IRFR420TRPbF

Table of Contents

Table of Contents

Benefits		
	Table	
	Contents	
1	Parameters	3
2	Maximum ratings, Thermal, and Avalanche characteristics	4
3		
4	Electrical characteristic diagrams	6
Package	Information	11
Qualifica	tion Information	13
Revision	History	14

IRFR420TRPbF

Parameters

1 Parameters

Table1 Key performance parameters

Parameter	Values	Units
$\overline{V_{DS}}$	500	V
R _{DS(on) max}	3.0	Ω
I_D	2.4	A

IRFR420TRPbF

Maximum ratings and thermal characteristics

2 Maximum ratings and thermal characteristics

Table 2 Maximum ratings (at T_J=25°C, unless otherwise specified)

Parameter	Symbol	Conditions	Values	Unit
Continuous Drain Current	I _D	$T_C = 25^{\circ}C, V_{GS} @ 10V$	2.4	
Continuous Drain Current	I _D	T _C = 100°C, V _{GS} @ 10V	1.5	Α
Pulsed Drain Current ①	I _{DM}	T _C = 25°C	8.0	
Maximum Power Dissipation	P_D	T _C = 25°C	42	W
Maximum Power Dissipation (PCB Mount) (S)	P_D	T _A = 25°C	2.5	- VV
Linear Derating Factor		T _C = 25°C	0.33	W/°C
Linear Derating Factor (PCB Mount) (S		T _A = 25°C	0.02	
Gate-to-Source Voltage	V_{GS}	-	± 20	V
Operating Junction and Storage Temperature Range	T _J T _{STG}	-	-55 to + 150	00
Soldering Temperature, for 10 seconds (1.6mm from case)	-	-	260	°C

Table 3 Thermal characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Junction-to-Case ®	$R_{ heta JC}$	T」approximately 90°C	-	-	3.0	
Junction-to-Ambient (PCB Mount) ⑤	$R_{ heta JA}$	-	-	-	50	°C/W
Junction-to-Ambient	$R_{ heta JA}$	-	-	-	110	

Table 4 Avalanche characteristics

Parameter	Symbol	Values	Unit
Single Pulse Avalanche Energy ②	E _{AS} (Thermally limited)	400	mJ
Avalanche Current ①	I _{AR}	2.4	А
Repetitive Avalanche Energy ①	E _{AR}	4.2	mJ

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See Figure 11).
- \mathscr{Q} Limited by T_{Jmax} , starting T_J = 25°C, L = 139mH, R_G = 25 Ω , I_{AS} = 2.4A, V_{GS} =10V. (See Figure 10).
- ③ I_{SD} ≤2.4A, di/dt ≤50A/ μ s, V_{DD} ≤ $V_{(BR)DSS}$, T_J ≤150°C.
- @ Pulse width \leq 300 μ s; duty cycle \leq 2%.
- (5) When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. please refer to application note to AN-994.
- © R_{θ} is measured at T_{J} approximately 90°C.

IRFR420TRPbF

3 Electrical characteristics

Table 5 Static characteristics

Parameter	Symbol Conditions -			Unit		
Parameter			Min.	Тур.	Max.	Oilit
Drain-to-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 250 \mu A$	500	-	-	V
Breakdown Voltage Temp. Coefficient	$\Delta V_{(BR)DSS}/\Delta T_J$	Reference to 25°C, $I_D = 1$ mA	-	0.59	-	V/°C
Static Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = 10V, I_D = 1.4A$	-	-	3.0	Ω
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.0	-	4.0	V
		V _{DS} =500V, V _{GS} =0V	-	-	25	
Drain-to-Source Leakage Current	I _{DSS}	$V_{DS} = 400V, V_{GS} = 0V, T_{J} = 125^{\circ}C$	-	-	250	μΑ
Gate-to-Source Forward Leakage	I _{GSS}	$V_{GS} = 20V$	-	-	100	nA
Gate-to-Source Reverse Leakage	I _{GSS}	V _{GS} = -20V	-	-	-100	IIA

Table 6 Dynamic characteristics

Davamatar	Symphol	Conditions	Values			Unit	
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Jilit	
Forward Trans conductance	gfs	$V_{DS} = 50V, I_{D} = 1.4A$	1.5	-	-	S	
Total Gate Charge	Qg	I _D = 2.1A	-	-	19		
Gate-to-Source Charge	Q_{gs}	$V_{DS} = 400V$ $V_{GS} = 10V$	-	-	3.3	nC	
Gate-to-Drain Charge	Q_{gd}	See Fig.6 and 13	-	-	13		
Turn-On Delay Time	t _{d(on)}	V _{DD} = 250V	-	8.0	-		
Rise Time	t _r	$I_D = 2.1A$	-	8.6	-	ns	
Turn-Off Delay Time	t _{d(off)}	$R_G = 18\Omega$	-	33	-	ns	
Fall Time	t _f	$R_D = 120\Omega$, See Fig.10	-	16	-		
Internal Drain Inductance	L _D	Between lead, 6mm (0.25in.) from package	-	4.5	-	nH	
Internal Source Inductance	Ls	and center of die contact	-	7.5	-		
Input Capacitance	C _{iss}	V _{GS} = 0V	-	360	-		
Output Capacitance	Coss	V _{DS} = 25V	-	92	-	pF	
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz, See Fig.5	-	37	-		

Table 7 Reverse Diode

Parameter	Symbol	Symbol Conditions		Values		
Parameter	Symbol	Collutions	Min.	Тур.	Max.	Unit
Continuous Source Current (Body Diode)	Is	MOSFET symbol showing the	-	-	2.4	۸
Pulsed Source Current (Body Diode) ①	I _{SM}	integral reverse p-n junction diode.	-	-	8.0	А
Diode Forward Voltage	V_{SD}	$T_J = 25$ °C, $I_S = 2.4$ A, $V_{GS} = 0$ V 4	-	-	1.6	V
Peak Diode Recovery dv/dt ③	dv/dt	$T_J = 150$ °C, $I_S = 2.1$ A, $V_{DS} = 500$ V	-	-	3.5	V/ns
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C$ $I_F = 2.1A$,	-	260	520	ns
Reverse Recovery Charge	Qrr	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s 4	-	0.7	1.4	μС

Electrical characteristic diagrams

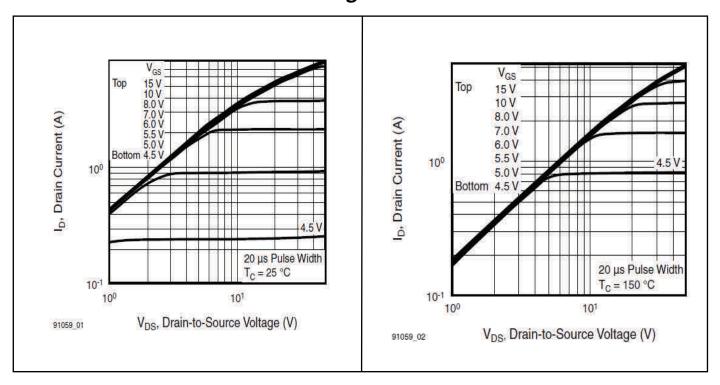


Figure 1 Typical Output Characteristics, $T_c = 25$ °C

Figure 2 Typical Output Characteristics, $T_c = 150$ °C

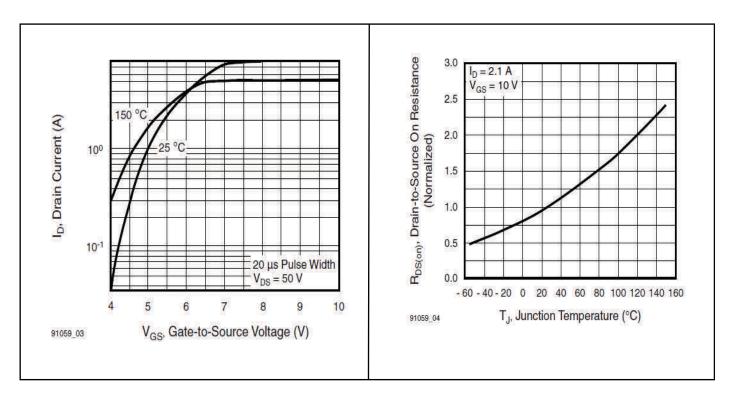


Figure 3 Typical Transfer Characteristics

Figure 4 Normalized On-Resistance vs. Temperature

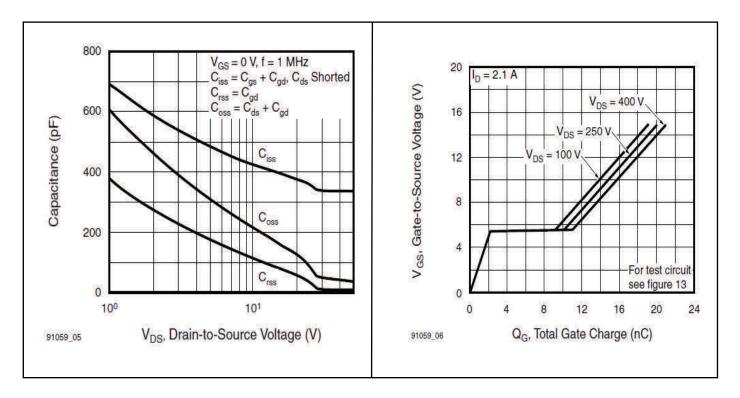


Figure 5 Typical Capacitance vs. Drain-to-Source Voltage

Figure 6 Typical Gate Charge vs. Gate-to-Source Voltage

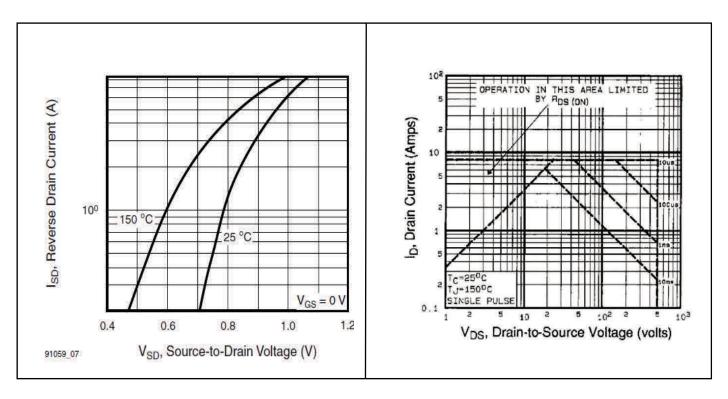


Figure 7 Typical Source-Drain Diode Forward Voltage

Figure 8 Maximum Safe Operating Area

(infineon

2017-08-01

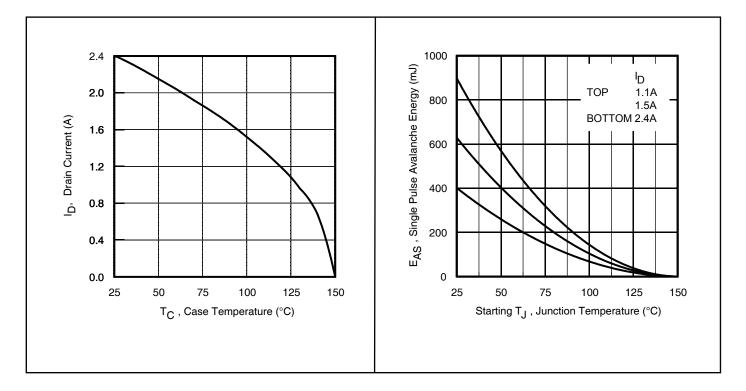


Figure 9 Maximum Drain Current vs. Case Temperature

Figure 10 Maximum Avalanche Energy vs. Temperature

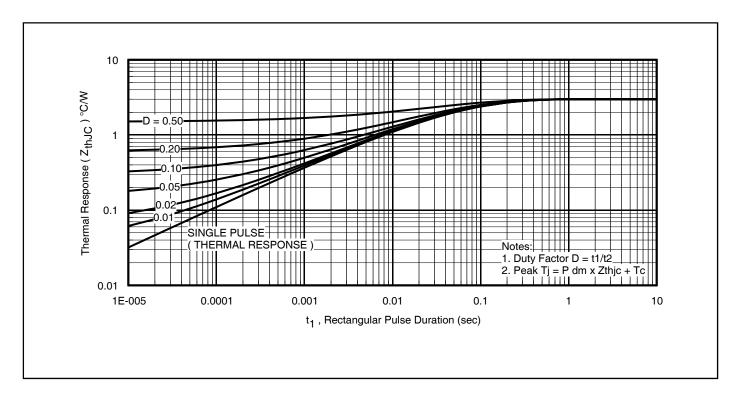


Figure 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case

Infined

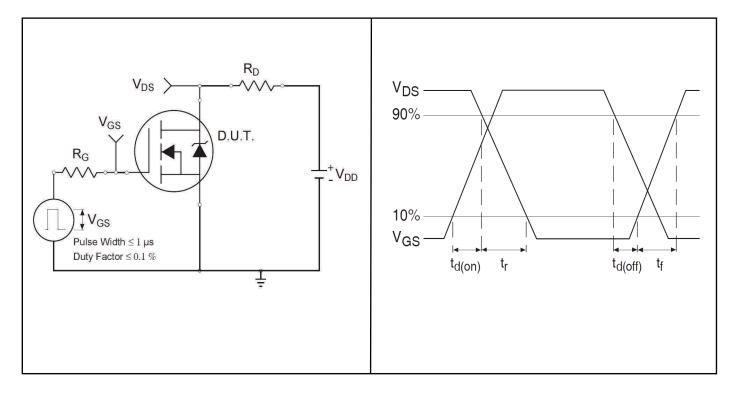


Figure 12a Switching Time Test Circuit

Figure 12b Switching Time Waveforms

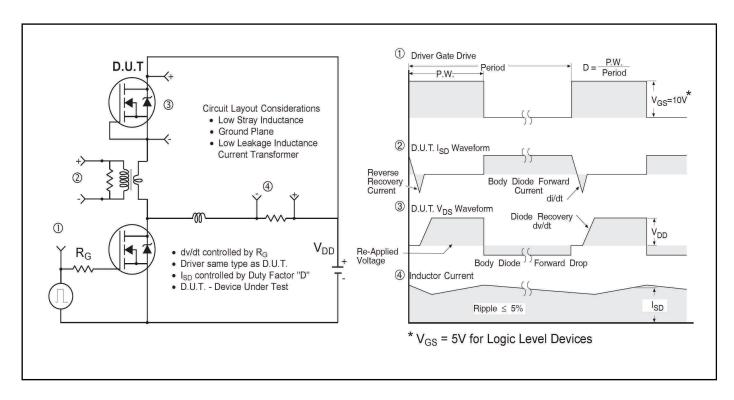


Figure 13 Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs

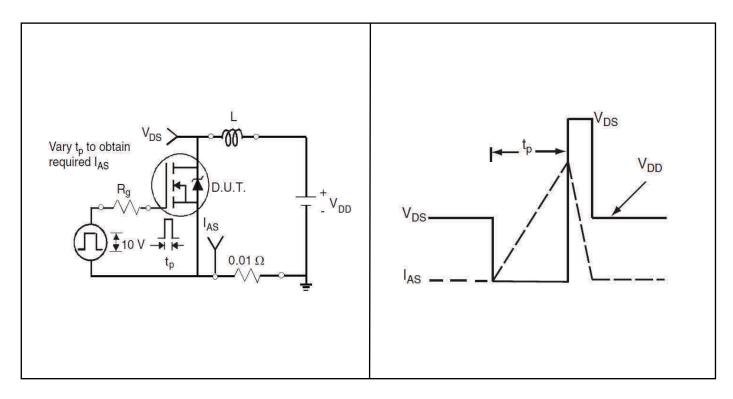


Figure 14a Unclamped Inductive Test Circuit

Figure 14b Unclamped Inductive Waveforms

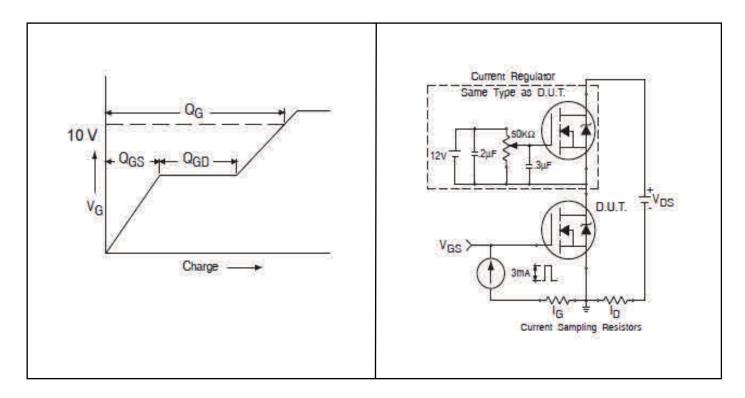
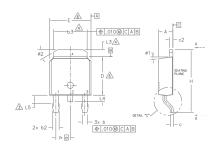
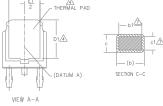


Figure 15a Gate Charge Waveform


Figure 15b Gate Charge Test Circuit

Package Information



Package Information 5

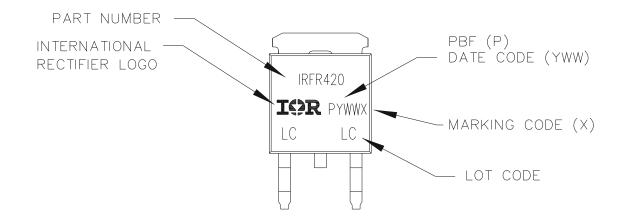
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .006 [0.15] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- A- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9. OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S Y M		DIMENSIONS					
В	MILLIM	ETERS	INC	HES	0		
0 L	MIN.	MAX.	MIN.	MAX.	E S		
Α	2.18	2.39	.086	.094			
A1	-	0.13	-	.005			
b	0.64	0.89	.025	.035			
b1	0.64	0.79	.025	.031	7		
b2	0.76	1,14	.030	.045			
b3	4.95	5.46	.195	.215	4		
С	0.46	0.61	.018	.024			
c1	0.41	0.56	.016	.022	7		
c2	0.46	0.89	.018	.035			
D	5.97	6.22	.235	.245	6		
D1	5.21	-	.205	-	4		
Ε	6.35	6.73	.250	.265	6		
E1	4.32	-	.170	-	4		
е	2.29	BSC	.090	BSC			
Н	9.40	10.41	.370	.410			
L	1.40	1.78	.055	.070			
L1	2.74	BSC	.108	REF.			
L2	0.51	BSC	.020	BSC			
L3	0.89	1.27	.035	.050	4		
L4	-	1.02	-	.040			
L5	1.14	1.52	.045	.060	3		
Ø	0.	10°	0.	10°			
ø1	0.	15°	0*	15°			
ø2	25°	35°	25°	35°			

LEAD ASSIGNMENTS

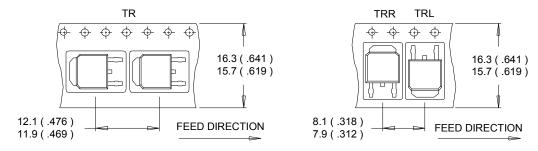
HEXFET


- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN

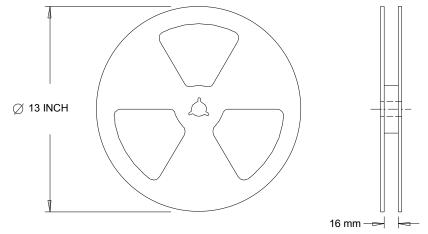
IGBT & CoPAK

- 1.- GATE
 2.- COLLECTOR
 3.- EMITTER
 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information


Downloaded from **Arrow.com**.

Package Information



D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches)

NOTES:

- CONTROLLING DIMENSION : MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

1. OUTLINE CONFORMS TO EIA-481.

IRFR420TRPbF

6 Qualification Information

Qualification Information

Qualification Level	Industrial (per JEDEC JESD47F) †		
Moisture Sensitivity Level	D-Pak MSL1		
RoHS Compliant	Yes		

[†] Applicable version of JEDEC standard at the time of product release.

IRFR420TRPbF

Revision History

Revision History

Major changes since the last revision

Page or Reference	Revision	Date	Description of changes
All pages	1.0	2017-08-01	First release data sheet.

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowiR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithiC™, OPTIGA™, OptiMOS™, ORIGA™, PowiRaudio™, PowiRstage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

IMPORTANT NOTICE

Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.