Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Cha	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$	-100			V
ΔBV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C		-0.1		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -100 V, V _{GS} = 0 V			-1	μΑ
		V _{DS} = -80 V, T _C = 150°C			-10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = -25 V, V _{DS} = 0 V			-100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = 25 V, V _{DS} = 0 V			100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu\text{A}$	-2.0		-4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = -10 V, I _D = -16.75 A		0.049	0.06	Ω
9 _{FS}	Forward Transconductance	V _{DS} = -40 V, I _D = -16.75 A (Note 4)		23		S
C _{iss}	Input Capacitance Output Capacitance	$V_{DS} = -25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHz		730	2910 950	pF pF
C _{rss}	Reverse Transfer Capacitance ng Characteristics			170	220	pF
t _{d(on)}	Turn-On Delay Time	V_{DD} = -50 V, I_{D} = -33.5 A, R_{G} = 25 Ω		25	60	ns
t _r	Turn-On Rise Time			250	510	ns
t _{d(off)}	Turn-Off Delay Time			160	330	ns
t _f	Turn-Off Fall Time			210	430	ns
Qg	Total Gate Charge	$V_{DS} = -80 \text{ V}, I_D = -33.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ (Note 4, 5)		85	110	nC
Q _{gs}	Gate-Source Charge			15		nC
Q _{gd}	Gate-Drain Charge			45		nC
	ource Diode Characteristics a	nd Maximum Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				-33.5	Α
I _{SM}	Maximum Pulsed Drain-Source Diode F	Forward Current			-134	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -33.5 \text{ A}$			-4.0	٧
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = -33.5 A,		160		ns
Q _{rr}	Reverse Recovery Charge	$dI_F / dt = 100 A/\mu s$ (Note 4)		0.88		μС

- Notes:
 1. Repetitive Rating : Pulse width limited by maximum junction temperature 2. L =3.9mH, I_{AS} = -33.5A, V_{DD} = -25V, R_G = 25 Ω, Starting T_J = 25°C 3. I_{SD} ≤ -33.5A, di/dt ≤ 300A/μs, V_{DD} ≤ BV_{DSS}, Starting T_J = 25°C 4. Pulse Test : Pulse width ≤ 300μs, Duty cycle ≤ 2% 5. Essentially independent of operating temperature

Typical Characteristics

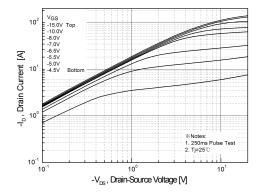


Figure 1. On-Region Characteristics

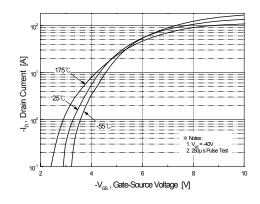


Figure 2. Transfer Characteristics

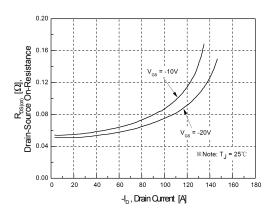


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

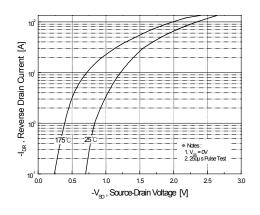


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

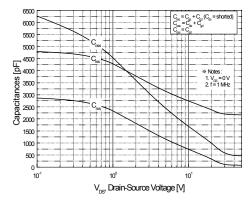


Figure 5. Capacitance Characteristics

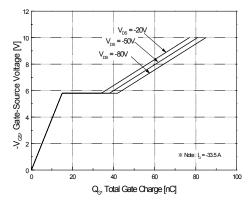
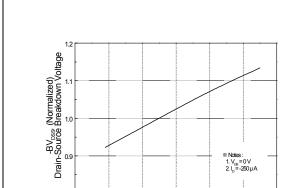



Figure 6. Gate Charge Characteristics

Typical Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

T_J, Junction Temperature [°C]

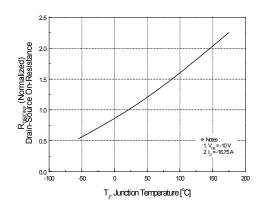


Figure 8. On-Resistance Variation vs. Temperature

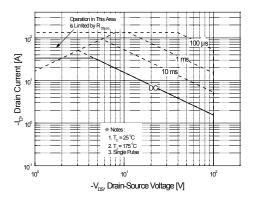


Figure 9. Maximum Safe Operating Area

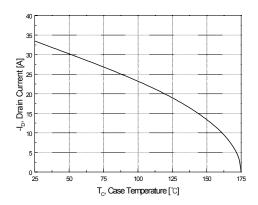


Figure 10. Maximum Drain Current vs. Case Temperature

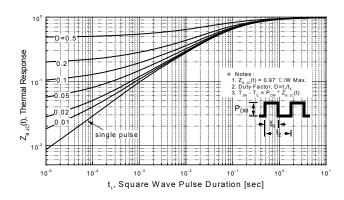
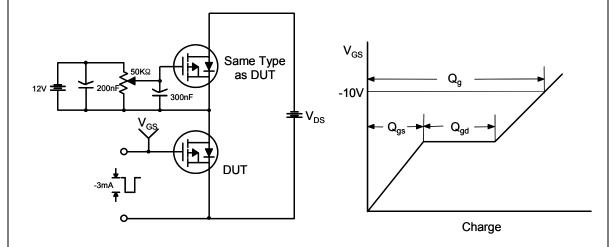
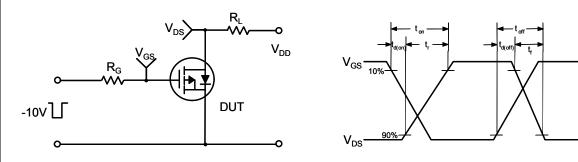
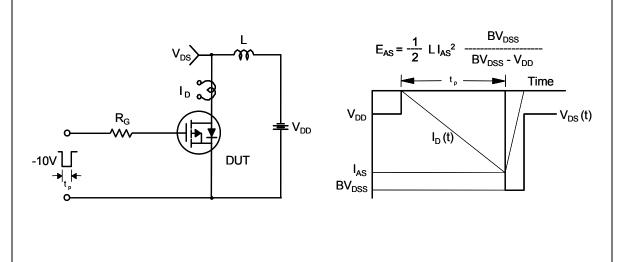
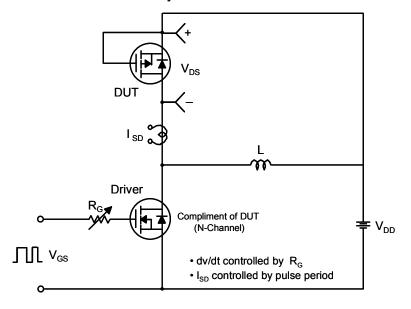
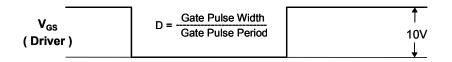




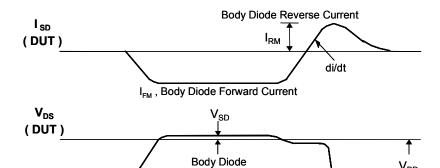
Figure 11. Transient Thermal Response Curve


Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms



www.onsemi.com 5

Peak Diode Recovery dv/dt Test Circuit & Waveforms

Forward Voltage Drop

Body Diode Recovery dv/dt

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor nessure any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, a

Phone: 81-3-5817-1050

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ © Semiconductor Components Industries, LLC

www.onsemi.com