


minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply.

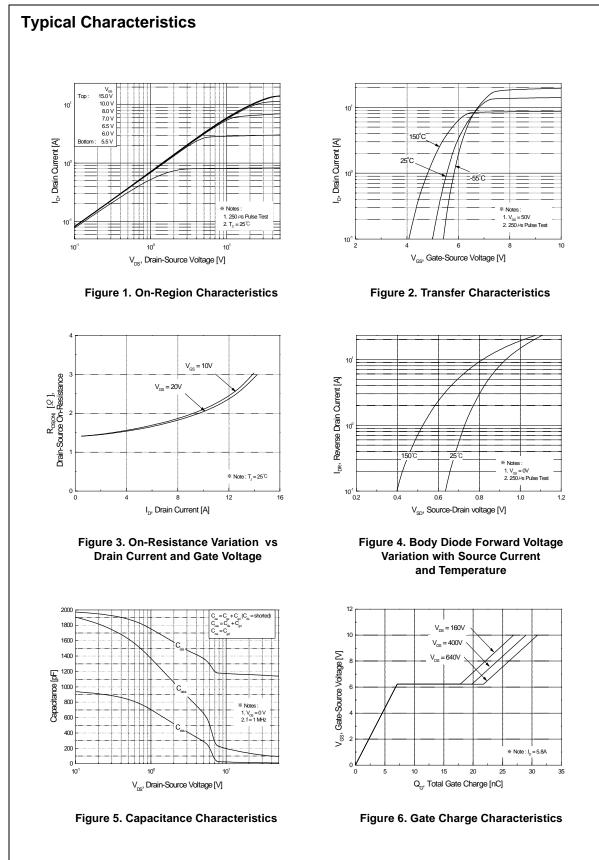
- 100% avalanche tested
- Improved dv/dt capability



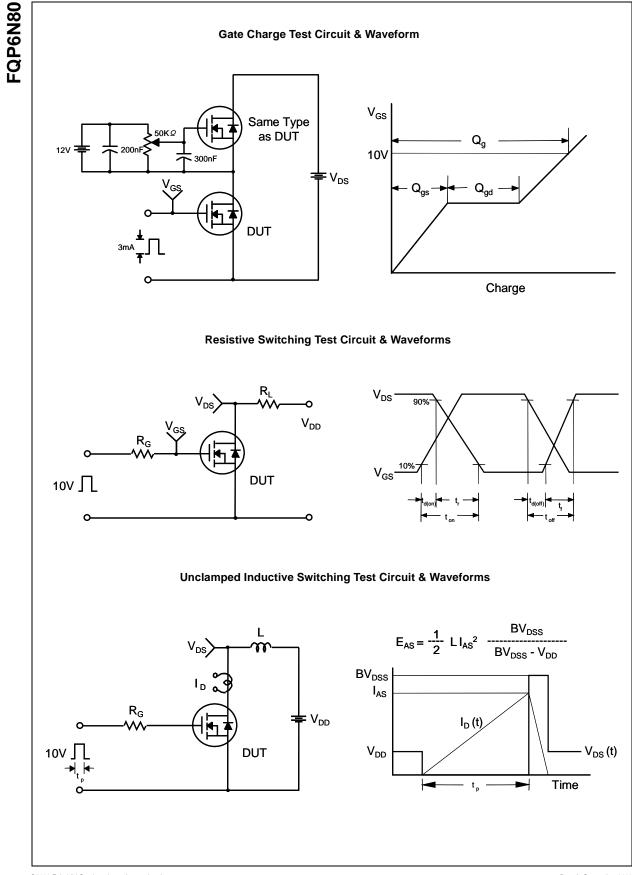


## Absolute Maximum Ratings T<sub>C</sub> = 25°C unless otherwise noted

| Symbol                            | Parameter                                                                        |          | FQP6N80     | Units |
|-----------------------------------|----------------------------------------------------------------------------------|----------|-------------|-------|
| V <sub>DSS</sub>                  | Drain-Source Voltage                                                             |          | 800         | V     |
| I <sub>D</sub>                    | Drain Current - Continuous (T <sub>C</sub> = 25°C)                               |          | 5.8         | A     |
|                                   | - Continuous (T <sub>C</sub> = 100°C)                                            |          | 3.67        | А     |
| I <sub>DM</sub>                   | Drain Current - Pulsed                                                           | (Note 1) | 23.2        | А     |
| V <sub>GSS</sub>                  | Gate-Source Voltage                                                              |          | ± 30        | V     |
| E <sub>AS</sub>                   | Single Pulsed Avalanche Energy                                                   | (Note 2) | 680         | mJ    |
| I <sub>AR</sub>                   | Avalanche Current                                                                | (Note 1) | 5.8         | А     |
| E <sub>AR</sub>                   | Repetitive Avalanche Energy (Note 1)                                             |          | 15.8        | mJ    |
| dv/dt                             | Peak Diode Recovery dv/dt (Note 3)                                               |          | 4.0         | V/ns  |
| PD                                | Power Dissipation ( $T_C = 25^{\circ}C$ )                                        |          | 158         | W     |
|                                   | - Derate above 25°C                                                              |          | 1.27        | W/°C  |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Temperature Range                                          |          | -55 to +150 | °C    |
| Τ <sub>L</sub>                    | Maximum lead temperature for soldering purposes,<br>1/8" from case for 5 seconds |          | 300         | °C    |

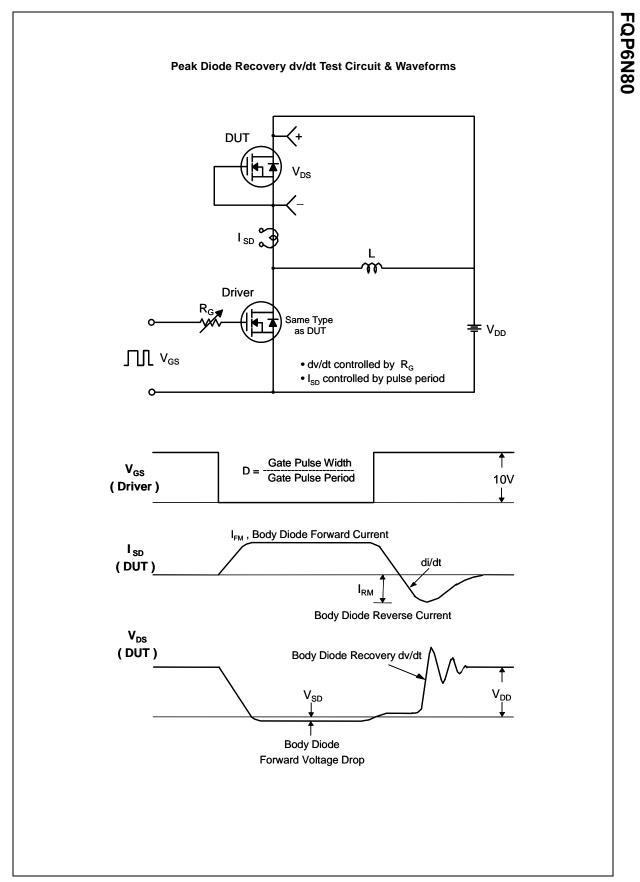

# **Thermal Characteristics**


| Symbol                | Parameter                               | Тур | Max  | Units |
|-----------------------|-----------------------------------------|-----|------|-------|
| $R_{	extsf{	heta}JC}$ | Thermal Resistance, Junction-to-Case    |     | 0.79 | °C/W  |
| $R_{\theta CS}$       | Thermal Resistance, Case-to-Sink        | 0.5 |      | °C/W  |
| $R_{\theta JA}$       | Thermal Resistance, Junction-to-Ambient |     | 62.5 | °C/W  |


| Drain-Source Breakdown Voltage<br>Breakdown Voltage Temperature<br>Coefficient<br>Zero Gate Voltage Drain Current<br>Gate-Body Leakage Current, Forward                                                                                   | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$<br>$I_D = 250 \mu\text{A}, \text{ Referenced t}$<br>$V_{DS} = 800  \text{V}, V_{GS} = 0  \text{V}$ | to 25°C                                                                                                                                                                                                                                                                                                                                                                                | 800                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Drain-Source Breakdown Voltage<br>Breakdown Voltage Temperature<br>Coefficient<br>Zero Gate Voltage Drain Current                                                                                                                         | $I_D$ = 250 µA, Referenced t<br>V <sub>DS</sub> = 800 V, V <sub>GS</sub> = 0 V                                                                   | to 25°C                                                                                                                                                                                                                                                                                                                                                                                | 800                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                                                          |
| Breakdown Voltage Temperature<br>Coefficient<br>Zero Gate Voltage Drain Current                                                                                                                                                           | $I_D$ = 250 µA, Referenced t<br>V <sub>DS</sub> = 800 V, V <sub>GS</sub> = 0 V                                                                   | to 25°C                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          | V                                                        |
|                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                          | V/°C                                                     |
|                                                                                                                                                                                                                                           |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                                                                                                                                                                                                       | μA                                                       |
| Gate-Body Leakage Current, Forward                                                                                                                                                                                                        | $V_{DS} = 640 \text{ V}, \text{ T}_{C} = 125^{\circ}\text{C}$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                      | μΑ                                                       |
|                                                                                                                                                                                                                                           | V <sub>GS</sub> = 30 V, V <sub>DS</sub> = 0 V                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                      | nA                                                       |
| Gate-Body Leakage Current, Reverse                                                                                                                                                                                                        | V <sub>GS</sub> = -30 V, V <sub>DS</sub> = 0 V                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       | -100                                                                                                                                                                                                                                                                                                                     | nA                                                       |
| ractoristics                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                                                          |
| 1                                                                                                                                                                                                                                         | $V_{DS} = V_{CS}$ $I_D = 250 \mu A$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        | 3.0                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                                                      | V                                                        |
| Static Drain-Source                                                                                                                                                                                                                       | $V_{GS} = 10 V, I_D = 2.9 A$                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                   | 1.95                                                                                                                                                                                                                                                                                                                     | Ω                                                        |
|                                                                                                                                                                                                                                           | Vps = 50 V. lp = 2.9 A                                                                                                                           | (Note 4)                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                     | 5.9                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                          | S                                                        |
| Input Capacitance<br>Output Capacitance                                                                                                                                                                                                   | V <sub>DS</sub> = 25 V, V <sub>GS</sub> = 0 V,<br>f = 1.0 MHz                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                   | 1150<br>125                                                                                                                                                                                                                                                                                                                           | 1500<br>160                                                                                                                                                                                                                                                                                                              | pF<br>pF                                                 |
|                                                                                                                                                                                                                                           | T = 1.0 MHZ                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          | pF                                                       |
| ng Characteristics                                                                                                                                                                                                                        | I                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                          |                                                          |
| Turn-On Delay Time<br>Turn-On Rise Time                                                                                                                                                                                                   | $V_{DD} = 400$ V, I <sub>D</sub> = 5.8 A,<br>R <sub>G</sub> = 25 Ω                                                                               |                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     | 30<br>70<br>65                                                                                                                                                                                                                                                                                                                        | 70<br>150<br>140                                                                                                                                                                                                                                                                                                         | ns<br>ns<br>ns                                           |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time                                                                                                                                                                            | $R_{G} = 25 \Omega$                                                                                                                              | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65                                                                                                                                                                                                                                                                                                                              | 150<br>140                                                                                                                                                                                                                                                                                                               | ns<br>ns                                                 |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time<br>Turn-Off Fall Time                                                                                                                                                      | $R_{G} = 25 \Omega$                                                                                                                              | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65<br>45                                                                                                                                                                                                                                                                                                                        | 150                                                                                                                                                                                                                                                                                                                      | ns<br>ns<br>ns                                           |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time<br>Turn-Off Fall Time<br>Total Gate Charge                                                                                                                                 | $R_G = 25 \Omega$<br>V <sub>DS</sub> = 640 V, I <sub>D</sub> = 5.8 A,                                                                            | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65                                                                                                                                                                                                                                                                                                                              | 150<br>140                                                                                                                                                                                                                                                                                                               | ns<br>ns                                                 |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time<br>Turn-Off Fall Time                                                                                                                                                      | $R_G = 25 \Omega$<br>V <sub>DS</sub> = 640 V, I <sub>D</sub> = 5.8 A,<br>V <sub>GS</sub> = 10 V                                                  | (Note 4, 5)<br>(Note 4, 5)                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65<br>45<br>31                                                                                                                                                                                                                                                                                                                  | 150<br>140<br>100                                                                                                                                                                                                                                                                                                        | ns<br>ns<br>ns<br>nC                                     |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time<br>Turn-Off Fall Time<br>Total Gate Charge<br>Gate-Source Charge                                                                                                           | $R_{G} = 25 \Omega$<br>$V_{DS} = 640 V, I_{D} = 5.8 A,$<br>$V_{GS} = 10 V$<br>od Maximum Ratings                                                 | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65<br>45<br>31<br>7.1                                                                                                                                                                                                                                                                                                           | 150<br>140<br>100<br>                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>nS<br>nC<br>nC                               |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time<br>Turn-Off Fall Time<br>Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge                                                                                      | $R_G = 25 \Omega$<br>$V_{DS} = 640 V, I_D = 5.8 A,$<br>$V_{GS} = 10 V$<br>od Maximum Ratings<br>ode Forward Current                              | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65<br>45<br>31<br>7.1<br>15                                                                                                                                                                                                                                                                                                     | 150<br>140<br>100<br>                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>nC<br>nC<br>nC                               |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time<br>Turn-Off Fall Time<br>Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge<br><b>Source Diode Characteristics ar</b><br>Maximum Continuous Drain-Source Diode F | $R_G = 25 \Omega$<br>$V_{DS} = 640 V, I_D = 5.8 A,$<br>$V_{GS} = 10 V$<br>od Maximum Ratings<br>ode Forward Current<br>Forward Current           | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65<br>45<br>31<br>7.1<br>15                                                                                                                                                                                                                                                                                                     | 150<br>140<br>100<br><br><br>5.8<br>23.2                                                                                                                                                                                                                                                                                 | ns<br>ns<br>nC<br>nC<br>nC                               |
| Turn-On Delay Time<br>Turn-On Rise Time<br>Turn-Off Delay Time<br>Turn-Off Fall Time<br>Total Gate Charge<br>Gate-Source Charge<br>Gate-Drain Charge<br><b>Fource Diode Characteristics ar</b><br>Maximum Continuous Drain-Source Dio     | $R_G = 25 \Omega$<br>$V_{DS} = 640 V, I_D = 5.8 A,$<br>$V_{GS} = 10 V$<br>od Maximum Ratings<br>ode Forward Current<br>Forward Current           | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     | 70<br>65<br>45<br>31<br>7.1<br>15<br><br>                                                                                                                                                                                                                                                                                             | 150<br>140<br>100<br><br><br>5.8                                                                                                                                                                                                                                                                                         | ns<br>ns<br>nC<br>nC<br>nC                               |
|                                                                                                                                                                                                                                           | On-Resistance<br>Forward Transconductance<br>ic Characteristics<br>Input Capacitance                                                             | Gate Threshold Voltage $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$ Static Drain-Source $V_{GS} = 10 \text{V}$ , $I_D = 2.9 \text{A}$ On-Resistance $V_{DS} = 50 \text{V}$ , $I_D = 2.9 \text{A}$ Forward Transconductance $V_{DS} = 50 \text{V}$ , $I_D = 2.9 \text{A}$ <b>ic Characteristics</b> Input Capacitance $V_{DS} = 25 \text{V}$ , $V_{GS} = 0 \text{V}$ ,<br>$f = 1.0 \text{MHz}$ | Gate Threshold Voltage $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$ Static Drain-Source $V_{GS} = 10 \text{V}$ , $I_D = 2.9 \text{A}$ On-Resistance $V_{DS} = 50 \text{V}$ , $I_D = 2.9 \text{A}$ Forward Transconductance $V_{DS} = 50 \text{V}$ , $I_D = 2.9 \text{A}$ ic Characteristics   Input Capacitance $V_{DS} = 25 \text{V}$ , $V_{GS} = 0 \text{V}$ ,   Output Capacitance $f = 1.0 \text{MHz}$ | Gate Threshold Voltage $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$ 3.0Static Drain-Source<br>On-Resistance $V_{GS} = 10 \text{V}$ , $I_D = 2.9 \text{A}$ Forward Transconductance $V_{DS} = 50 \text{V}$ , $I_D = 2.9 \text{A}$ (Note 4)ic CharacteristicsInput Capacitance $V_{DS} = 25 \text{V}$ , $V_{GS} = 0 \text{V}$ ,<br>f = 1.0 MHz | Gate Threshold Voltage $V_{DS} = V_{GS}$ , $I_D = 250 \ \mu A$ 3.0Static Drain-Source<br>On-Resistance $V_{GS} = 10 \ V$ , $I_D = 2.9 \ A$ 1.5Forward Transconductance $V_{DS} = 50 \ V$ , $I_D = 2.9 \ A$ (Note 4)5.9ic CharacteristicsInput Capacitance $V_{DS} = 25 \ V$ , $V_{GS} = 0 \ V$ ,<br>$f = 1.0 \ MHz$ 1150 | $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ |

Downloaded from Arrow.com.

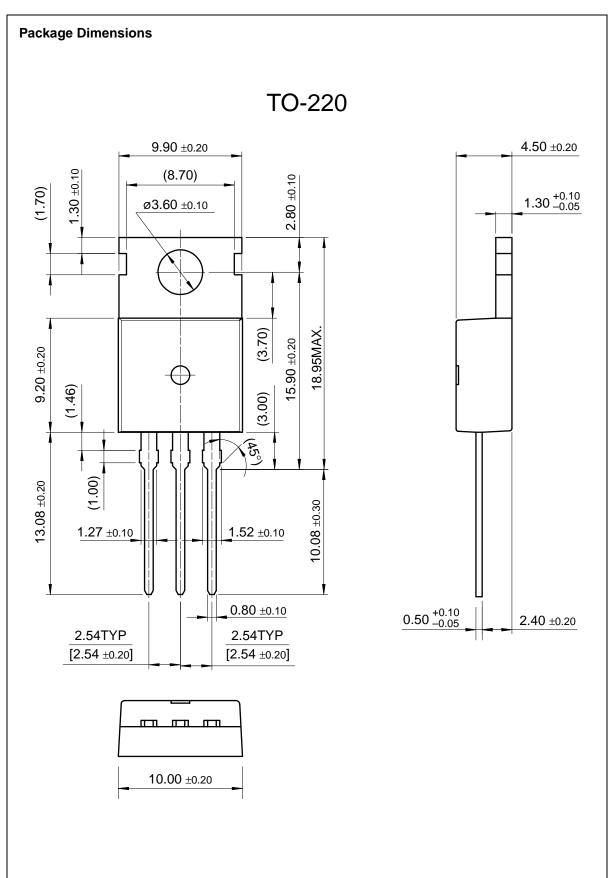
# FQP6N80








©2000 Fairchild Semiconductor International


Rev. A, September 2000



©2000 Fairchild Semiconductor International

Rev. A, September 2000

FQP6N80



©2000 Fairchild Semiconductor International

Rev. A, September 2000

## TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™                | FASTr™                   | QFET™                           | VCX™ |
|----------------------|--------------------------|---------------------------------|------|
| Bottomless™          | GlobalOptoisolator™      | QS™                             |      |
| CoolFET™             | GTO™                     | QT Optoelectronics <sup>™</sup> |      |
| CROSSVOLT™           | HiSeC™                   | Quiet Series <sup>™</sup>       |      |
| DOME™                | ISOPLANAR™               | SuperSOT™-3                     |      |
| E <sup>2</sup> CMOS™ | MICROWIRE™               | SuperSOT™-6                     |      |
| EnSigna™             | OPTOLOGIC™               | SuperSOT™-8                     |      |
| FACT™                | OPTOPLANAR™              | SyncFET™                        |      |
| FACT Quiet Series™   | POP™                     | TinyLogic™                      |      |
| FAST <sup>®</sup>    | PowerTrench <sup>®</sup> | UHC™                            |      |

#### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

## As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

### **PRODUCT STATUS DEFINITIONS**

#### **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                                |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconductor.<br>The datasheet is printed for reference information only.                                                         |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.