

PIN CONFIGURATIONS

48-Pin mini BGA (6mm x 8mm)

	
NC 🗖 1	44 🗖 A0
A14 🗖 2	43 🗖 A1
A13 🗖 3	42 🗖 A2
A12 🗖 4	41 🗖 OE
A11 🗖 5	40 🗖 ŪB
CE 🗖 6	39 🗖 LB
I/O0 🔲 7	38 🔲 I/O15
I/O1 🔲 8	37 🗖 I/O14
I/O2 🔲 9	36 🔲 I/O13
I/O3 🔲 10	35 🗖 I/O12
Vdd 🗖 11	34 🗖 GND
GND 🗖 12	33 🗖 Vdd
I/O4 🔲 13	32 🔲 I/O11
I/O5 🔲 14	31 🗖 I/O10
I/O6 🔲 15	30 🔲 1/O9
I/O7 🔲 16	29 🔲 1/08
WE 🗖 17	28 🗖 NC
A10 🗖 18	27 🗖 A3
A9 🗖 19	26 🗖 A4
A8 🗖 20	25 🗖 A5
A7 🗖 21	24 🗖 A6
NC 🗖 22	23 🗖 NC

44-Pin TSOP-II

PIN DESCRIPTIONS

A0-A14	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CE	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
ŪB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
VDD	Power
GND	Ground

TRUTH TABLE

						I/O	PIN	
Mode	WE	CE	ŌĒ	LB	UB	I/O0-I/O7	I/08-I/015	VDD Current
Not Selected	Х	Н	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Х	Х	High-Z	High-Z	lcc
	Х	L	Х	Н	Н	High-Z	High-Z	
Read	Н	L	L	L	Н	Dout	High-Z	lcc
	Н	L	L	Н	L	High-Z	DOUT	
	Н	L	L	L	L	Dout	Dout	
Write	L	L	Х	L	Н	Din	High-Z	lcc
	L	L	Х	Н	L	High-Z	DIN	
	L	L	Х	L	L	Din	DIN	

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to VDD+0.5	V
Тѕтс	Storage Temperature	-65 to +150	۵°
Рт	Power Dissipation	1.5	W
Vdd	VDD Related to GND	-0.2 to +3.9	V

Note:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE (VDD)

Range	Ambient Temperature	Vdd (15 ns)	Vdd (12 ns)	
Commercial	0°C to +70°C	2.5V-3.6V	3.3V <u>+</u> 10%	
Industrial	–40°C to +85°C	2.5V-3.6V	3.3V <u>+</u> 10%	
Automotive	-40°C to +125°C	2.5V-3.6V	3.3V <u>+</u> 10%	

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

VDD = 2.5V-3.6V

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	VDD = Min., IOH = -1.0 mA	2.3		V
Vol	Output LOW Voltage	VDD = Min., IOL = 1.0 mA	—	0.4	V
Vін	Input HIGH Voltage		2.0	VDD + 0.3	V
Vı∟	Input LOW Voltage ⁽¹⁾		-0.3	0.8	V
L	Input Leakage	$GND \leq V_{IN} \leq V_{DD}$	-2	2	μA
Ilo	Output Leakage	$GND \leq VOUT \leq VDD$, Outputs Disabled	-2	2	μA

Note:

1.

 V_{IL} (min.) = -0.3V DC; V_{IL} (min.) = -2.0V AC (pulse width 2.0 ns). Not 100% tested.

VIH (max.) = VDD + 0.3V DC; VIH (max.) = VDD + 2.0V AC (pulse width 2.0 ns). Not 100% tested.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

 $V_{DD} = 3.3V \pm 10\%$

Parameter	Test Conditions	Min.	Max.	Unit
Output HIGH Voltage	Vdd = Min., Iон = -4.0 mA	2.4	—	V
Output LOW Voltage	$V_{DD} = Min., I_{OL} = 8.0 mA$		0.4	V
Input HIGH Voltage		2	VDD + 0.3	V
Input LOW Voltage ⁽¹⁾		-0.3	0.8	V
Input Leakage	$GND \leq V_{IN} \leq V_{DD}$	-2	2	μA
Output Leakage	$GND \le V_{OUT} \le V_{DD}$, Outputs Disabled	-2	2	μA
-	Output HIGH Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage ⁽¹⁾ Input Leakage	Output HIGH Voltage $V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$ Output LOW Voltage $V_{DD} = Min., I_{OL} = 8.0 \text{ mA}$ Input HIGH VoltageInput LOW Voltage ⁽¹⁾ Input Low Voltage $GND \le V_{IN} \le V_{DD}$	Output HIGH Voltage $V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$ 2.4Output LOW Voltage $V_{DD} = Min., I_{OL} = 8.0 \text{ mA}$ Input HIGH Voltage2Input LOW Voltage ⁽¹⁾ -0.3Input Leakage $GND \le V_{IN} \le V_{DD}$ -2	Output HIGH Voltage $V_{DD} = Min., I_{OH} = -4.0 \text{ mA}$ 2.4 $-$ Output LOW Voltage $V_{DD} = Min., I_{OL} = 8.0 \text{ mA}$ $ 0.4$ Input HIGH Voltage2 $V_{DD} + 0.3$ Input LOW Voltage ⁽¹⁾ -0.3 0.8 Input Leakage $GND \le V_{IN} \le V_{DD}$ -2 2

Note:

1. VIL (min.) = −0.3V DC; VIL (min.) = −2.0V AC (pulse width 2.0 ns). Not 100% tested.

Vih (max.) = VDD + 0.3V DC; Vih (max.) = VDD + 2.0V AC (pulse width 2.0 ns). Not 100% tested.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-12	ns	-15	ins	
Symbol	Parameter	Test Conditions	Options	Min.	Max.	Min.	Max.	Unit
lcc	VDD Dynamic Operating	Vdd = Max.,	COM.	_	35	_	30	mA
	Supply Current	IOUT = 0 mA, f = fmax	IND.	—	45	_	40	
			AUTO	—	60	_	50	
			typ. ⁽²⁾	—	20	—	20	
Icc1	Operating Supply	Vdd = Max.,	COM.	_	5	_	5	mA
	Current	lout = 0mA, f = 0	IND.	_	5	_	5	
			AUTO	—	5	—	5	
ISB2	CMOS Standby	Vdd = Max.,	COM.	—	20	—	20	uA
	Current (CMOS Inputs)	$\overline{CE} \ge V_{DD} - 0.2V$,	IND.	—	50	_	50	
		$V_{\text{IN}} \ge V_{\text{DD}} - 0.2V$, or	AUTO	—	75	_	75	
		$V \text{IN} \leq \text{ 0.2V, } f = 0$	typ. ⁽²⁾	—	6	—	6	

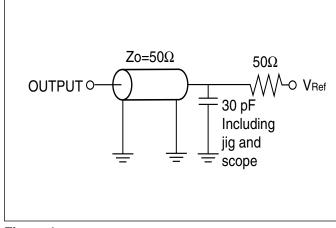
Note:

1. At f = f_{MAX}, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change. 2. Typical values are measured at V_{DD}=2.5V, T_A=25°C. Not 100% tested.

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Note:


1. Tested initially and after any design or process changes that may affect these parameters.

ACTEST CONDITIONS

Parameter	Unit (2.5V-3.6V)	Unit (3.3V <u>+</u> 10%)
Input Pulse Level	0V to VDD V	0V to VDD V
Input Rise and Fall Times	1.5ns	1.5ns
Input and Output Timing and Reference Level (VRef)	Vdd/2	VDD/2 + 0.05
Output Load	See Figures 1a and 1b	See Figures 1a and 1b

AC TEST LOADS

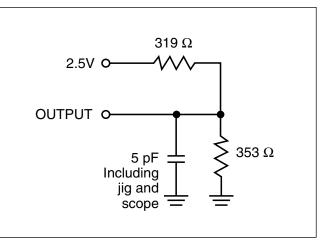


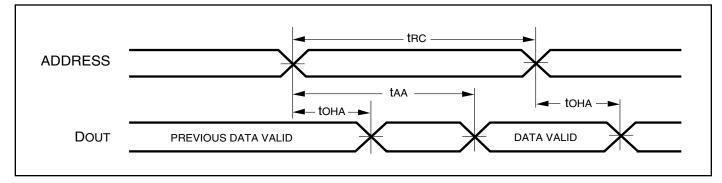
Figure 1b.

Figure 1a.

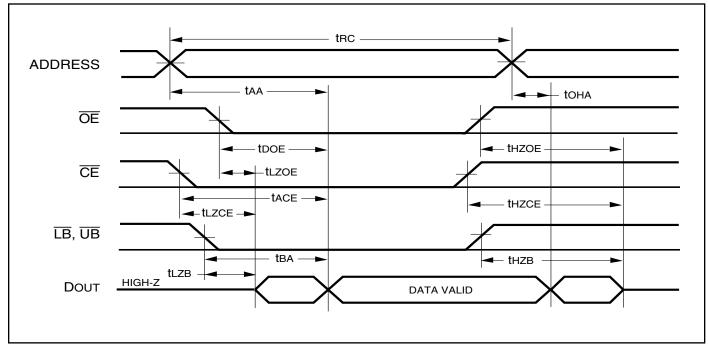
READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Parameter						Unit
Read Cycle Time	12	_		15		ns
Address Access Time	_	12		_	15	ns
Output Hold Time	3	_		3		ns
CE Access Time		12			15	ns
OE Access Time	_	6		_	7	ns
OE to High-Z Output	_	6		0	6	ns
OE to Low-Z Output	0	_		0		ns
CE to High-Z Output	0	6		0	6	ns
CE to Low-Z Output		3	_		3	— ns
LB, UB Access Time		6			7	ns
LB, UB to High-Z Output	0	6		0	6	ns
LB, UB to Low-Z Output	0	_		0		ns
	Read Cycle Time Address Access Time Output Hold Time CE Access Time OE Access Time OE to High-Z Output OE to Low-Z Output CE to High-Z Output CE to Low-Z Output CE to Low-Z Output E to Low-Z Output	ParameterMin.Read Cycle Time12Address Access Time—Output Hold Time3CE Access Time—OE Access Time—OE to High-Z Output—OE to Low-Z Output0CE to High-Z Output0CE to Low-Z Output0	Read Cycle Time12Address Access Time—Output Hold Time3CE Access Time—OE Access Time—OE to High-Z Output—OE to Low-Z Output0CE to High-Z Output0CE to Low-Z Output3CE to Low-Z Output0CE to Low-Z Output0OE to High-Z Output0	ParameterMin.Max.Read Cycle Time12—Address Access Time—12Output Hold Time3—CE Access Time—12OE Access Time—6OE to High-Z Output0—CE to High-Z Output06CE to Low-Z Output06CE to Low-Z Output3—LB, UB Access Time—6LB, UB to High-Z Output06	ParameterMin.Max.Min.Read Cycle Time12—15Address Access Time—12—Output Hold Time3—3CE Access Time—12—OE Access Time—6—OE to High-Z Output0—0CE to Low-Z Output060CE to Low-Z Output3—LB, UB Access Time—6—LB, UB to High-Z Output060	Parameter Min. Max. Min. Max. Read Cycle Time 12 — 15 — Address Access Time — 12 — 15 Output Hold Time 3 — 3 — CE Access Time — 12 — 15 OE Access Time — 6 — 7 OE to High-Z Output — 6 0 6 OE to Low-Z Output 0 — 0 — CE to High-Z Output 0 6 0 6 DE to Low-Z Output 0 6 0 6 CE to High-Z Output 0 6 0 6 CE to Low-Z Output 0 6 0 6 CE to Low-Z Output 3 — 3 — IB, UB Access Time — 6 — 7 IB, UB to High-Z Output 0 6 0 6

Notes:


1. Test conditions assume signal transition times of 1.5 ns or less, timing reference levels of 1.25V, input pulse levels of 0V to VDD V and output loading specified in Figure 1a. 2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

3. Not 100% tested.



AC WAVEFORMS

READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CS} = \overline{OE} = V_{IL}, \overline{UB} \text{ or } \overline{LB} = V_{IL}$)

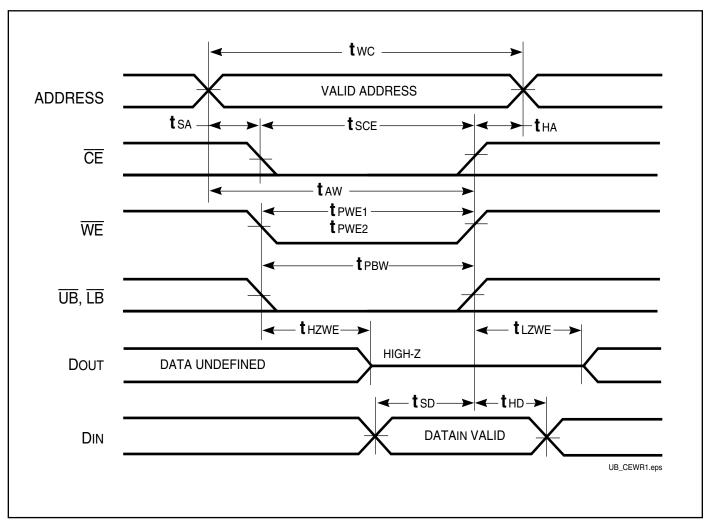
READ CYCLE NO. 2(1,3)

Notes:

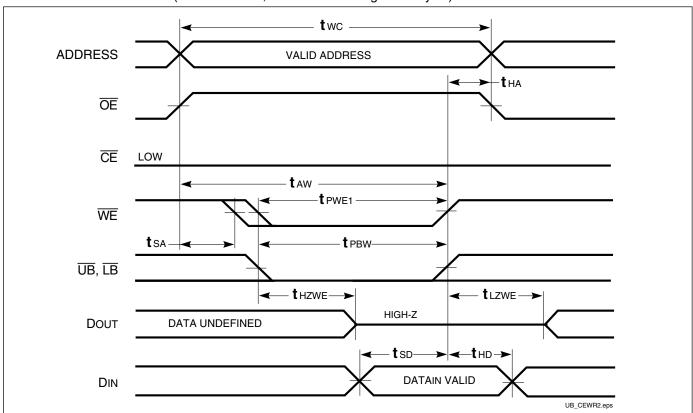
- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , \overline{CE} , \overline{UB} , or $\overline{LB} = V_{IL}$.
- 3. Address is valid prior to or coincident with \overline{CE} LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range)

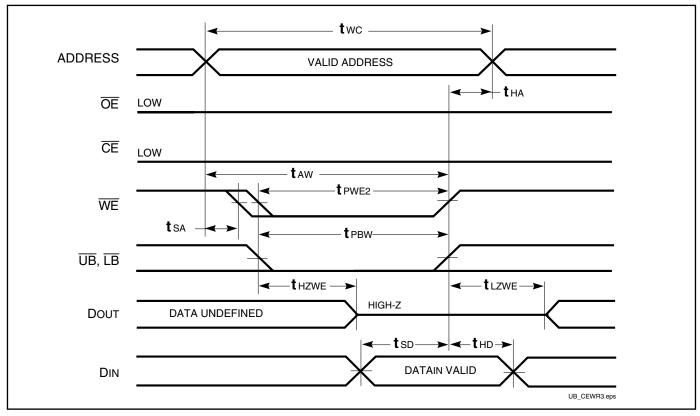
		-12	ns	-15		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	12	_	15	_	ns
t sce	CE to Write End	9	—	10	—	ns
taw	Address Setup Time to Write End	9	—	10	—	ns
tна	Address Hold from Write End	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	—	ns
tрwв	$\overline{\text{LB}}$, $\overline{\text{UB}}$ Valid to End of Write	9	—	10	—	ns
tpwe1	$\overline{\text{WE}}$ Pulse Width ($\overline{\text{OE}}$ = HIGH)	9	—	10	—	ns
tpwe2	$\overline{\text{WE}}$ Pulse Width ($\overline{\text{OE}}$ = LOW)	11	—	12	—	ns
tsd	Data Setup to Write End	9		9	_	ns
t HD	Data Hold from Write End	0		0	_	ns
thzwe ⁽³⁾	WE LOW to High-Z Output		6		7	ns
tlzwe ⁽³⁾	WE HIGH to Low-Z Output	3		3	_	ns


Notes:

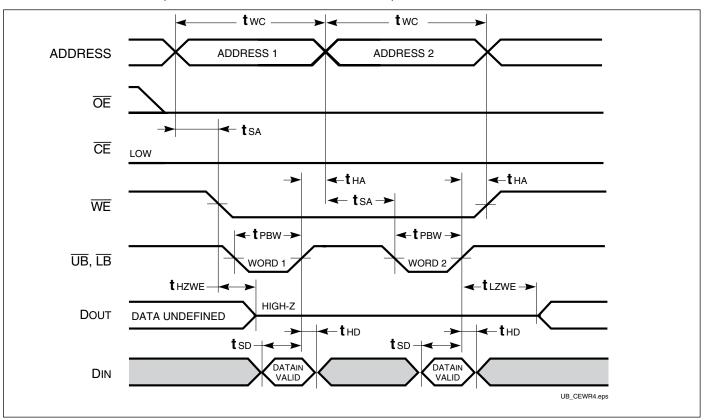
1. Test conditions for IS61WV3216BLL assume signal transition times of 1.5ns or less, timing reference levels of 1.25V, input pulse levels of 0V to VDD V and output loading specified in Figure 1a.


 Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
The internal write time is defined by the overlap of CE LOW and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

WRITE CYCLE NO. 1^(1,2) (\overline{CE} Controlled, \overline{OE} = HIGH or LOW)



WRITE CYCLE NO. $2^{(1)}$ (WE Controlled, \overline{OE} = HIGH during Write Cycle)

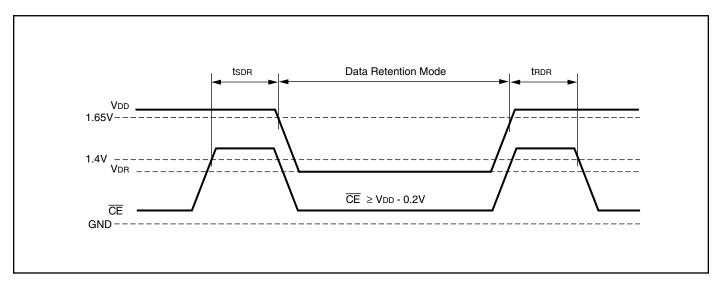

WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. B 07/22/09

WRITE CYCLE NO. 4 (LB, UB Controlled, Back-to-Back Write) (1,3)

Notes:

- 1. The internal Write time is defined by the overlap of $\overline{CE} = LOW$, \overline{UB} and/or $\overline{LB} = LOW$, and $\overline{WE} = LOW$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The **t**_{SA}, **t**_{HA}, **t**_{SD}, and **t**_{HD} timing is referenced to the rising or falling edge of the signal that terminates the Write.
- 2. Tested with \overline{OE} HIGH for a minimum of 4 ns before \overline{WE} = LOW to place the I/O in a HIGH-Z state.
- 3. WE may be held LOW across many address cycles and the LB, UB pins can be used to control the Write function.


DATA RETENTION SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Condition	Operations	Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	VDD for Data Retention	See Data Retention Waveform	n	1.8	—	3.6	V
D R	Data Retention Current	$V_{DD} = 1.8V, \overline{CE} \ge V_{DD} - 0.2V$	COM.	—	6	20	μA
			IND.	—	6	50	
			AUTO	—	6	75	
t SDR	Data Retention Setup Time	See Data Retention Waveforr	n	0	_	—	ns
t RDR	Recovery Time	See Data Retention Waveform	n	trc	_	_	ns

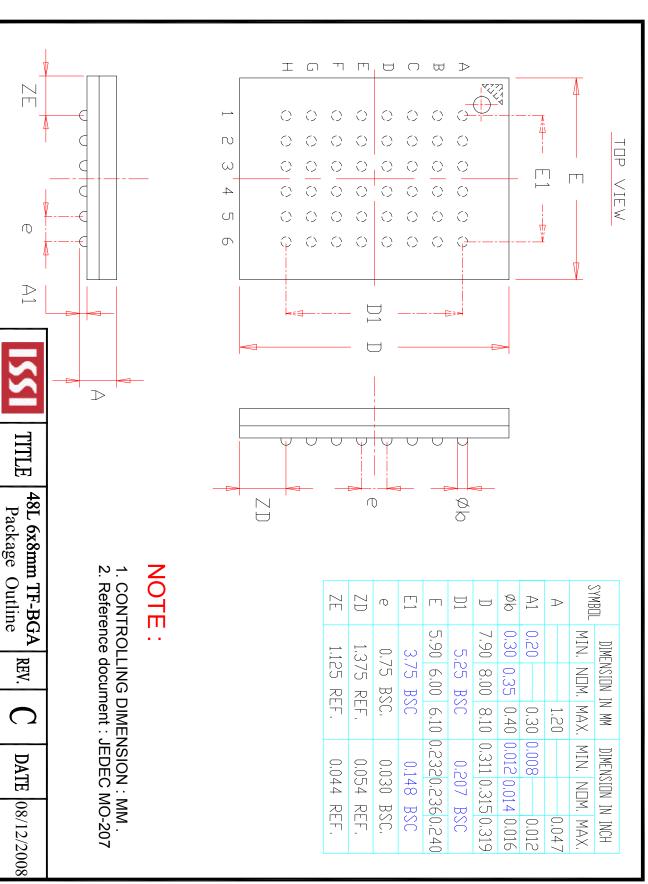
Note:

1. Typical values are measured at VDD = 2.5V, TA = 25° C. Not 100% tested.

DATA RETENTION WAVEFORM (CE Controlled)

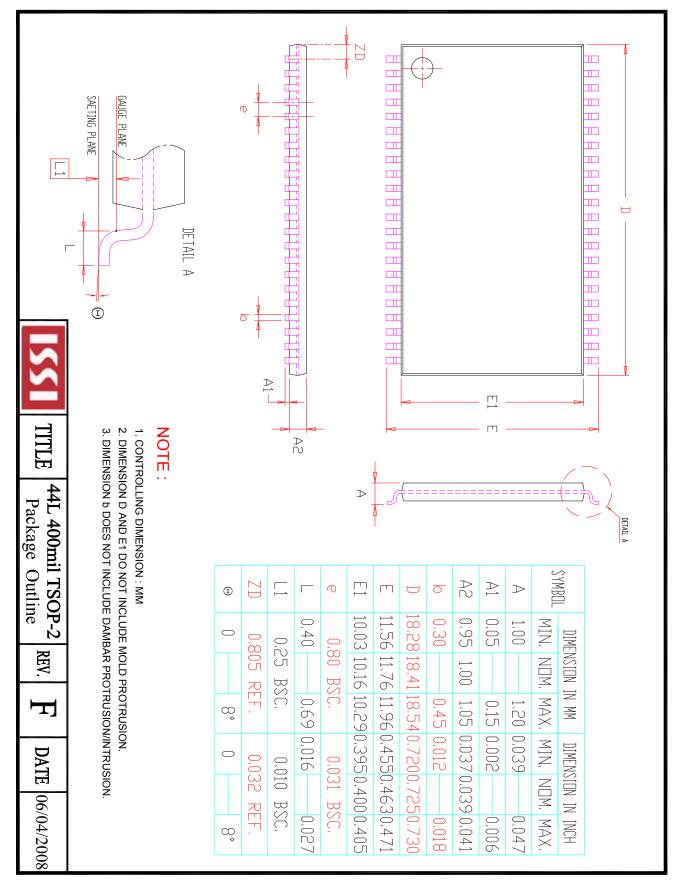
ORDERING INFORMATION

Industrial Temperature Range: -40°C to +85°C


Speed (ns)	Order Part No.	Package
12	IS61WV3216BLL-12TI	Plastic TSOP
12	IS61WV3216BLL-12TLI	Plastic TSOP, Lead-free
12	IS61WV3216BLL-12BI	mini BGA (6mm x 8mm)
12	IS61WV3216BLL-12BLI	mini BGA (6mm x 8mm), Lead-free

Temperature Range (A3): -40°C to +125°C

Speed (ns)	Order Part No.	Package
15 (12*)	IS64WV3216BLL-15TA3	Plastic TSOP
15 (12*)	IS64WV3216BLL-15TLA3	Plastic TSOP, Lead-free
15 (12*)	IS64WV3216BLL-15CTLA3	Plastic TSOP, Lead-free, Copper Lead-frame
15 (12*)	IS64WV3216BLL-15BA3	mini BGA (6mm x 8mm)
15 (12*)	IS64WV3216BLL-15BLA3	mini BGA (6mm x 8mm), Lead-free


Note:

1. Speed = 12ns for VDD = $3.3V \pm 10\%$. Speed = 15ns for VDD = 2.5V- 3.6V.

Integrated Silicon Solution, Inc. — www.issi.com — 1-800-379-4774 Rev. B 07/22/09

