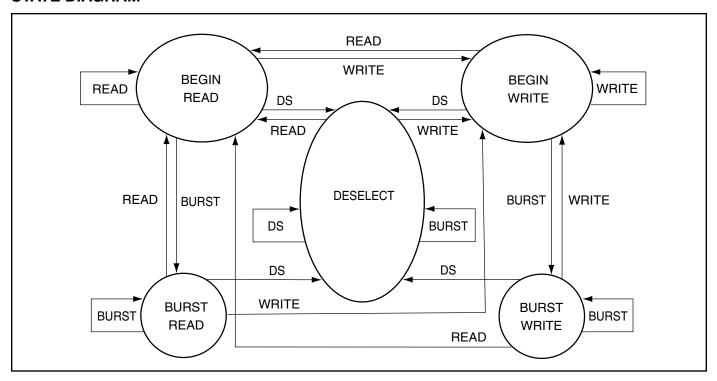

BLOCK DIAGRAM

PIN CONFIGURATION 100-Pin TQFP


PIN DESCRIPTIONS

FIN DESCRI	<u>FTIONS</u>
A0, A1	Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus.
Α	Synchronous Address Inputs
CLK	Synchronous Clock
ADV	Synchronous Burst Address Advance
BWa-BWd	Synchronous Byte Write Enable
WE	Write Enable
CKE	Clock Enable
Vss	Ground for Core
NC	Not Connected

$\overline{\text{CE}}$, CE2, $\overline{\text{CE2}}$	Synchronous Chip Enable
ŌĒ	Output Enable
DQa-DQd	Synchronous Data Input/Output
DQPa-DQPd	Parity Data I/O
MODE	Burst Sequence Selection
V _{DD}	+3.3V/2.5V Power Supply
Vss	Ground for output Buffer
VDDQ	Isolated Output Buffer Supply: +3.3V/2.5V
ZZ	Snooze Enable

STATE DIAGRAM

SYNCHRONOUS TRUTH TABLE(1)

Operation	Address Used	CE	CE2	CE2	ADV	WE	≅₩x	ŌĒ	CKE	CLK
Not Selected	N/A	Н	Х	Х	L	Χ	Х	Χ	L	↑
Not Selected	N/A	Χ	L	Χ	L	Χ	Χ	Χ	L	↑
Not Selected	N/A	Χ	Х	Н	L	Χ	Χ	Χ	L	↑
Not Selected Continue	N/A	Χ	Х	Х	Н	Χ	Х	Х	L	↑
Begin Burst Read	External Address	L	Н	L	L	Н	Х	L	L	↑
Continue Burst Read	Next Address	Χ	Х	Х	Н	Χ	Х	L	L	↑
NOP/Dummy Read	External Address	L	Н	L	L	Н	Х	Н	L	↑
Dummy Read	Next Address	Χ	Х	Х	Н	Χ	Х	Н	L	↑
Begin Burst Write	External Address	L	Н	L	L	L	L	Χ	L	↑
Continue Burst Write	Next Address	Χ	Х	Х	Н	Χ	L	Χ	L	↑
NOP/Write Abort	N/A	L	Н	L	L	L	Н	Χ	L	↑
Write Abort	Next Address	Χ	Х	Χ	Н	Χ	Н	Χ	L	↑
Ignore Clock	Current Address	Χ	Χ	Χ	Χ	Χ	Х	Χ	Н	↑

Notes:

- 1. "X" means don't care.
- 2. The rising edge of clock is symbolized by \(\)
- 3. A continue deselect cycle can only be entered if a deselect cycle is executed first.
- 4. $\overline{\text{WE}}$ = L means Write operation in Write Truth Table.
 - WE = H means Read operation in Write Truth Table.
- 5. Operation finally depends on status of asynchronous pins (ZZ and $\overline{\text{OE}}$).

IS61NLF102436A/IS61NVF102436A IS61NLF204818A/IS61NVF204818A

ASYNCHRONOUS TRUTH TABLE(1)

Operation	ZZ	ŌĒ	I/O STATUS	
Sleep Mode	Н	Х	High-Z	
Read	L	L	DQ	
	L	Н	High-Z	
Write	L	Χ	Din, High-Z	
Deselected	L	Χ	High-Z	

Notes:

- 1. X means "Don't Care".
- 2. For write cycles following read cycles, the output buffers must be disabled with $\overline{\text{OE}}$, otherwise data bus contention will occur.
- 3. Sleep Mode means power Sleep Mode where stand-by current does not depend on cycle time.
- 4. Deselected means power Sleep Mode where stand-by current depends on cycle time.

WRITE TRUTH TABLE (x18)

Operation	WE	B Wa	<u></u> B₩ b	
READ	Н	Х	Х	
WRITE BYTE a	L	L	Н	
WRITE BYTE b	L	Н	L	
WRITE ALL BYTEs	L	L	L	
WRITE ABORT/NOP	L	Н	Н	

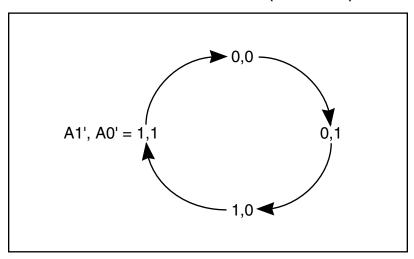
Notes:

- 1. X means "Don't Care".
- 2. All inputs in this table must beet setup and hold time around the rising edge of CLK.

WRITE TRUTH TABLE (x36)

Operation	WE	≅Wa	<u></u> B₩ b	≅Wc	≅Wd	
READ	Н	Х	Х	Х	Х	
WRITE BYTE a	L	L	Н	Н	Н	
WRITE BYTE b	L	Н	L	Н	Н	
WRITE BYTE c	L	Н	Н	L	Н	
WRITE BYTE d	L	Н	Н	Н	L	
WRITE ALL BYTEs	L	L	L	L	L	
WRITE ABORT/NOP	L	Н	Н	Н	Н	

Notes:


- 1. X means "Don't Care".
- 2. All inputs in this table must beet setup and hold time around the rising edge of CLK.

INTERLEAVED BURST ADDRESS TABLE (MODE = VDD or NC)

External Address A1 A0	1st Burst Address A1 A0	2nd Burst Address A1 A0	3rd Burst Address A1 A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

LINEAR BURST ADDRESS TABLE (MODE = Vss)

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit	
Тѕтс	Storage Temperature	-65 to +150	°C	
Po	Power Dissipation	1.6	W	
Іоит	Output Current (per I/O)	100	mA	
VIN, VOUT	Voltage Relative to Vss for I/O Pins	-0.5 to VDDQ + 0.3	V	
VIN	Voltage Relative to Vss for for Address and Control Inputs	-0.3 to 4.6	V	

Notes:

- Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a
 stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. This device contains circuity to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.
- 3. This device contains circuitry that will ensure the output devices are in High-Z at power up.

IS61NLF102436A/IS61NVF102436A IS61NLF204818A/IS61NVF204818A

OPERATING RANGE (IS61NLFx)

Range	Range Ambient Temperature		VDDQ
Commercial	0°C to +70°C	$3.3V \pm 5\%$	3.3V / 2.5V ± 5%
Industrial	-40°C to +85°C	$3.3V \pm 5\%$	3.3V / 2.5V ± 5%

OPERATING RANGE (IS61NVFx)

Range	Range Ambient Temperature		VDDQ
Commercial	0°C to +70°C	$2.5V \pm 5\%$	2.5V ± 5%
Industrial	-40°C to +85°C	2.5V ± 5%	2.5V ± 5%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

			3	3.3V	2		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
Vон	Output HIGH Voltage	IOH = -4.0 mA (3.3V) IOH = -1.0 mA (2.5V)	2.4	_	2.0	_	V
Vol	Output LOW Voltage	IoL = 8.0 mA (3.3V) IoL = 1.0 mA (2.5V)	_	0.4	_	0.4	V
ViH	Input HIGH Voltage		2.0	$V_{DD} + 0.3$	1.7	$V_{DD} + 0.3$	V
VIL	Input LOW Voltage		-0.3	0.8	-0.3	0.7	V
I LI	Input Leakage Current	$V_{SS} \leq V_{IN} \leq V_{DD}^{(1)}$	- 5	5	- 5	5	μA
llo	Output Leakage Current	$Vss \le Vout \le Vddq, \overline{OE} = Vih$	- 5	5	– 5	5	μΑ

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				6.5 MAX		7.5 MAX		
Symbol	Parameter	Test Conditions	Temp. range	x18	x36	x18	x36	Unit
Icc	AC Operating	Device Selected,	Com.	400	400	375	375	mA
	Supply Current	\overline{OE} = VIH, ZZ \leq VIL, All Inputs \leq 0.2V or \geq VDD	Ind. – 0.2V,	425	425	400	400	
		Cycle Time ≥ tкс min.	typ. ⁽²⁾	390)	34	10	
Isb	Standby Current	Device Deselected,	Сом.	200	200	190	190	mA
	TTL Input	$V_{DD} = Max.$, $All\ Inputs \le V_{IL}\ or \ge V_{IH}$, $ZZ \le V_{IL}$, $f = Max$.	Ind.	210	210	200	200	
İsbi	Standby Current	Device Deselected,	Com.	100	100	100	100	mA
	CMOS Input	$V_{DD} = Max.,$ $V_{IN} \le V_{SS} + 0.2V \text{ or } \ge V_{DD}$	Ind. – 0.2V	105	105	105	105	
		f = 0	typ ⁽²⁾	40)	4	10	

Note

- 1. MODE pin has an internal pullup and should be tied to VDD or Vss. It exhibits $\pm 100~\mu A$ maximum leakage current when tied to \leq Vss + 0.2V or \geq VDD 0.2V.
- 2. Typical values are measured at Vcc = 3.3V, $T_A = 25^{\circ}C$ and not 100% tested.

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	6	pF
Соит	Input/Output Capacitance	VOUT = $0V$	8	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $TA = 25^{\circ}C$, f = 1 MHz, VDD = 3.3V.

3.3V I/O ACTEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

3.3V I/O OUTPUT LOAD EQUIVALENT

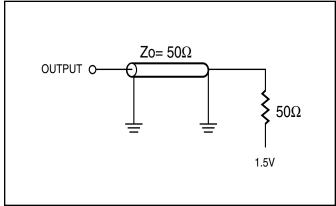


Figure 1

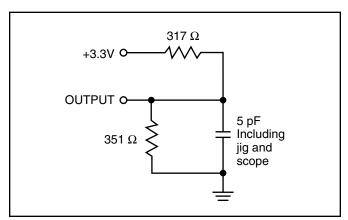


Figure 2

2.5V I/O ACTEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 2.5V
Input Rise and Fall Times	1.5 ns
Input and Output Timing and Reference Level	1.25V
Output Load	See Figures 3 and 4

2.5V I/O OUTPUT LOAD EQUIVALENT

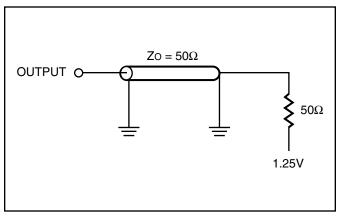


Figure 3

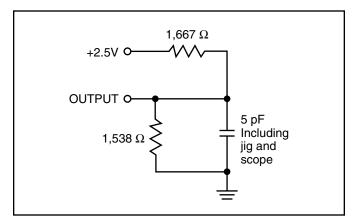


Figure 4

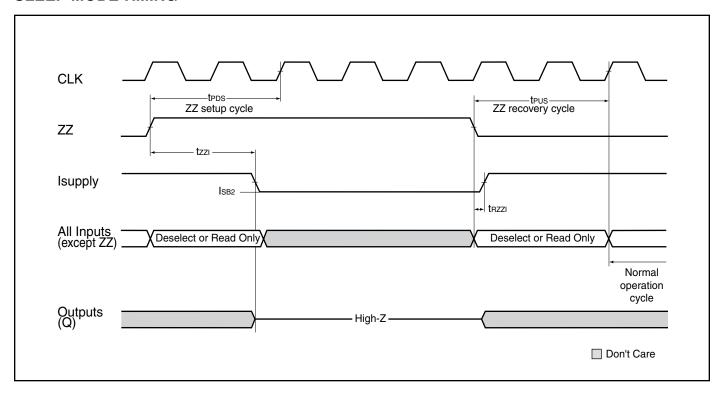
READ/WRITE CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		6.5		7.5	
Symbol	Parameter	Min.	Max.	Min. Ma	ax. Unit
fmax	Clock Frequency	_	133	— 11	7 MHz
tĸc	Cycle Time	7.5	_	8.5 –	– ns
tкн	Clock High Time	2.2	_	2.5 –	– ns
tĸL	Clock Low Time	2.2		2.5 –	– ns
tka	Clock Access Time	_	6.5	— 7.	5 ns
tkqx ⁽²⁾	Clock High to Output Invalid	2.5	_	2.5 –	– ns
tkqlz ^(2,3)	Clock High to Output Low-Z	2.5	_	2.5 –	– ns
tkQHZ ^(2,3)	Clock High to Output High-Z	_	3.8	— 4.	0 ns
toeq	Output Enable to Output Valid	_	3.2	— 3.	4 ns
toelz(2,3)	Output Enable to Output Low-Z	0	_	0 -	– ns
toehz(2,3)	Output Disable to Output High-Z	_	3.5	— 3.	5 ns
tas	Address Setup Time	1.5	_	1.5 –	– ns
tws	Read/Write Setup Time	1.5	_	1.5 –	– ns
tces	Chip Enable Setup Time	1.5	_	1.5 –	– ns
tse	Clock Enable Setup Time	1.5	_	1.5 –	– ns
tadvs	Address Advance Setup Time	1.5	_	1.5 –	– ns
tos	Data Setup Time	1.5	_	1.5 –	– ns
tан	Address Hold Time	0.65	_	0.65 -	– ns
the	Clock Enable Hold Time	0.5	_	0.5 -	– ns
twн	Write Hold Time	0.5	_	0.5 –	- ns
tceh	Chip Enable Hold Time	0.5	_	0.5 –	- ns
tadvh	Address Advance Hold Time	0.5	_	0.5 -	- ns
tон	Data Hold Time	0.5	_	0.5 –	- ns
tpds	ZZ High to Power Down	_	2	– 2	2 сус
tpus	ZZ Low to Power Down	_	2	— 2	2 cyc

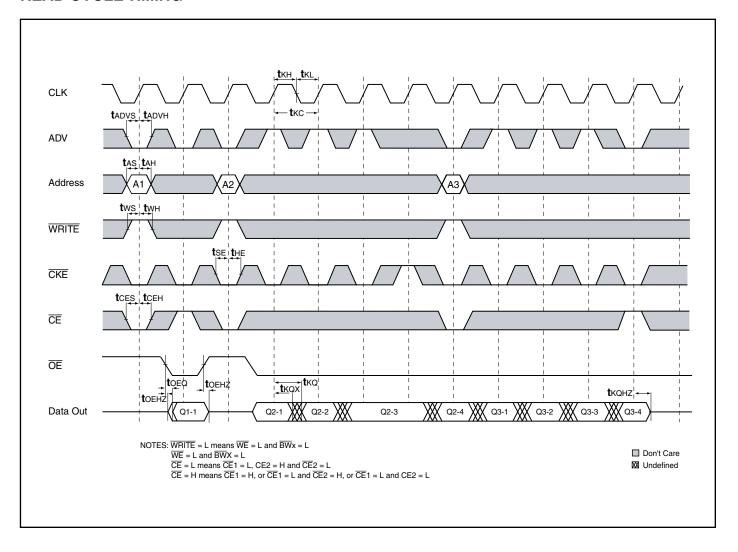
Notes:

^{1.} Configuration signal MODE is static and must not change during normal operation.

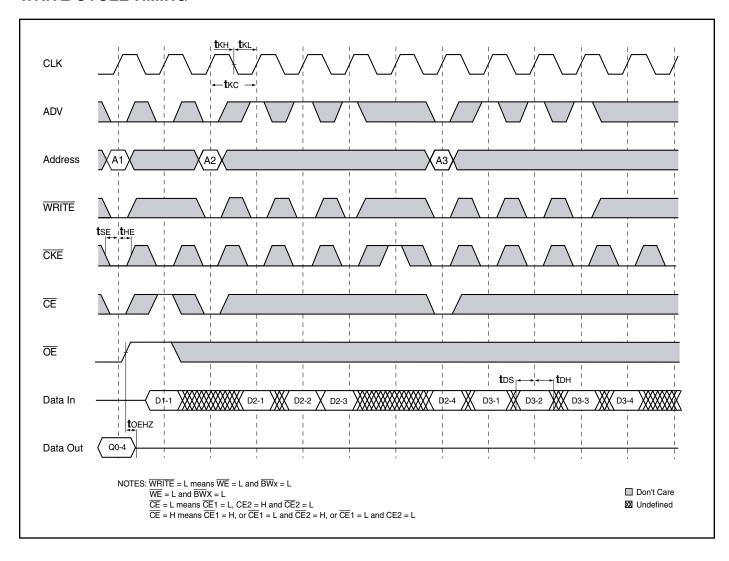
^{2.} Guaranteed but not 100% tested. This parameter is periodically sampled.


^{3.} Tested with load in Figure 2.

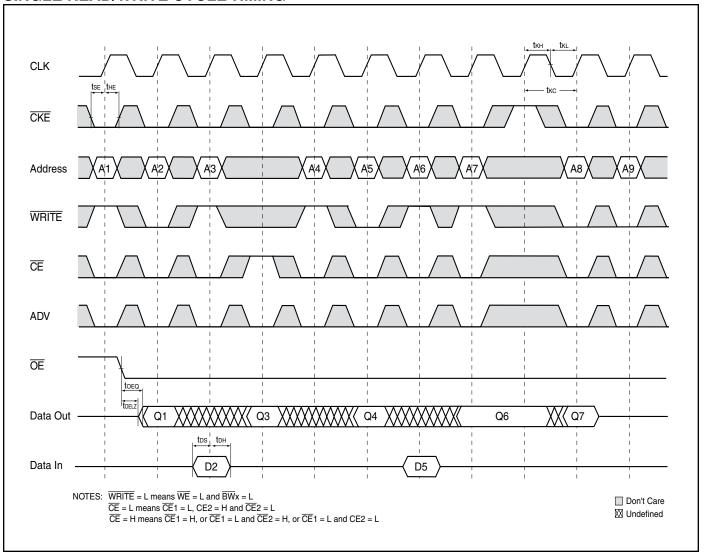
SLEEP MODE ELECTRICAL CHARACTERISTICS


Symbol	Parameter	Conditions	Min.	Max.	Unit
ISB2	Current during SLEEP MODE	$ZZ \ge V$ IH		80	mA
tpds	ZZ active to input ignored			2	cycle
tpus	ZZ inactive to input sampled		2		cycle
tzzı	ZZ active to SLEEP current		2		cycle
trzzi	ZZ inactive to exit SLEEP current		0		ns

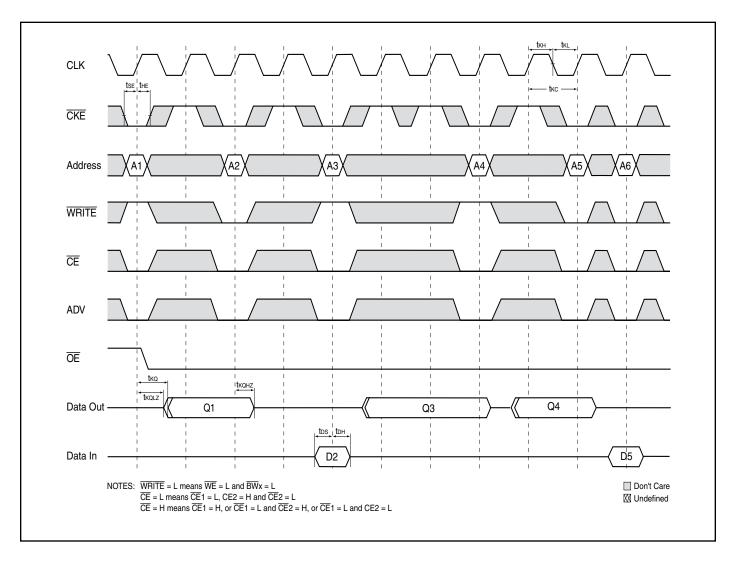
SLEEP MODE TIMING



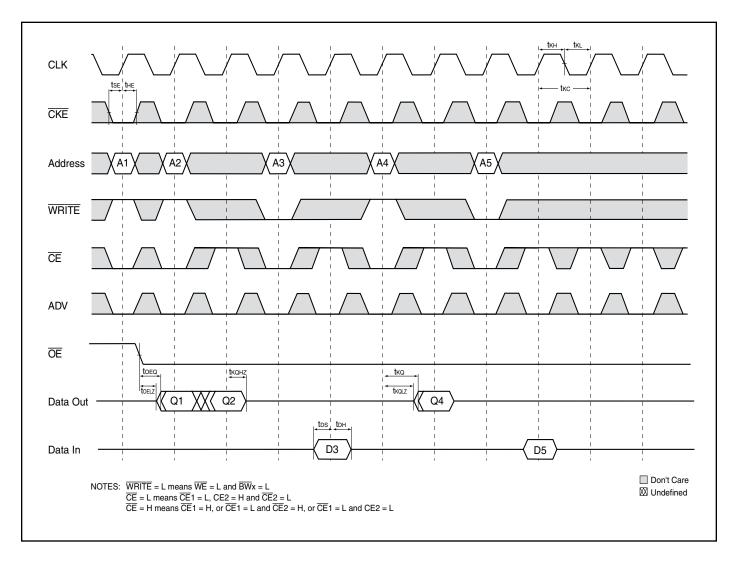
READ CYCLE TIMING



WRITE CYCLE TIMING



SINGLE READ/WRITE CYCLE TIMING



CKE OPERATION TIMING

CE OPERATION TIMING

ORDERING INFORMATION (VDD = 3.3V/VDDQ = 2.5V- 3.3V)

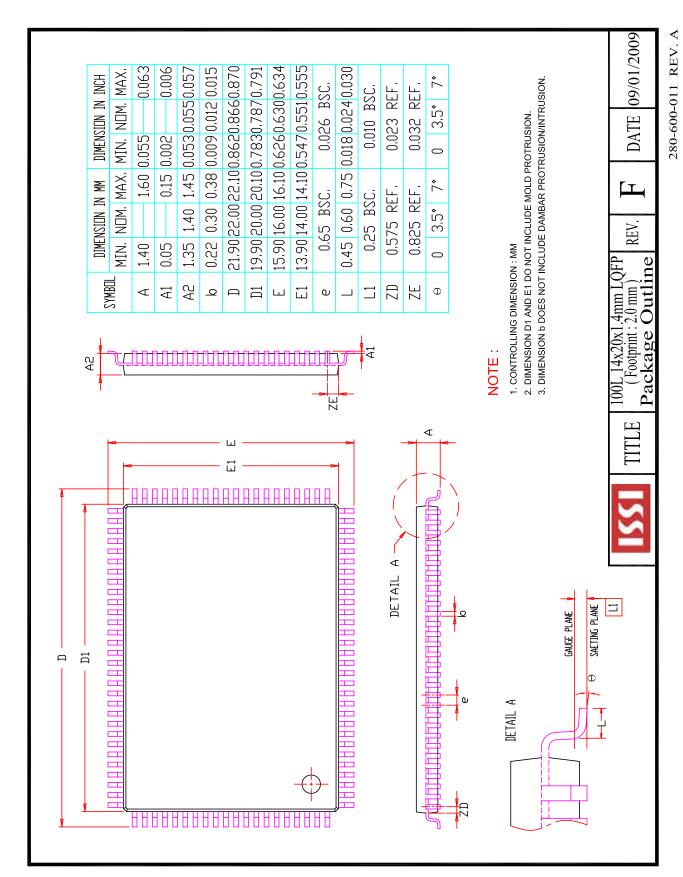
Commercial Range: 0°C to +70°C

Access Time	Order Part Number	Package	
	1Mx36		
6.5	IS61NLF102436A-6.5TQ	100 TQFP	
7.5	IS61NLF102436A-7.5TQ	100 TQFP	
	2Mx18		
6.5	IS61NLF204818A-6.5TQ	100 TQFP	
7.5	IS61NLF204818A-7.5TQ	100 TQFP	

Industrial Range: -40°C to +85°C

Access Time	Order Part Number	Package
	1Mx36	
6.5	IS61NLF102436A-6.5TQI	100 TQFP
7.5	IS61NLF102436A-7.5TQI IS61NLF102436A-7.5TQLI	100 TQFP 100 TQFP, Lead-free
	2Mx18	
6.5	IS61NLF204818A-6.5TQI	100 TQFP
7.5	IS61NLF204818A-7.5TQI IS61NLF204818A-7.5TQLI	100 TQFP 100 TQFP, Lead-free

ORDERING INFORMATION (VDD = 2.5V /VDDQ = 2.5V)


Commercial Range: 0°C to +70°C

Access Time	Order Part Number	Package	
	1Mx36		
6.5	IS61NVF102436A-6.5TQ	100 TQFP	
7.5	IS61NVF102436A-7.5TQ	100 TQFP	
	2Mx18		
6.5	IS61NVF204818A-6.5TQ	100 TQFP	
7.5	IS61NVF204818A-7.5TQ	100 TQFP	

Industrial Range: -40°C to +85°C

Access Time	Order Part Number	Package	
	1Mx36		
6.5	IS61NVF102436A-6.5TQI	100 TQFP	
7.5	IS61NVF102436A-7.5TQI	100 TQFP	
	2Mx18		
6.5	IS61NVF204818A-6.5TQI	100 TQFP	
7.5	IS61NVF204818A-7.5TQI	100 TQFP	

