ABSOLUTE MAXIMUM RATINGS | (Note 1) | |---| | Supply Voltage (V _{CC}) 6V | | Input Voltage | | Driver0.3V to V _{CC} + 0.3V | | Receiver25V to 25V | | Driver/Receiver Enable Pin $-0.3V$ to $V_{CC} + 0.3V$ | | Output Voltage | | Driver25V to 25V | | Receiver $-0.3V$ to $V_{CC} + 0.3V$ | | Short-Circuit Duration | | V ⁺ | | V ⁻ | | Driver Output Indefinite | | Receiver Output Indefinite | | Operating Temperature Range | | LTC1348C 0°C to 70°C | | LTC1348I40°C to 85°C | | Storage Temperature Range65°C to 150°C | | Lead Temperature (Soldering, 10 sec) 300°C | ## PACKAGE/ORDER INFORMATION Consult factory for Military grade parts. ## DC ELECTRICAL CHARACTERISTICS V_{CC} = 3V to 5.5V, C1 to C4 = 0.1 $\mu F,$ unless otherwise noted. | PARAMETER | CONDITIONS | | | MIN | TYP | MAX | UNITS | |------------------------------|--|------------------|---|------------------------|------|------|-------| | Any Driver | | | | | | | | | Output Voltage Swing | V _{CC} = 3.3V, 3k to GND | Positive | • | 5.0 | 6.2 | | V | | | | Negative | • | -5.0 | -6.0 | | V | | Logic Input Voltage Level | Input Low Level (V _{OUT} = High) | | • | | | 0.8 | V | | | Input High Level (V _{OUT} = Low), V _{CC} | = 3.3V | • | 2.0 | | | V | | | Input High Level (V _{OUT} = Low), V _{CC} | = 5V | • | 2.4 | | | V | | Logic Input Current | $V_{IN} = V_{CC}$ | | • | | | 5 | μΑ | | | $V_{IN} = 0V$ | | • | | -5 | -35 | μΑ | | Output Short-Circuit Current | V _{OUT} = 0V | | | | ±12 | | mA | | Output Leakage Current | Shutdown (Note 3) or Receiver Aliv | e Mode (Note 4), | • | | ±10 | ±500 | μA | | | $V_{OUT} = \pm 20V$ | | | | | | | | Any Receiver | | | · | | | | | | Input Voltage Thresholds | Input Threshold (Receiver Alive Mo | de) | | 0.8 | 1.5 | 2.4 | V | | | Input Low Threshold (Normal Mode | e) | | 0.8 | 1.3 | | V | | | Input High Threshold (Normal Mod | e) | | | 1.7 | 2.4 | V | | Hysteresis | Normal Mode | | | | 0.3 | | V | | Input Resistance | $V_{IN} = \pm 10V$ | | | 3 | 5 | 7 | kΩ | | Output Voltage | Output Low, I _{OUT} = – 1.6mA | | • | | 0.2 | 0.4 | V | | | Output High, I _{OUT} = 160μA | | • | V _{CC} - 0.6V | | | V | | Output Short-Circuit Current | Sinking Current, V _{OUT} = V _{CC} | | | -3 | -20 | | mA | | Output Leakage Current | Shutdown (Note 3), $0V \le V_{OUT} \le V_{O}$ | CC | • | | 1 | 10 | μΑ | ## DC ELECTRICAL CHARACTERISTICS $\mbox{V}_{\mbox{CC}}$ = 3V to 5.5V, C1 to C4 = 0.1 $\mu\mbox{F},$ unless otherwise noted. | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |---|---|---|-----|------|-----|-------| | Power Supply Generator | | | | | | | | V ⁺ Output Voltage | I _{OUT} = 0mA | | | 8.0 | | V | | | I _{OUT} = 8mA | | | 7.5 | | V | | V ⁻ Output Voltage | I _{OUT} = 0mA | | | -8.0 | | V | | | $I_{OUT} = -8mA$ | | | -7.0 | | V | | Supply Rise Time | Shutdown to Turn-On | | | 0.2 | | ms | | Power Supply | | | | | | | | V _{CC} Supply Current | No Load (Note 2) V _{CC} = 3.3V | • | | 0.6 | 2.0 | mA | | | No Load (Note 2) V _{CC} = 5V | • | | 0.8 | 2.5 | mA | | | Receiver Alive Mode (Note 4) V _{CC} = 3.3V or 5V | • | | 15 | 30 | μΑ | | Supply Leakage Current (V _{CC}) | Shutdown (Note 3) | • | | 0.2 | 10 | μΑ | | Driver/Receiver Enable Threshold Low | | • | | | 0.8 | V | | Driver/Receiver Enable Threshold High | V _{CC} = 3.3V | • | 2.0 | | | V | | Driver/Receiver Enable Threshold High | V _{CC} = 5V | • | 2.4 | | | V | ## **AC ELECTRICAL CHARACTERISTICS** V_{CC} = 3V to 5.5V, C1 to C4 = 0.1 $\mu F,$ unless otherwise noted. | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS | |----------------------------|--|---|-----|-----|-----|--------------| | Maximum Data Rate | R _L = 3k, C _L = 1000pF, One Driver Switching | | 120 | 250 | | kbps | | Slew Rate | $V_{CC} = 5V$, $R_L = 3k$, $C_L = 51pF$
$V_{CC} = 3.3V$, $R_L = 3k$, $C_L = 2500pF$ | | 3 | 8 | 30 | V/µs
V/µs | | Driver Propagation Delay | t _{HLD} (Figure 1) | • | | 2.5 | 4 | μs | | (TTL to RS232) | t _{LHD} (Figure 1) | • | | 2.5 | 4 | μs | | Receiver Propagation Delay | t _{HLR} (Figure 2) (Normal Mode) | • | | 0.3 | 1 | μS | | (RS232 to TTL) | t _{LHR} (Figure 2) (Normal Mode) | • | | 0.2 | 1 | μS | | | t _{HLR} (Figure 2) (Receiver Alive Mode) | • | | 1.0 | 4 | μS | | | t _{LHR} (Figure 2) (Receiver Alive Mode) | • | | 0.2 | 4 | μS | The ullet denotes specifications which apply over the full operating temperature range (0°C \leq T_A \leq 70°C for Commercial grade and -40°C \leq T_A \leq 85°C for Industrial grade). **Note 1:** Absolute Maximum Ratings are those values beyond which the life of the device may be impaired. **Note 2:** Supply current is measured with driver and receiver outputs unloaded. The V_{DREN} and $V_{RXEN} = V_{CC}$. **Note 3:** Supply current measurement in Shutdown is performed with V_{DREN} and $V_{RXEN} = 0V$. **Note 4:** Supply current measurement in Receiver Alive mode is performed with $V_{DREN} = 0V$ and $V_{RXEN} = V_{CC}$. ## TYPICAL PERFORMANCE CHARACTERISTICS ### Driver Output Voltage High/Low vs Load Capacitance (C₁) #### Driver Output Voltage High/Low vs Load Capacitance (C₁) **Supply Current** vs Driver Data Rate #### **Driver Output Voltage High/Low** vs Temperature (°C) #### **Driver Short-Circuit Current** vs Temperature (°C) **Driver Leakage in SHUTDOWN** vs Temperature (°C) With $V_{CC} = 3.3V$ All Driver Outputs Loaded with $3k\Omega$, 1000pF. 1 Driven at 250kbps LTC1348 G07 ### PIN FUNCTIONS V_{CC} : 3V to 5.5V Input Supply Pin. This pin should be decoupled with a 0.1 μ F ceramic capacitor. GND: Ground Pin. **RXEN:** TTL/CMOS Compatible Enable Pin. Refer to Table 1 for its functional description. **DREN:** TTL/CMOS Compatible Enable Pin. Refer to Table 1 for its functional description. **V**⁺: Positive Supply Output (RS232 Drivers). This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage. The capacitor may be tied to ground or V_{CC} . With multiple devices, the V⁺ and V⁻ pins may be paralleled into common capacitors. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple. **V**⁻: Negative Supply Output (RS232 Drivers). This pin requires an external capacitor $C = 0.1 \mu F$ for charge storage. C1+, C1-, C2+, C2-, C3+, C3-: Commutating Capacitor Inputs. These pins require three external capacitors $C = 0.1 \mu F$: one from C1+ to C1-, another from C2+ to C2- and another from C3+ to C3-. To maintain charge pump efficiency, the capacitor's effective series resistance should be less than 1Ω . Ceramic capacitors are recommended. **DR IN:** RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to V_{CC} are included on chip. To minimize power consumption, the internal driver pull-up resistors are disconnected from V_{CC} in the Shutdown or Receiver Alive mode. **DR OUT:** Driver Outputs at RS232 Voltage Levels. Outputs are in a high impedance state when in the Shutdown, Receiver Alive mode or $V_{CC}=0V$. The driver outputs are protected against ESD to $\pm 10 kV$ for human body model discharges. **RX IN:** Receiver Inputs. These pins can be forced to ± 25 V without damage. The receiver inputs are protected against ESD to ± 10 kV for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity. In Receiver Alive mode all receivers have no hysteresis. **RX OUT:** Receiver Outputs with TTL/CMOS Voltage Levels. Outputs are in a high impedance state when in the Shutdown or Receiver Disable mode to allow data line sharing. **Table 1. Functional Description** | MODE | RX ENABLE | DR ENABLE | DRIVERS | RECEIVERS | I _{CC} TYP | |---------------------|-----------|-----------|--|--|-------------------------------------| | Shutdown | 0 | 0 | All Drivers Shutdown. All Driver Outputs Assume High Impedance. All Driver Pull-Up Resistors Disconnect From V _{CC} . | All Receivers Shutdown.
All Receiver Outputs Assume High Impedance. | 0.2μΑ | | Receiver
Disable | 0 | 1 | All Drivers Alive. | All Receiver Outputs in Three-State. | 600μA at
3.3V,
800μA at
5V | | Receiver
Alive | 1 | 0 | All Drivers Shutdown. All Driver Outputs in Three-State. All Driver Pull-Up Resistors Disconnect From V _{CC} . | All Receivers Alive. | 15μΑ | | Normal | 1 | 1 | All Drivers Alive. | All Receivers Alive. | 600μA at
3.3V,
800μA at
5V | ## SWITCHING TIME WAVEFORMS Figure 1. Driver Propagation Delay Timing Figure 2. Receiver Propagation Delay Timing ### TEST CIRCUITS Figure 3. Driver Timing Test Load Figure 4. Receiver Timing Test Load ## APPLICATIONS INFORMATION ## **Power Supply** The LTC1348 includes an onboard voltage-tripling charge pump capable of generating $\pm 8V$ from a single 3.3V supply. This allows the LTC1348 drivers to provide guaranteed $\pm 5V$ RS232-compliant voltage levels with a 3.3V supply. With all outputs loaded with 3k Ω , the LTC1348 can typically swing $\pm 5V$ with voltages as low as 2.85V. It will meet the $\pm 3.7V$ EIA562 levels with supply voltages as low as 2.2V. The charge pump requires three external flying capacitors to operate; $0.1\mu F$ ceramic capacitors are adequate for most applications. For applications requiring extremely high data rates or abnormally heavy output loads, $0.33\mu F$ flying capacitors are recommended. Bypass and output capacitor values should match those of the flying capacitors and all capacitors should be mounted as close to the package as possible. ## APPLICATIONS INFORMATION ### **High Data Rates** The LTC1348 maintains true RS232 \pm 5V minimum driver output even at high data rates. Figure 5 shows a test circuit with 2m wires connecting the two test chips. Both chips are run from 3.3V supplies. Figure 6 shows the typical line waveforms with all three drivers, loaded with 1000pF and $3k\Omega$, toggling simultaneously at 120kbaud. Figure 7 shows the same circuit with a single 1000pF/3k Ω loaded driver driven at 250kbaud, and the other two drivers loaded but not toggling. This closely approximates the actual behavior of an RS232 serial port, with only one driver (TX) driven at high speed and the other two drivers (RTS and DTR) driven at a relatively low data rate or at DC. Under the same conditions, the LTC1348 can go as fast as 350kbaud and still meet EIA562 ($\pm 3.7V$) minimum driver output levels. Figure 5. Data Rate Evaluation Circuit Figure 6. Driver Test Result at 120kbps Figure 7. Driver Test Results at 250kbps ### PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted. ### G Package 28-Lead Plastic SSOP (0.209) (LTC DWG # 05-08-1640) ### SW Package 28-Lead Plastic Small Outline (Wide 0.300) (LTC DWG # 05-08-1620) # **RELATED PARTS** | PART NUMBER | DESCRIPTION | COMMENTS | |-------------|--|--------------------------------| | LT1137A | 3-DR/5-RX RS232 Transceiver | ±15kV IEC-801-2 ESD Protection | | LTC1327 | 3-DR/5-RX RS562 Transceiver | 3.3V Operation | | LT1330 | 3-DR/5-RX RS232 | 3V Logic Interface | | LT1331 | 3-DR/5-RX RS232/RS562 Transceiver | 5V RS232 or 3V RS562 Operation | | LTC1347 | 3-DR/5-RX Micropower RS232 Transceiver | 5 Receivers Active in Shutdown |