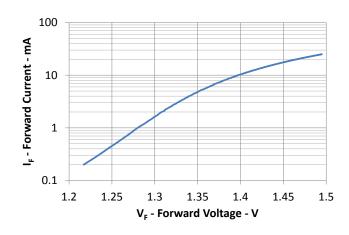
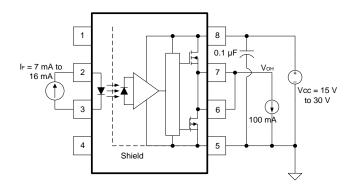
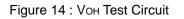




Figure 13: Input Current vs. Forward Voltage

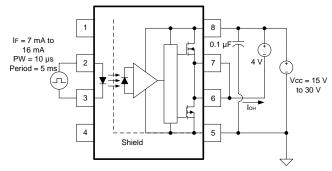


Figure 16 : IOH Test Circuit

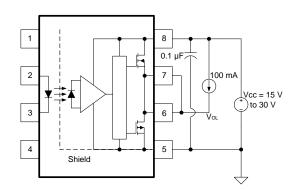


Figure 15 : VoL Test Circuit

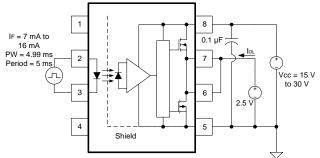
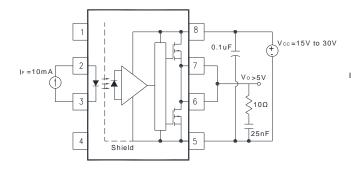



Figure 17 : IoL Test Circuit

12/16

Photocouplers LTV-3150 series

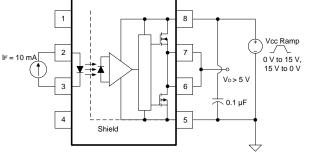
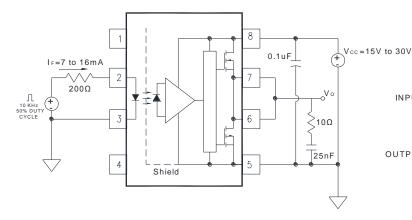
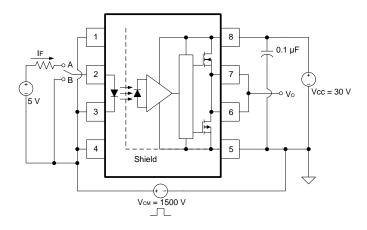
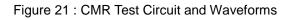



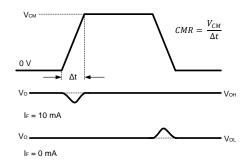
Figure 18 : IFLH Test Circuit

Figure 19 : UVLO Test Circuit

 INPUT(IF)
 50%


 INPUT(Vo)
 1

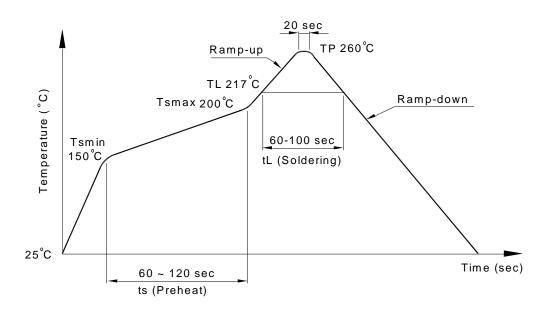

 INPUT(Vo)
 1


 INPUT(Vo)
 1

 INPUT(Vo)
 1

Figure 20 : tr, tf, tPLH and tPHL Test Circuit and Waveforms

13/16 Part M BNC-


Photocouplers LTV-3150 series

8. TEMPERATURE PROFILE OF SOLDERING

8.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

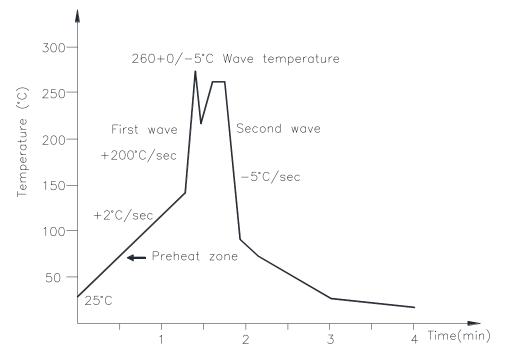
Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T_L)	217°C
- Time (t_L)	60 ~ 100 sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

Part No. : LTV-3150 series BNC-OD-FC002/A4

14/'

Photocouplers LTV-3150 series

8.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

8.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

Time: 3 sec max.

15/16

Photocouplers LTV-3150 series

9. ORDERING INFORMATION

		Minimu	m CMR	Input-On		
Parameter	Option	dV/dt (V/µs)	V (\/)	Current	Remark	
		uv/ut (v/µs)	V _{см} (V)	(mA)		
					Single Channel, DIP-8	
LTV-3150	М	15,000 1500	M 15,000	1500	10	Single Channel, Wide Lead Spacing
	S				Single Channel, SMD-8	

