SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC} max	V _{CC} Pin Maximum Supply Voltage		18	V
IOUTN max	OUTN Pin Maximum Output Current		20	mA
IOUTP max	OUTP Pin Maximum Sink Current		20	mA
VOUT max	OUT Pin Output Withstand Voltage		18	V
VVTH, VRMI max	VTH, RMI Pins Withstand Voltage		7	V
V _{S-S} max	S-S Pin Withstand Voltage		7	V
V _{FG} max	FG Output Pin Withstand Voltage		19	V
I _{FG} max	FG Pin Maximum Output Current		10	mA
I _{5VREG} max	5VREG Pin Maximum Output Current		20	mA
P _d max	Allowable Power Dissipation	With specified substrate (Note 1)	800	mW
T _{opr}	Operating Temperature	(Note 2)	-30 to 95	°C
T _{stg}	Storage Temperature		-55 to 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Specified substrate: $114.3 \text{ mm} \times 76.1 \text{ mm} \times 1.6 \text{ mm}$, glass epoxy board.

RECOMMENDED OPERATING CONDITIONS (T_A = 25° C)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	V _{CC} Supply Voltage		5.5 to 16	V
VTH, RMI	VTH, RMI Input Voltage Range		0 to 5	V
VICM	Hall Input Common-phase Input Voltage Range		0.2 to 3	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS $(T_A = 25^{\circ}C, V_{CC} = 12 \text{ V})$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC} 1	Circuit Current	During drive	5.5	7.5	9.5	mA
I _{CC} 2		During lock protection	5.5	7.5	9.5	mA
5VREG	5VREG Voltage	I _{5VREG} = 5 mA	4.80	4.95	5.10	V
VLIM	Current Limiting Voltage		185	200	215	mV
V _{CPWM} H	CPWM Pin "H" Level Voltage		2.8	3.0	3.2	V
V _{CPWM} L	CPWM Pin "L" Level Voltage		0.9	1.1	1.3	V
I _{CPWM} 1	CPWM Pin Charge Current	V _{CPWM} = 0.5 V	24	30	36	μΑ
I _{CPWM} 2	CPWM Pin Discharge Current	V _{CPWM} = 3.5 V	21	27	33	μΑ
FPWM	CPWM Oscillation Frequency	C = 220 pF	-	30	-	kHz
V _{CT} H	CT Pin "H" Level Voltage		2.8	3.0	3.2	V
V _{CT} L	CT Pin "L" Level Voltage		0.9	1.1	1.3	V
I _{CT} 1	CT Pin Charge Current	V _{CT} = 0.5 V	1.6	2.0	2.5	μΑ
I _{CT} 2	CT Pin Discharge Current	V _{CT} = 3.5 V	0.16	0.20	0.25	μΑ
R _{CT}	CT Pin Charge/Discharge Ratio	I _{CT} 1/I _{CT} 2	8	10	12	times
I _{S-S}	S-S Pin Discharge Current	V _{S-S} = 1 V	0.4	0.5	0.6	μΑ

^{2.} T_i max = 150°C must not be exceeded.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 12 \text{ V}$) (continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _O NH	OUTN Output H-level Voltage	I _O = 10 mA	-	V _{CC} -0.85	V _{CC} -1.00	V
V _O NL	OUTN Output L-level Voltage	I _O = 10 mA	-	0.9	1.00	V
V _O PL	OUTP Output L-level Voltage	I _O = 10 mA	-	0.5	0.65	V
VHN	Hall Input Sensitivity	IN ⁺ , IN ⁻ differential voltage (including offset and hysteresis)	-	±10	±20	mV
V _{FG} L	FG Output L-level Voltage	I _{FG} = 5 mA	-	0.15	0.30	V
I _{FG} L	FG Pin Leakage Current	V _{FG} = 19 V	_	_	20	μΑ
IVTH/IRMI	VTH/RMI Pin Bias Current	CPWM = VTH/RMI = 2 V	-	-	0.1	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

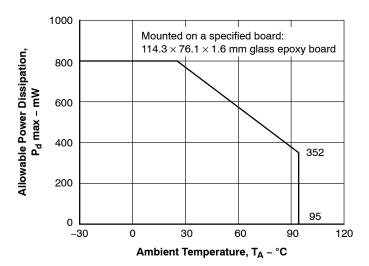


Figure 1. P_d max – T_A

BLOCK DIAGRAM

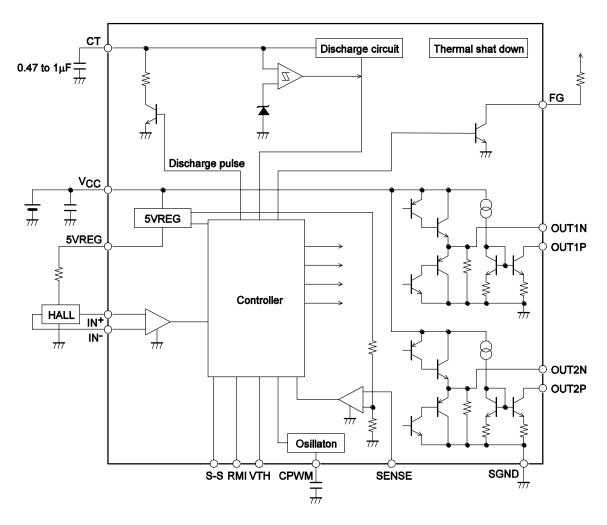


Figure 2. Block Diagram

TRUTH TABLE - DRIVE LOCK CPWM = H VTH, RMI, S-S = L

IN-	IN+	СТ	OUT1P	OUT1N	OUT2P	OUT2N	FG	Mode
Н	L	L	L	L	OFF	Н	L	$OUT1 \to 2 \; drive$
L	Н		OFF	Н	L	L	OFF	$OUT2 \rightarrow 1 \ drive$
Н	L	Н	OFF	L	OFF	Н	L	Lock protection
L	Н		OFF	Н	OFF	L	OFF	

TRUTH TABLE - SPEED CONTROL CT, S-S = L

VTH, RMI	CPWM	IN-	IN+	OUT1P	OUT1N	OUT2P	OUT2N	Mode
L	Н	Н	L	L	L	OFF	Н	$OUT1 \rightarrow 2 \text{ drive}$
		L	Н	OFF	Н	L	L	$OUT2 \rightarrow 1 \ drive$
Н	L	Н	L	OFF	L	OFF	Н	Regeneration mode
		L	Н	OFF	Н	OFF	L	

NOTE: For VTH, RMI, and S-S pins, refer to the timing chart.

APPLICATION CIRCUIT

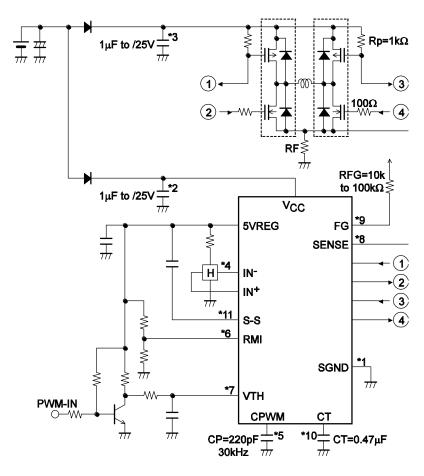


Figure 3. Application Circuit Example (12 V)

- *1: Power-GND Wiring SGND is connected to the control circuit power supply system.
- *2: Power Stabilization Capacitor For the power stabilization capacitor on the signal side, use the capacitance of 1 μF or more. Connect V_{CC} and GND with a thick and shortest pattern.
- *3: Power Stabilization Capacitor on the Power Side For the power stabilization capacitor on the power side, use the capacitance of 1 μF or more. Connect the power supply on the power side and GND with a thick and shortest pattern.
- *4: IN+, IN- Pins

Hall signal input pin.

Wiring should be short to prevent carrying of noise.

If noise is carried, insert the capacitor between IN⁺ and IN⁻ pins.

The Hall input circuit functions as a comparator with hysteresis (15 mV).

This also has a soft switch section with $\pm 30 \text{ mV}$ (input signal differential voltage).

It is also recommended that the Hall input level is minimum 100 mV(p-p).

*5: CPWM Pin

Pin to connect the capacitor for generation of the PWM basic frequency.

The use of CP = 220 pF causes oscillation at f = 30 kHz, which is the basic frequency of PWM. As this is used also for the current limiting canceling signal, be sure to connect the capacitor even when the speed control is not made.

*6: RMI Pin

Minimum speed setting pin.

Perform pull-up with 5VREG when this pin is not to be used.

If the IC power supply is likely to be turned OFF first when the pin is used with external power supply, be sure to insert the current limiting resistor to prevent inflow of large current. (The same applies to the VTH pin.)

*7: VTH Pin

Speed control pin.

Connect this pin to GND when it is not used (at full speed).

For the control method, refer to the timing chart. For control with pulse input, insert the current limiting resistor and use the pin with the frequency of 20 kHz to 100 kHz (20 kHz to 50 kHz recommended).

*8: SENSE Pin

Current limiting detection pin.

When the pin voltage exceeds 0.2 V, the current is limited and the operation enters the lower regeneration mode.

Connect this pin to GND when it is not to be used.

*9: FG Pin

Rotation speed detection pin.

This is an open collector output, which can detect the rotation speed from the FG output according to the phase changeover. Keep this pin open when it is not to be used.

*10: CT Pin

Pin to connect the lock detection capacitor. The constant-current charge and discharge circuits incorporated cause locking when the pin voltage becomes 3.0 V and unlocking when it is 1.1 V. Connect the pin to GND when it is not to be used (locking not necessary).

*11: S-S Pin

Pin to connect the soft-start setting capacitor. Connect the capacitor between 5VREG and S-S pin.

This pin enables setting of the soft start time according to the capacity of the capacitor. See the timing char.

Connect the pin to GND when it is not to be used.

CONTROL TIMING CHART (SPEED CONTROL)

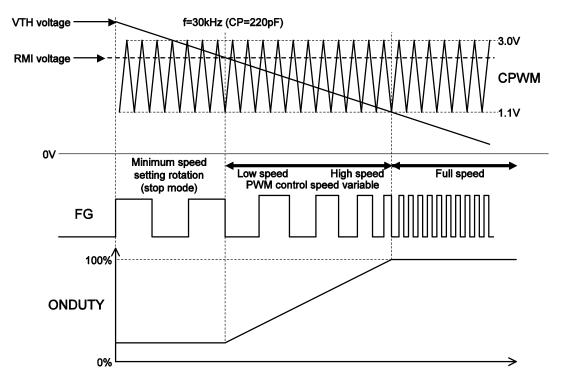


Figure 4. Control Timing Chart - Speed Control

- 1. Minimum Speed Setting (Stop) Mode
 The low-speed fan rotation occurs at the minimum
 speed set with the RMI pin. When the minimum
 speed is not set (RMI pin pulled up to 5VREG),
 the motor stops.
- 2. Low Speed ⇔ High Speed PMW control is made by comparing the CPWM oscillation voltage (1.1 V ⇔ 3.0 V) and VTH voltage.

Both upper and lower output TRs are turned ON when the VTH voltage is low. The upper output

TR is turned OFF when the VTH voltage is high, regenerating the coil current in the lower TR. Therefore, as the VTH voltage decreases, the output ON-DUTY increases, causing increase in the coil current, raising the motor rotation speed. The rotation speed can be monitored with the FG output.

3. Full Speed Mode
The full speed mode becomes effective when the
VTH voltage is 1.1 V or less. (Set VTH = GND
when the speed control is not to be made)

CONTROL TIMING CHART (SOFT START)

1. At VTH < RMI Voltage

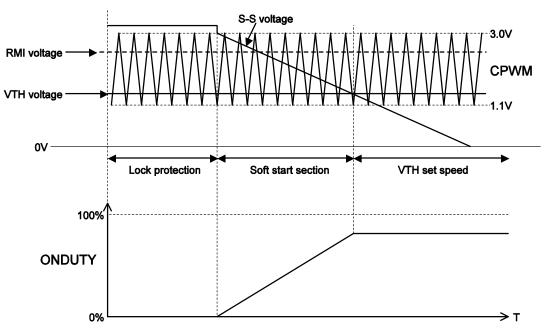
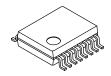


Figure 5. At VTH < RMI Voltage

2. At VTH > RMI Voltage

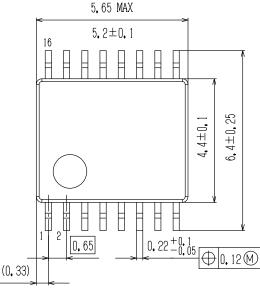
Figure 6. At VTH > RMI Voltage

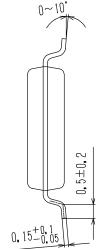
Adjust the S–S pin voltage gradient by means of the capacitance of the capacitor between the S–S pin and 5VREG. Recommended capacitor: 0.1 μF to 1 μF

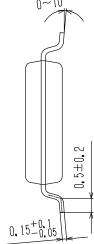

ORDERING INFORMATION

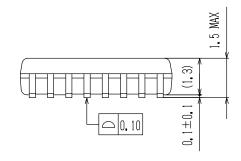
Device	Package	Wire Bond	Shipping [†] (Qty / Packing)
LB11867FV-MPB-E	SSOP16 (225mil) (Pb-Free)	Au-wire	90 / Fan-Fold
LB11867FV-MPB-H	SSOP16 (225mil) (Pb-Free / Halogen Free)	Au-wire	90 / Fan-Fold
LB11867FV-TLM-E	SSOP16 (225mil) (Pb-Free)	Au-wire	2,000 / Tape & Reel
LB11867FV-TLM-H	SSOP16 (225mil) (Pb-Free / Halogen Free)	Au-wire	2,000 / Tape & Reel
LB11867FV-W-AH	SSOP16 (225mil) (Pb-Free / Halogen Free)	Cu-wire	2,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, <u>BRD8011/D</u>.

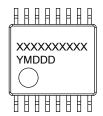

DATE 23 OCT 2013






SSOP16 (225mil) CASE 565AM

ISSUE A


SOLDERING FOOTPRINT*

NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code

Y = Year

M = Month

DDD = Additional Traceability Data

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON66065E	Electronic versions are uncontrolle	'
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document versions are uncontrolled except	, ,
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	SSOP16 (225MIL)		PAGE 1 OF 2

ON	Semicond	uctor®
----	-----------------	--------

DOCUMENT NUMBER: 98AON66065E

PAGE 2 OF 2

ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION FROM SANYO ENACT# S-010 TO ON SEMICONDUCTOR. REQ. BY D. TRUHITTE.	30 JAN 2012
Α	ADDED MARKING AND SOLDER FOOTPRINT INFORMATION. REQ. BY D. TRUHITTE.	23 OCT 2013
•		

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative