Static @ T_J = 25°C (unless otherwise specified) | | Parameter | Min. | Тур. | Max. | Units | Conditions | |--------------------------------|---|------|-------|------|-------|---| | BV _{DSS} | Drain-to-Source Breakdown Voltage | 30 | | | V | $V_{GS} = 0V, I_D = 250\mu A$ | | $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | | 0.025 | | V/°C | Reference to 25°C, I _D = 1mA | | R _{DS(on)} | Static Drain-to-Source On-Resistance | | 7.0 | 9.1 | mΩ | V _{GS} = 10V, I _D = 13A ③ | | | | | 9.5 | 12.5 | 1 | V _{GS} = 4.5V, I _D = 10A ③ | | V _{GS(th)} | Gate Threshold Voltage | 1.0 | | | V | $V_{DS} = V_{GS}$, $I_D = 250\mu A$ | | $\Delta V_{GS(th)}$ | Gate Threshold Voltage Coefficient | | - 4.9 | | mV/°C | | | I _{DSS} | Drain-to-Source Leakage Current | | | 1.0 | μΑ | $V_{DS} = 24V, V_{GS} = 0V$ | | | | | | 150 | 1 | $V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ | | I _{GSS} | Gate-to-Source Forward Leakage | | | 100 | nΑ | V _{GS} = 20V | | | Gate-to-Source Reverse Leakage | | | -100 | 1 | V _{GS} = -20V | | gfs | Forward Transconductance | 22 | | | S | $V_{DS} = 15V, I_D = 10A$ | | Q_g | Total Gate Charge | | 9.3 | 14 | | | | Q _{gs1} | Pre-Vth Gate-to-Source Charge | | 2.5 | | | $V_{DS} = 15V$ | | Q _{gs2} | Post-Vth Gate-to-Source Charge | | 0.8 | | nC | $V_{GS} = 4.5V$ | | Q_{gd} | Gate-to-Drain Charge | | 2.9 | | | I _D = 10A | | Q _{godr} | Gate Charge Overdrive | | 3.1 | | | See Fig. 16 | | Q _{sw} | Switch Charge (Q _{gs2} + Q _{gd}) | | 3.7 | | | | | Q _{oss} | Output Charge | | 6.1 | | nC | $V_{DS} = 10V, V_{GS} = 0V$ | | t _{d(on)} | Turn-On Delay Time | | 6.3 | | | V _{DD} = 15V, V _{GS} = 4.5V ③ | | t _r | Rise Time | | 2.7 | | 1 | I _D = 10A | | t _{d(off)} | Turn-Off Delay Time | | 9.7 | | ns | Clamped Inductive Load | | t _f | Fall Time | | 7.3 | | 1 | | | C _{iss} | Input Capacitance | | 1010 | | | $V_{GS} = 0V$ | | Coss | Output Capacitance | | 360 | | pF | $V_{DS} = 15V$ | | C _{rss} | Reverse Transfer Capacitance | | 110 | | | f = 1.0MHz | ### **Avalanche Characteristics** | | Parameter | Тур. | Max. | Units | |-----------------|----------------------------------|------|------|-------| | E _{AS} | Single Pulse Avalanche Energy 26 | | 44 | mJ | | I _{AR} | Avalanche Current ① | | 10 | Α | ### **Diode Characteristics** | | Parameter | Min. | Тур. | Max. | Units | Conditions | |-----------------|---------------------------|------|------|------|-------|--| | Is | Continuous Source Current | | | 3.1 | | MOSFET symbol | | | (Body Diode) | | | | Α | showing the | | I _{SM} | Pulsed Source Current | | | 100 | | integral reverse | | | (Body Diode) ①⑥ | | | | | p-n junction diode. | | V_{SD} | Diode Forward Voltage | | | 1.0 | V | $T_J = 25$ °C, $I_S = 10A$, $V_{GS} = 0V$ ③ | | t _{rr} | Reverse Recovery Time | | 28 | 42 | ns | $T_J = 25$ °C, $I_F = 10A$, $V_{DD} = 20V$ | | Q _{rr} | Reverse Recovery Charge | | 23 | 35 | nC | di/dt = 100A/µs ③ | Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics **Fig 4.** Normalized On-Resistance Vs. Temperature Fig 3. Typical Transfer Characteristics # International TOR Rectifier 12 I_D= 10A V_{DS}= 24V V_{GS}, Gate-to-Source Voltage (V) 10 VDS= 15V 8 6 4 2 0 0 5 10 15 20 Q_G Total Gate Charge (nC) **Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage **Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area **Fig 9.** Maximum Drain Current Vs. Case Temperature Fig 10. Threshold Voltage Vs. Temperature Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Fig 12. On-Resistance Vs. Gate Voltage Fig 13a. Unclamped Inductive Test Circuit **Fig 13b.** Unclamped Inductive Waveforms 6 **Fig 13c.** Maximum Avalanche Energy Vs. Drain Current Fig 14a. Switching Time Test Circuit **Fig 14b.** Switching Time Waveforms www.irf.com # International TOR Rectifier ### IRF7821PbF Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Fig 16. Gate Charge Test Circuit Fig 17. Gate Charge Waveform International TOR Rectifier ### Power MOSFET Selection for Non-Isolated DC/DC Converters #### **Control FET** Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the $R_{\rm ds(on)}$ of the MOSFET, but these conduction losses are only about one half of the total losses. Power losses in the control switch Q1 are given by; $$P_{loss} = P_{conduction} + P_{switching} + P_{drive} + P_{output}$$ This can be expanded and approximated by; $$\begin{split} P_{loss} &= \left(I_{rms}^{2} \times R_{ds(on)}\right) \\ &+ \left(I \times \frac{Q_{gd}}{i_{g}} \times V_{in} \times f\right) + \left(I \times \frac{Q_{gs2}}{i_{g}} \times V_{in} \times f\right) \\ &+ \left(Q_{g} \times V_{g} \times f\right) \\ &+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right) \end{split}$$ This simplified loss equation includes the terms ${\rm Q_{gs2}}$ and ${\rm Q_{oss}}$ which are new to Power MOSFET data sheets. Q_{gs2} is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Q_{gs1} and Q_{gs2} , can be seen from Fig 16. Q_{gs2} indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to I_{dmax} at which time the drain voltage begins to change. Minimizing Q_{gs2} is a critical factor in reducing switching losses in Q1. $\rm Q_{oss}$ is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how $\rm Q_{oss}$ is formed by the parallel combination of the voltage dependant (nonlinear) capacitance's $\rm C_{ds}$ and $\rm C_{dg}$ when multiplied by the power supply input buss voltage. ### Synchronous FET The power loss equation for Q2 is approximated by; $$\begin{split} P_{loss} &= P_{conduction} + P_{drive} + P_{output}^* \\ P_{loss} &= \left(I_{rms}^2 \times R_{ds(on)}\right) \\ &+ \left(Q_g \times V_g \times f\right) \\ &+ \left(\frac{Q_{oss}}{2} \times V_{in} \times f\right) + \left(Q_{rr} \times V_{in} \times f\right) \end{split}$$ *dissipated primarily in Q1. For the synchronous MOSFET Q2, $R_{ds(on)}$ is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Q_{oss} and reverse recovery charge Q_{rr} both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs' susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and $V_{\rm in}$. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of $Q_{\rm gd}/Q_{\rm gs1}$ must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Q ... Characteristic International TOR Rectifier ### IRF7821PbF ## SO-8 Package Details Dimensions are shown in milimeters (inches) | DIM | INC | HES | MILLIMETERS | | | |-----|------------|-------|-------------|------|--| | | MIN | MAX | MIN | MAX | | | Α | .0532 | .0688 | 1.35 | 1.75 | | | A1 | .0040 | .0098 | 0.10 | 0.25 | | | b | .013 | .020 | 0.33 | 0.51 | | | С | .0075 | .0098 | 0.19 | 0.25 | | | D | .189 | 1968 | 4.80 | 5.00 | | | Е | .1497 | 1574 | 3.80 | 4.00 | | | е | .050 BASIC | | 1.27 BASIC | | | | e 1 | .025 BASIC | | 0.635 BASIC | | | | Н | .2284 | 2440 | 5.80 | 6.20 | | | K | .0099 | .0196 | 0.25 | 0.50 | | | L | .016 | .050 | 0.40 | 1.27 | | | у | 0° | 8° | 0° | 8° | | #### NOTES: - 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. - 2. CONTROLLING DIMENSION: MILLIMETER - 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. - 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. - (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. - (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. - (7) DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. ### **SO-8 Part Marking** EXAMPLE: THIS IS AN IRF7101 (MOSFET) International IOR Rectifier ### **SO-8 Tape and Reel** Dimensions are shown in milimeters (inches) - CONTROLLING DIMENSION : MILLIMETER. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). OUTLINE CONFORMS TO EIA-481 & EIA-541. - NOTES: 1. CONTROLLING DIMENSION: MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. - Notes: ① Repetitive rating; pulse width limited by - max. junction temperature. ② Starting $T_J = 25$ °C, L = 0.87mH - $R_G = 25\Omega$, $I_{AS} = 10A$. - When mounted on 1 inch square copper board Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR's Web site. International IOR Rectifier IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/2007 ### IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). #### WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.